Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The objective of this study was to isolate strains of the genus Bacillus from different productive soils of the province of Salta, Argentina, which have growth promoting properties in common bean (Phaseolus vulgaris L.) and have the ability to inhibit different phytopathogenic fungi, primarily Macrophomina phaseolina. Among the 105 strains of bacilli checked, Bacillus sp. B14 was selected for having the greatest in vitro inhibitory effect against Sclerotium rolfsii, Sclerotinia sclerotiurum, Rhizoctonia solani, Fusarium solani and Macrophomina phaseolina, recording fungal inhibition values that varied between 60 and 80%. In addition, B14 produced auxins in a concentration of 10.10 mg/ml, and qualitatively synthesizes siderophores. Based on 16S rRNA gene sequencing, the strain was characterized as B. amyloliquefaciens. Data from greenhouse experiments showed that the black common bean cv. Nag 12 seeds inoculated with B14, had increased germination of 10%, as well as an increase in root length of 2 cm and in shoot length of 6 cm compared with the non-inoculated control seeds. When the phytosanitary state of the B14 inoculated seeds was analyzed, no growth of bacteria, or phytopathogenic fungi and contaminants was observed, while in the non-inoculated seeds, bacteria was found in 46% of seeds, in addition to other phytopathogenic fungi. B. amyloliquefaciens B14 reduced the incidence of M. phaseolina by 62% in the inoculated black bean cv. Nag 12 seeds. Furthermore, using MALDI-MS it was determined that the bacteria synthesized different lipopeptides in the presence of M. phaseolina, such as surfactin, iturin, fengycin, kurstatin and polymyxin, leading us to conclude that they are the main responsible for the antagonistic effect observed and that the nature of lipopeptides synthesized by B14 is influenced by target fungal strain. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties
Autor:Sabaté, D.C.; Pérez Brandan, C.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C.
Filiación:Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150Salta 4400, Argentina
Instituto Nacional de Tecnología Agropecuaria (INTA)-Estación Experimental Salta, Ruta Nacional 68 Km 172, Cerrillos, Salta 4403, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica Pabellón II, 3er P, Ciudad Universitaria, Buenos Aires, 1428, Argentina
CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales Pabellón II, 3er P, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Bacillus amyloliquefaciens; Lipopeptides; Macrophomina phaseolina; MALDI-MS; PGPR; Phaseolus vulgaris L.
Año:2017
Volumen:113
Página de inicio:1
Página de fin:8
DOI: http://dx.doi.org/10.1016/j.biocontrol.2017.06.008
Título revista:Biological Control
Título revista abreviado:Biol. Control
ISSN:10499644
CODEN:BCIOE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10499644_v113_n_p1_Sabate

Referencias:

  • Abawi, G.S., Pastor Corrales, M.A., Root Rots of Beans in Latin America and Africa: Diagnosis, Research Methodologies, and Management Strategies (1990), CIAT-Centro Internacional de Agricultura Tropical; Adams, E.K., Ashcraft, D.S., Pankey, G.A., In vitro Synergistic Activity of Caspofungin Plus Polymyxin B Against Fluconazole-Resistant Candida glabrata (2016) Am. J. Med. Sci., 351, pp. 265-270
  • Babalola, O.O., Beneficial bacteria of agricultural importance (2010) Biotechnol. Lett., 32, pp. 1559-1570
  • Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R., Microbial biosurfactants production, applications and future potential (2010) Appl. Microbiol. Biotechnol., 87, pp. 427-444
  • Barnett, H.L., Hunter, B.B., Illustrated Genera of Imperfect Fungi (1998), p. 218. , fourth ed. Burgess Publishing Company Minnesota, USA; Béchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., Dubois, T., Jacques, P., Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. (2012) Appl. Microbiol. Biotechnol., 95, pp. 593-600
