Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3 µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500 mV) and were able to monitor urea in the range of 1–1000 µm, with a limit of detection (LOD) down to 1 µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10 nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. © 2016 The Authors

Registro:

Documento: Artículo
Título:Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications
Autor:Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET, Suc. 4, CC 16, La Plata, Argentina
Centre of Electrochemical Surface Technology (CEST), Viktor-Kaplan-Straße 2, Wiener Neustadt, 2700, Austria
AIT Austrian Institute of Technology, Donau City Straße 1, Vienna, 1220, Austria
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires, Argentina
Palabras clave:Biosensors; Chemical sensors; Field-effect transistors; Graphene; Biosensors; Chemical sensors; Copper; Enzymes; Graphene; Graphene transistors; Heavy metals; Metabolism; pH sensors; Polyelectrolytes; Solutions; Transistors; Urea; Bio-sensor platforms; Biosensing applications; Hydrolysis of ureas; Layer-by-layer assemblies; Long term stability; Polyelectrolyte multilayer; Reduced graphene oxides; Weak polyelectrolytes; Field effect transistors; copper ion; graphene oxide; polyelectrolyte; polyethyleneimine; urease; graphite; immobilized enzyme; oxide; polyelectrolyte; urea; urease; aqueous solution; Article; biosensor; catalysis; enzyme analysis; field effect transistor; hydrolysis; limit of detection; pH measurement; surface property; blood; Canavalia; chemistry; devices; enzymology; equipment design; evaluation study; genetic procedures; human; transistor; Biosensing Techniques; Canavalia; Enzymes, Immobilized; Equipment Design; Graphite; Humans; Limit of Detection; Oxides; Polyelectrolytes; Transistors, Electronic; Urea; Urease
Año:2017
Volumen:92
Página de inicio:661
Página de fin:667
DOI: http://dx.doi.org/10.1016/j.bios.2016.10.035
Título revista:Biosensors and Bioelectronics
Título revista abreviado:Biosens. Bioelectron.
ISSN:09565663
CODEN:BBIOE
CAS:polyethyleneimine, 74913-72-7; urease, 9002-13-5; graphite, 7782-42-5; oxide, 16833-27-5; urea, 57-13-6; Enzymes, Immobilized; Graphite; Oxides; Polyelectrolytes; Urea; Urease
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09565663_v92_n_p661_Piccinini

Referencias:

  • Ahmad, R., Tripathy, N., Park, J.-H., Hahn, Y.-B., (2015) Chem. Commun., 51, pp. 11968-11971
  • Ariga, K., Hill, J.P., Ji, Q., (2007) Phys. Chem. Chem. Phys., 9, pp. 2319-2340
  • Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., Zhang, G., (2014) ACS Nano, 8, pp. 2632-2638
  • Carvounis, C.P., Nisar, S., Guro-Razuman, S., (2002) Kidney Int., 62, pp. 2223-2229
  • Choi, W., Lee, J., Graphene synthesis and applications (2012), In: Nanomaterials and Their Applications. CRC Press; Cortez, M.L., De Matteis, N., Ceolín, M., Knoll, W., Battaglini, F., Azzaroni, O., (2014) Phys. Chem. Chem. Phys., 16, pp. 20844-20855
  • Decher, G., Hong, J.D., (1991) Ber. Bunsenges. Phys. Chem. Ber. Bunsenges. Phys. Chem., 95, pp. 1430-1434
  • Decher, G., Schlenoff, J.B., Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (2012) second. ed, , WILEY-VCH Verlag GmbH & Co Weinheim
  • Dong, X., Shi, Y., Huang, W., Chen, P., Li, L., (2010) Adv. Mater., 22, pp. 1-5
  • Forrest, S.R., Elmore, B.B., Palmer, J.D., (2005) Appl. Biochem. Biotechnol., 121, pp. 85-91
  • Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K., (2007) Nano Lett., 7, pp. 3499-3503
  • He, Q., Sudibya, H.G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Zhang, H., (2010) ACS Nano, 4, pp. 3201-3208
  • Hess, L.H., Lyuleeva, A., Blaschke, B.M., Sachsenhauser, M., Seifert, M., Garrido, J.A., Deubel, F., (2014) ACS Appl. Mater. Interfaces, 6, pp. 9705-9710
  • Iost, R.M., Crespilho, F.N., (2012) Biosens. Bioelectron., 31, pp. 1-10
  • Kazakova, L.I., Shabarchina, L.I., Sukhorukov, G.B., (2011) Phys. Chem. Chem. Phys., 13, pp. 11110-11117
  • Kim, D., Sohn, Y., Il, Jung, J., Yoon, O.J., Lee, N., Park, J., (2013) Biosens. Bioelectron., 41, pp. 621-626
  • Krajewska, B., (2008) J. Enzym. Inhib. Med. Chem., 23, pp. 535-542
  • Krajewska, B., (2009) J. Mol. Catal. B: Enzym., 59, pp. 9-21
  • Lakard, B., Magnin, D., Deschaume, O., Vanlancker, G., Glinel, K., Demoustier-Champagne, S., Nysten, B., Yunus, S., (2011) Biosens. Bioelectron., 26, pp. 4139-4145
  • Marchenko, S.V., Kucherenko, I.S., Hereshko, A.N., Panasiuk, I.V., Soldatkin, O.O., El'skaya, A.V., Soldatkin, A.P., (2015) Sens. Actuators B Chem., 207, pp. 981-986
  • Melzer, K., Bhatt, V.D., Jaworska, E., Mittermeier, R., Maksymiuk, K., Michalska, A., Lugli, P., (2016) Biosens. Bioelectron., 84, pp. 7-14
  • Nguyen, N.S., Das, G., Yoon, H.H., (2016) Biosens. Bioelectron., 77, pp. 372-377
  • Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Haddon, R.C., (2010) Nano Lett., (10), pp. 4061-4066
  • Ohno, Y., Maehashi, K., Yamashiro, Y., Matsumoto, K., (2009) Nano Lett., (9), pp. 3318-3322
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, pp. 8071-8083
  • Pan, T.M., Lin, J.C., Wu, M.H., Lai, C.S., (2009) Biosens. Bioelectron., 24, pp. 2864-2870
  • Parviz, D., Das, S., Ahmed, H.S.T., Irin, F., Bhattacharia, S., Green, M.J., (2012) ACS Nano, 6, pp. 8857-8867
  • Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O., (2015) Chem. Commun., 51, pp. 14754-14757
  • Rajesh, B.V., Takashima, W., Kaneto, K., (2005) Biomaterials, 26, pp. 3683-3690
  • Reiner-Rozman, C., Larisika, M., Nowak, C., Knoll, W., (2015) Biosens. Bioelectron., 70, pp. 21-27
  • Rydzek, G., Ji, Q., Li, M., Schaaf, P., Hill, J.P., Boulmedais, F., Ariga, K., (2014) Nano Today, 10, pp. 138-167
  • Sant, W., Temple-Boyer, P., chanie, E., Launay, J., Martinez, A., (2011) Sens. Actuators B Chem., 160, pp. 59-64
  • Scouten, W.H., Luong, J.H.T., Stephen Brown, R., (1995) Trends Biotechnol., 13, pp. 178-185
  • Sheldon, R.A., Van Pelt, S., (2013) Chem. Soc. Rev. Chem. Soc. Rev., 42, pp. 6223-6235
  • Singh, M., Verma, N., Garg, A.K., Redhu, N., (2008) Sens. Actuators B Chem., 134, pp. 345-351
  • Sohn, I.Y., Kim, D.J., Jung, J.H., Yoon, O.J., Nguyen Thanh, T., Tran Quang, T., Lee, N.E., (2013) Biosens. Bioelectron., 45, pp. 70-76
  • Tsai, H.C., Doong, R.A., (2005) Biosens. Bioelectron., 20, pp. 1796-1804
  • Von Harpe, A., Petersen, H., Li, Y., Kissel, T., (2000) J. Control. Release, 69, pp. 309-322
  • Wang, Y.Y., Burke, P.J., (2013) Appl. Phys. Lett., p. 103
  • Wang, Y.Y., Burke, P.J., (2014), 7, pp. 1650-1658; Wong, H.-S., Akinwande, D., Carbon Nanotube and Graphene Device Physics (2011), Cambridge University Press; Yan, F., Zhang, M., Li, J., (2014) Adv. Healthc. Mater., 3, pp. 313-331
  • Yang, C.M., Wang, I.S., Lin, Y.T., Huang, C.H., Lu, T.F., Lue, C.E., Pijanowska, D.G., Lai, C.S., (2013) Sens. Actuators B Chem., 187, pp. 274-279
  • Zhan, B., Li, C., Yang, J., Jenkins, G., Huang, W., Dong, X., (2014) Small, 10, pp. 4042-4065
  • Zhang, M., Liao, C., Mak, C.H., You, P., Mak, C.L., Yan, F., (2015) Sci. Rep., 5, p. 8311
  • Zhybak, M., Beni, V., Vagin, M.Y., Dempsey, E., Turner, A.P.F., Korpan, Y., (2016) Biosens. Bioelectron., 77, pp. 505-511

Citas:

---------- APA ----------
Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O. & Knoll, W. (2017) . Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics, 92, 661-667.
http://dx.doi.org/10.1016/j.bios.2016.10.035
---------- CHICAGO ----------
Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O., Knoll, W. "Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications" . Biosensors and Bioelectronics 92 (2017) : 661-667.
http://dx.doi.org/10.1016/j.bios.2016.10.035
---------- MLA ----------
Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O., Knoll, W. "Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications" . Biosensors and Bioelectronics, vol. 92, 2017, pp. 661-667.
http://dx.doi.org/10.1016/j.bios.2016.10.035
---------- VANCOUVER ----------
Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O., Knoll, W. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosens. Bioelectron. 2017;92:661-667.
http://dx.doi.org/10.1016/j.bios.2016.10.035