Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Frequently we revise our first opinions after talking over with other individuals because we get convinced. Argumentation is a verbal and social process aimed at convincing. It includes conversation and persuasion and the agreement is reached because the new arguments are incorporated. Given the wide range of opinion formation mathematical approaches, there are however no models of opinion dynamics with nonlocal pair interactions analytically solvable. In this paper we present a novel analytical framework developed to solve the master equations with non-local kernels. For this we used a simple model of opinion formation where individuals tend to get more similar after each interactions, no matter their opinion differences, giving rise to nonlinear differential master equation with non-local terms. Simulation results show an excellent agreement with results obtained by the theoretical estimation. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Modeling opinion dynamics: Theoretical analysis and continuous approximation
Autor:Pinasco, J.P.; Semeshenko, V.; Balenzuela, P.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS UBA-CONICET, Av. Cantilo s/n, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Instituto Interdisciplinario de Economía Política (IIEP-BAIRES), UBA, CONICET, FCE, Av. Córdoba 2122-2do (C1120AAQ),CABA, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA), CONICET, Av. Cantilo s/n, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Palabras clave:Master equations; Non-local kernels; Opinion dynamics; Dynamics; Systems analysis; Continuous approximations; Master equations; Mathematical approach; Nonlocal; Opinion dynamics; Opinion formation; Pair interactions; Theoretical estimation; Nonlinear equations
Año:2017
Volumen:98
Página de inicio:210
Página de fin:215
DOI: http://dx.doi.org/10.1016/j.chaos.2017.03.033
Título revista:Chaos, Solitons and Fractals
Título revista abreviado:Chaos Solitons Fractals
ISSN:09600779
CODEN:CSFOE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_09600779_v98_n_p210_Pinasco

Referencias:

  • Clifford, P., Susbury, A., A model for spatial conflict (1973) Biometrika, 60 (3), pp. 581-588. , http://biomet.oxfordjournals.org/content/60/3/581.abstract
  • Liggett, T.M., Stochastic models of interacting systems (1997) Ann Probab, 25 (1), pp. 1-29
  • Deffuant, G., Neau, D., Amblard, F., Weisbuch, G., Mixing beliefs among interacting agents (2000) Adv Complex Syst, 3 (1-4), pp. 87-98
  • Mäs, M., Flache, A., Differentiation without distancing. explaining bi-polarization of opinions without negative influence (2013) PLoS ONE, 8, p. e74516
  • La Rocca, C.E., Braunstein, L.A., Vazquez, F., The influence of persuasion in opinion formation and polarization (2014) Europhys Lett, 106, p. 40004
  • Balenzuela, P., Pinasco, J.P., Semeshenko, V., The undecided have the key: interaction-driven opinion dynamics in a three state model (2015) PLoS ONE, 10 (10), pp. 1-21. , http://dx.doi.org/10.1371
  • Aletti, G., Naldi, G., Toscani, G., First-order continuous models of opinion formation (2007) SIAM J Appl Math, 67 (3), pp. 837-853
  • Castellano, C., Fortunato, S., Loreto, V., Statistical physics of social dynamics (2009) Rev Mod Phys, 81, pp. 591-646
  • Li, H., Toscani, G., Long-time asymptotics of kinetic models of granular flows (2004) Arch Ration Mech Anal, 172 (3), pp. 407-428
  • Carrillo, J.A., Vázquez, J.L., Some free boundary problems involving non-local diffusion and aggregation (2015) Philosoph Trans R Soc London A: Math Phys Eng Sci, 373 (2050). , http://rsta.royalsocietypublishing.org/content/373/2050/20140275
  • Levine, H., Payne, L.E., Nonexistence theorems for the heat equation with nonlinear boundary condition and for the porous medium equation backward in time (1974) J Differ Equ, 16, pp. 319-334
  • Pasqualetti, G., Pérez-Llanos, M., Pinasco, J.P., (2016) Blow up versus global existence for competing diffusions;, , Preprint

Citas:

---------- APA ----------
Pinasco, J.P., Semeshenko, V. & Balenzuela, P. (2017) . Modeling opinion dynamics: Theoretical analysis and continuous approximation. Chaos, Solitons and Fractals, 98, 210-215.
http://dx.doi.org/10.1016/j.chaos.2017.03.033
---------- CHICAGO ----------
Pinasco, J.P., Semeshenko, V., Balenzuela, P. "Modeling opinion dynamics: Theoretical analysis and continuous approximation" . Chaos, Solitons and Fractals 98 (2017) : 210-215.
http://dx.doi.org/10.1016/j.chaos.2017.03.033
---------- MLA ----------
Pinasco, J.P., Semeshenko, V., Balenzuela, P. "Modeling opinion dynamics: Theoretical analysis and continuous approximation" . Chaos, Solitons and Fractals, vol. 98, 2017, pp. 210-215.
http://dx.doi.org/10.1016/j.chaos.2017.03.033
---------- VANCOUVER ----------
Pinasco, J.P., Semeshenko, V., Balenzuela, P. Modeling opinion dynamics: Theoretical analysis and continuous approximation. Chaos Solitons Fractals. 2017;98:210-215.
http://dx.doi.org/10.1016/j.chaos.2017.03.033