  • Bhattacharya, D., Dhar, T.K., Siddiqui, K.A.I., Ali, E., Inhibition of seed germination by Macrophomina phaseolina is related to phaseolinone production (1994) J. Appl. Bacteriol., 77, pp. 129-133
  • Broughton, W.J., Hernández, G., Blair, M., Beans (Phaseolus spp.) model food legumes (2003) Plant Soil, 252, pp. 55-128
  • Castellanos, C., Jara, C., Mosquera, C., Manejo del hongo en el laboratorio (2011), pp. 5-18. , Guía Práctica 5. Macrophomina phaseolina. Enfermedad: Macrofomina, pudrición gris; Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., Ongena, M., Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens (2014) Microb. Biotechnol., 8, pp. 281-295
  • Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M., De Vleesschauwer, D., Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.) (2015) Physiol. Mol. Plant Pathol., 91, pp. 20-30
  • Cochrane, S.A., Vederas, J.C., Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates (2016) Med. Res. Rev., 36, pp. 4-31
  • Corrêa, B.O., Shafer, J.T., Moura, A.B., Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean (2014) Biol. Control, 72, pp. 71-75
  • Daffonchio, D., Borin, S., Frova, G., Manachini, P., Sorlini, C., PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis (1998) Int. J. Syst. Bacteriol., 48, pp. 107-116
  • De Bernardi, L.A., Perfil del Poroto, Gacetilla Informativa del Sector Agrícola: Newsletter n° 83 (2016); de Brito Alvarez, M., Gagne, A.G., Antoun, H., Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria (1995) Appl. Environ. Microbiol., 61, pp. 194-199
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat versión 2012 (2012), Grupo InfoStat, FCA, Universidad Nacional de Córdoba Argentina; El Arbi, A., Rochex, A., Chataign, G., Béchet, M., Lecouturier, D., Arnauld, S., Gharsallah, N., Jacques, P., The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides (2016) Res. Microbiol., 167, pp. 46-57
  • El-Samawaty, A.M.A., Moslem, M.A., Sayed, S.R., Yassin, M.A., Fungal endophytes survey of some legume seeds (2014) J. Pure Appl. Micriobiol., 8, pp. 153-160
  • Falardeau, J., Wise, C., Novitsky, L., Avis, T.J., Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens (2013) J. Chem. Ecol., 39, pp. 869-878
  • Francis, I., Holsters, M., Vereecke, D., The Gram-positive side of plant–microbe interactions (2010) Environ. Microbiol., 1, pp. 1-12
  • Goldstein, A.H., Bacterial solubilization of mineral phosphates: historical perspective and future prospects (1986) Am. J. Altern. Agric., 1, pp. 51-57
  • Hathout, Y., Ho, Y.P., Ryzhov, V., Demirev, P., Fenselau, C., Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis (2000) J. Nat. Prod., 63, pp. 1492-1496
  • Kloepper, J.W., Schroth, M.N., Plant growth promoting rhizobacteria on radishes (1978) Station de Pathologic Vegetal et Phytobacteriologi, pp. 879-882. , In: (Ed.), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol. 2, Angers, France
  • Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R., Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 (2004) J. Bacteriol., 186, pp. 1084-1096
  • Kumar, P., Dubey, R.C., Maheshwari, D.K., Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens (2012) Microbiol. Res., 167, pp. 493-499
  • Kumar, P., Pandey, P., Dubey, R.C., Maheshwari, D.K., Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies (2016) Rhizosphere, 2, pp. 13-23
  • Landa, B., Hervas, A., Bettiol, W., Jiménez-Díaz, R., Antagonistic activity of bacteria from the chikpea rhizosphere against Fusarium oxysporum f. sp. ciceris (1997) Phytoparasitica, 25, pp. 305-318
  • Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Response of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production (2014) Front. Microbiol., 5, p. 636
  • Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., Tyler, J.A., Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens (2014) Fungal Biol., 118, pp. 855-861
  • Martínez Villarreal, R., Garza Romero, T.S., Moreno Medina, V.R., Hernández Delgado, S., Mayek Pérez, N., Bases bioquímicas de la tolerancia al estrés osmótico en hongos fitopatógenos: el caso de Macrophomina phaseolina (Tassi) Goid (2016) Rev. Arg. Microbiol., 48, pp. 347-357
