Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Consumers demand for more natural ingredients in processed foods is a result of a requirement for more healthy and safe food with also a need for a balanced and adequate diet.Natamycin is a polyene macrolide antibiotic which is active against yeasts and moulds but not against bacteria, viruses and protozoa.In this study the effectiveness of natamycin delivered by different methods against Saccharomyces cerevisiae, Zygosaccharomyces rouxii and Yarrowia lipolytica using both food models and cheese with natural antimicrobials.It was observed that natamycin concentration and yeast type influenced whether the natamycin effect in tapioca starch films was cidal or inhibitory. This was also observed when the antimicrobial was applied directly to a liquid system for comparison purposes. Bioavailability was not compromised by the polymeric supporting matrix and natamycin efficiency against a S.cerevisiae contamination that preceded antimicrobial application was superior when film action was compared with spraying. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces
Autor:Ollé Resa, C.P.; Jagus, R.J.; Gerschenson, L.N.
Filiación:National Agency of Scientific and Technological Promotion (ANPCyT), Argentina
Laboratory of Industrial Microbiology: Food Technology, Department of Chemical Engineering, FI, UBA, Argentina
Industry Department, FCEN, UBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Application technique; Cheese; Food model systems; Natamycin; Yeasts
Año:2014
Volumen:35
Número:1
Página de inicio:101
Página de fin:108
DOI: http://dx.doi.org/10.1016/j.foodcont.2013.06.049
Título revista:Food Control
Título revista abreviado:Food Control
ISSN:09567135
CODEN:FOOCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09567135_v35_n1_p101_OlleResa

Referencias:

  • Athar, A., Winner, H.I., Development of resistance by Candida species to polyene antibiotics invitro (1971) Journal of Medical Microbiology, 4, pp. 505-517
  • Barth, G., Gaillardin, C., Physiology and genetics of the dimorphic fungus Yarrowia lipolytica (1997) FEMS Microbiology Reviews, 19, pp. 219-237
  • Basch, C., Carpenco, J., Jagus, R., Flores, S., Individual and combined performance of nisin and potassium sorbate supported in tapioca starch edible films (2011) Proceedings of the 11th International Congress on Engineering and Food (ICEF 11), 2, pp. 979-980
  • Belanger, P., Nast, C., Fratti, R., Sanati, H., Ghannoum, M., Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and -resistant Candida species (1997) Antimicrobial Agents and Chemotherapy, 41 (8), pp. 1840-1844
  • Betts, G., Linton, P., Betteridge, R., Synergistic effect of sodium chloride, temperature and pH on growth of a cocktail of spoilage yeasts: a research note (2000) Food Control, 17, pp. 47-52
  • Campos, C., Gerschenson, L., Flores, S., Development of edible films and coatings with antimicrobial activity (2011) Food Bioprocess Technology, 4 (6), pp. 849-875
  • Cantón, E., Pemán, J., Gobernado, M., Espinel-ingroff, A., Pema, J., Patterns of Amphotericin B killing kinetics against seven (2004) Candida Species, 48 (7), pp. 2477-2482
  • Carreira, A., Paloma, L., Loureiro, V., Pigment producing yeasts involved in the brown surface discoloration of ewes' cheese (1998) International Journal of Food Microbiology, 41 (3), pp. 223-230
  • Cerrutti, P., Alzamora, S.M., Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purées (1996) International Journal of Food Microbiology, 29, pp. 379-386
  • De Nobel, J., Klis, F., Priem, J., Munnik, T., van den Ende, H., The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae (1990) Yeast, 6, pp. 491-499
  • Dos Santos Pires, A., De Ferreira Soares, N., De Andrade, N., Mendes Da Silva, L., Peruch Camilloto, G., Campos Bernardes, P., Development and evaluation of active packaging for sliced mozzarella preservation (2008) Packaging Technology and Science, 21 (7), pp. 375-383
  • El-Diasty, E., El-Kaseh, R., Salem, R., The effect of natamycin on keeping quality and organoleptic characters of yoghurt (2008) Arab Journal of Biotechnology, 12 (1), pp. 41-48