  • Martins, S.J., Medeiros, F.H.V., Souza, R.M., Resende, M.L.V., Riveiro, P.M.J., Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria (2013) Biol. Control, 66, pp. 65-71
  • Meena, K.R., Kanwar, S.S., Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics (2015) Biomed. Res. Int., pp. 1-9
  • Miller, J.H., Experiments in Molecular Genetics (1972), p. 466. , Cold Spring Harbor Laboratory Cold Spring Harbor; Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol (2008) Trends Microbiol., 16, pp. 115-125
  • Parsa, S., García-Lemos, A.M., Castillo, K., Ortiz, V., Lopez-Lavalle, L.A.B., Braun, J., Vega, F.E., Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris (2016) Fungal Biol., 120, pp. 783-790
  • Patten, C.L., Glick, B.R., Bacterial biosynthesis of indole-3-acetic acid (1996) Can. J. Microbiol., 42, pp. 207-220
  • Perez-Brandán, C., Arzeno, J.L., Huidobro, J., Grümberg, B., Conforto, C., Hilton, S., Bending, G.D., Vargas-Gil, S., Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean (2012) Crop Prot., 40, pp. 73-82
  • Price, N.P., Rooney, A.P., Swezey, J.L., Perry, E., Cohan, F.M., Mass spectrometric analyses of lipopeptides from Bacillus strains isolated from diverse geographical locations (2007) FEMS Microbiol. Lett., 271, pp. 83-89
  • Royse, D.J., Ries, S.M., The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta (1978) Phytopathology, 68, pp. 603-607
  • Schwartz, H.F., Steadman, J.R., Hall, R., Foster, R.L., Compendium of Bean Diseases (2005), p. 120. , second ed; Simonetti, E., Pin Viso, N., Montecchia, M., Zilli, C., Balestrasse, K., Carmona, M., Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean (2015) Microbiol. Res., 180, pp. 40-48
  • Sinclair, J.B., Backman, P.A., Compendium of Common Bean Diseases (1989), p. 106. , third ed. APS St. Paul, Minnesota; Singh, N., Pandey, P., Dubey, R.C., Maheshwari, D.K., Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1 (2008) World J. Microbiol. Biotechnol., 24, pp. 1669-1679
  • Stein, T., Bacillus subtilis antibiotics: structures, syntheses and specific functions (2005) Mol. Microbiol., 56, pp. 845-857
  • Thais, R.S., Grabowski, C., Rossato, M., Romeiro, R.S., Mizubuti, E.S.G., Biological control of eucalyptus bacterial wilt with rhizobacteria (2015) Biol. Control, 80, pp. 14-22
  • Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., Michel, G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis (1992) Biotechnol. Appl. Biochem., 16, pp. 144-151
  • Torres, M.J., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds (2016) Microbiol. Res., 182, pp. 31-39
  • Torres, M.J., Pérez Brandan, C., Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens (2017) Biol. Control, 105, pp. 93-99
  • Yánez-Mendizábal, V., Zeriouh, H., Vinas, I., Torres, R., Usall, J., Vicente, A., Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides (2011) Eur. J. Plant Pathol., 132, pp. 609-619
  • Zouari, I., Jlaiel, J., Tounsi, S., Trigui, M., Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds (2016) Biol. Control, 100, pp. 54-62

Citas:

---------- APA ----------
Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R. & Audisio, M.C. (2017) . Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biological Control, 113, 1-8.
http://dx.doi.org/10.1016/j.biocontrol.2017.06.008
---------- CHICAGO ----------
Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C. "Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties" . Biological Control 113 (2017) : 1-8.
http://dx.doi.org/10.1016/j.biocontrol.2017.06.008
---------- MLA ----------
Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C. "Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties" . Biological Control, vol. 113, 2017, pp. 1-8.
http://dx.doi.org/10.1016/j.biocontrol.2017.06.008
---------- VANCOUVER ----------
Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C. Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol. Control. 2017;113:1-8.
http://dx.doi.org/10.1016/j.biocontrol.2017.06.008