  • Fajardo, P., Martins, J., Fuciños, C., Pastrana, L., Teixeira, J., Vicente, A., Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese (2010) Journal of Food Engineering, 101, pp. 349-356
  • Flores, S., Haedo, A., Campos, C., Gerschenson, L.N., Antimicrobial performance of potassium sorbate supported in tapioca starch edible films (2007) European Food Research and Technology, 225, pp. 375-384
  • Franssen, L., (2002) Antimicrobial properties and diffusion modeling of preservative-containing whey protein films and coatings on cheddar cheese, , PhD thesis, University of California, Davis
  • Franssen, L., Rumsey, T., Krochta, J., Whey protein film composition effects on potassium sorbate and natamycin diffusion (2004) Journal of Food Science, 69 (5), pp. 347-350
  • Gallo, L., Jagus, R., Modelling Saccharomyces cerevisiae inactivation by natamycin in liquid cheese whey (2006) Brazilian Journal of Food Technology, 9 (4), pp. 311-316
  • Geijp, E.M.L., Stark, J., Van Rijn, F.T.J., Soluble natamycin-protein complex., , Sep. 1998, EU patent EP0865738 A1
  • Gould, G., Methods of preservation and extension of shelf life (1997) International Journal of Food Microbiology, 33 (1), pp. 51-64
  • Hammond, S., Lambert, P., Membrane-active antimicrobial agents (1978) Antibiotics and antimicrobial action, pp. 34-36. , Edward Arnold Publishers Limited, London
  • Hanušová, K., Šťastná, M., Votavová, L., Klaudisová, K., Dobiáš, J., Voldřich, M., Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging (2010) Journal of Food Engineering, 99 (4), pp. 491-496
  • Ishida, K., Cola Fernandes Rodrigues, J., Dornelas Ribeiro, M., Vierira Machado Vila, T., de Souza, W., Urbina, J., Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms (2009) BMC Microbiology, 9 (74), pp. 1-12
  • James, S., Stratford, M., (2003) Yeasts in food: Spoilage yeasts with emphasis on the genus Zygosaccharomyces, pp. 171-191. , Behr's Verlag, Hamburg, T. Boekhout, V. Robert (Eds.)
  • Jigami, Y., Odani, T., Mannosylphosphate transfer to yeast mannan (1999) Biochimica et Biophysica Acta, 1426, pp. 335-345
  • Jin, H., McCaffery, J.M., Grote, E., Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast (2008) The Journal of Cell Biology, 180 (4), pp. 813-826
  • Klis, F., Mol, P., Hellingwerf, K., Brul, S., Dynamics of cell wall structure in Saccharomyces cerevisiae (2002) FEMS Microbiology Reviews, 26 (3), pp. 239-256
  • Klose, C., Ejsing, C., García-Sáez, A., Kaiser, H., Sampaio, J., Surma, M., Yeast lipids can phase-separate into micrometer-scale membrane domains (2010) The Journal of Biological Chemistry, 285 (39), pp. 30224-30232
  • Koontz, J., Marcy, J., Barbeau, W., Duncan, S., Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution (2003) Journal of Agricultural and Food Chemistry, 51 (24), pp. 7111-7114
  • Koul, A., Vitullo, J., Reyes, G., Ghannoum, M., Effects of voriconazole on Candida glabrata in vitro (1999) Journal of Antimicrobial Chemotherapy, 44, pp. 109-112
  • Krause Bierhalz, A., da Silva, M., Kieckbusch, T., Natamycin release from alginate/pectin films for food packaging applications (2012) Journal of Food Engineering, 110 (1), pp. 18-25
  • Kristo, E., Koutsoumanis, K., Biliaderis, C., Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes (2008) Food Hydrocolloids, 22, pp. 373-386
  • Martorell, P., Fernández-Espinar, M., Querol, A., Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources (2005) International Journal of Food Microbiology, 101, pp. 293-302
  • Martorell, P., Stratford, M., Steels, H., Fernández-Espinar, M., Querol, A., Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments (2007) International Journal of Food Microbiology, 114 (2), pp. 234-242
  • Moukadiri, I., Jaafar, L., Zueco, J., Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents (1999) Journal of Bacteriology, 181 (16), pp. 4741-4745
  • Ollé Resa, C., Gerschenson, L., Jagus, R., Effect of natamycin on physical properties of starch edible films and their effect on Saccharomyces cerevisiae activity (2012) Food and Bioprocess Technology, , online
  • Orlean, P., Biogenesis of yeast wall and surface components (1997) The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and biology, pp. 229-362. , New York, J. Pringle, J. Broach, E. Jones (Eds.)
  • Ozdemir, M., Floros, J., Analysis and modeling of potassium sorbate diffusion through edible whey protein films (2001) Journal of Food Engineering, 47, pp. 149-155
  • Pintado, C., Ferreira, M., Sousa, I., Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin (2010) Food Control, 21 (3), pp. 240-246
  • Praphailong, W., Fleet, G., The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of spoilage yeasts (1997) Food Microbiology, 14, pp. 459-468
  • Pribylova, L., Papouskova, K., Sychrova, H., The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology (2008) Fungal Genetics and Biology, 45 (10), pp. 1439-1447
  • Ramos, O., Silva, S., Soaresa, J., Fernandesa, J., Poçasa, M., Pintadoa, M., Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds (2012) Food Research International, 45 (1), pp. 351-361
  • Reps, A., Jedrychowski, L., Tomasik, J., Wisniewska, K., Natamycin in ripening cheeses (2002) Pakistan Journal of Nutrition, 1 (5), pp. 243-247
  • Reynolds, T., Fink, G., Bakers' yeast, a model for fungal biofilm formation (2001) Science, 291, pp. 878-881
  • Sebti, I., Blanc, D., Carnet-Ripoche, A., Saurel, R., Coma, V., Experimental study and modeling of nisin diffusion in agarose gels (2004) Journal of Food Engineering, 63, pp. 185-190
  • Sokal, R., Rohlf, J., (2000) Biometry. The principles and practice of statistics in biological research, , W. H. Freeman and Company, San Francisco, California
  • Sorhaug, T., Stepaniak, L., Psychrotrophs and their enzymes in milk and dairy products: quality aspects (1997) Trends in Food Science and Technology, 8, pp. 35-41
  • von Staszewski, M., Jagus, R., Natural antimicrobials: effect of microgard and nisin against Listeria innocua in liquid cheese whey (2008) International Dairy Journal, 18, pp. 255-259
  • Ture, H., Eroglu, E., Ozen, B., Soyer, F., Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese (2011) International Journal of Food Science & Technology, 46 (1), pp. 154-160
  • Wachtler, V., Balasubramanian, M., Yeast lipid rafts? - an emerging view (2006) Trends in Cell Biology, 16 (1), pp. 1-4
  • te Welscher, Y., Jones, L., van Leeuwen, M., Dijksterhuis, J., De Kruijff, B., Eitzen, G., Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol (2010) Antimicrobial Agents and Chemotherapy, 54 (6), pp. 2618-2625
  • te Welscher, Y., Ten Napel, H., Balagué, M., Souza, C., Riezman, H., De Kruijff, B., Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane (2008) The Journal of Biological Chemistry, 283 (10), pp. 6393-6401
  • Zhang, Y., Gamarra, S., Garcia-Effron, G., Park, S., Perlin, D., Rao, R., Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs (2010) PLoS Pathogens, , online

Citas:

---------- APA ----------
Ollé Resa, C.P., Jagus, R.J. & Gerschenson, L.N. (2014) . Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control, 35(1), 101-108.
http://dx.doi.org/10.1016/j.foodcont.2013.06.049
---------- CHICAGO ----------
Ollé Resa, C.P., Jagus, R.J., Gerschenson, L.N. "Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces" . Food Control 35, no. 1 (2014) : 101-108.
http://dx.doi.org/10.1016/j.foodcont.2013.06.049
---------- MLA ----------
Ollé Resa, C.P., Jagus, R.J., Gerschenson, L.N. "Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces" . Food Control, vol. 35, no. 1, 2014, pp. 101-108.
http://dx.doi.org/10.1016/j.foodcont.2013.06.049
---------- VANCOUVER ----------
Ollé Resa, C.P., Jagus, R.J., Gerschenson, L.N. Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control. 2014;35(1):101-108.
http://dx.doi.org/10.1016/j.foodcont.2013.06.049