Artículo

Sedeño, L.; Piguet, O.; Abrevaya, S.; Desmaras, H.; García-Cordero, I.; Baez, S.; Alethia de la Fuente, L.; Reyes, P.; Tu, S.; Moguilner, S.; Lori, N.; Landin-Romero, R.; Matallana, D.; Slachevsky, A.; Torralva, T.; Chialvo, D.; Kumfor, F.; García, A.M. (...) Ibanez, A. "Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia" (2017) Human Brain Mapping. 38(8):3804-3822
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biomarkers represent a critical research area in neurodegeneration disease as they can contribute to studying potential disease-modifying agents, fostering timely therapeutic interventions, and alleviating associated financial costs. Functional connectivity (FC) analysis represents a promising approach to identify early biomarkers in specific diseases. Yet, virtually no study has tested whether potential FC biomarkers prove to be reliable and reproducible across different centers. As such, their implementation remains uncertain due to multiple sources of variability across studies: the numerous international centers capable conducting FC research vary in their scanning equipment and their samples’ socio-cultural background, and, more troublingly still, no gold-standard method exists to analyze FC. In this unprecedented study, we aim to address both issues by performing the first multicenter FC research in the behavioral-variant frontotemporal dementia (bvFTD), and by assessing multiple FC approaches to propose a gold-standard method for analysis. We enrolled 52 bvFTD patients and 60 controls from three international clinics (with different fMRI recording parameters), and three additional neurological patient groups. To evaluate FC, we focused on seed analysis, inter-regional connectivity, and several graph-theory approaches. Only graph-theory analysis, based on weighted-matrices, yielded consistent differences between bvFTD and controls across centers. Also, graph metrics robustly discriminated bvFTD from the other neurological conditions. The consistency of our findings across heterogeneous contexts highlights graph-theory as a potential gold-standard approach for brain network analysis in bvFTD. Hum Brain Mapp 38:3804–3822, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia
Autor:Sedeño, L.; Piguet, O.; Abrevaya, S.; Desmaras, H.; García-Cordero, I.; Baez, S.; Alethia de la Fuente, L.; Reyes, P.; Tu, S.; Moguilner, S.; Lori, N.; Landin-Romero, R.; Matallana, D.; Slachevsky, A.; Torralva, T.; Chialvo, D.; Kumfor, F.; García, A.M.; Manes, F.; Hodges, J.R.; Ibanez, A.
Filiación:Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
Neuroscience Research Australia, Sydney, Australia
School of Medical Sciences, The University of New South Wales, Sydney, Australia
School of Psychology, Central Clinical School & Brain and Mind Centre, University of Sydney; Neuroscience Research Australia; ARC Centre of Excellence in Cognition and its Disorders, New South Wales, Australia
Universidad de los Andes, Bogota, Colombia
Intellectus Memory and Cognition Center, Mental Health and Psychiatry Department, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Colombia
FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, Australia
Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
Instituto Balseiro and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
INECO Neurociencias Oroño, Grupo Oroño, Rosario, Argentina
Centro Algoritmi, University of Minho, Guimarães, Portugal
Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Rosario, Argentina
Physiopathology Department, ICBM Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile
Cognitive Neurology and Dementia, Neurology Department, Hospital del Salvador, Providencia, Santiago, Chile
Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
Centre for Advanced Research in Education, Santiago, Chile
Center for Complex Systems & Brain Sciences - Escuela de Ciencia y Tecnologia. UNSAM/Campus Miguelete, Argentina
Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
Universidad Autonoma del Caribe, Barranquilla, Colombia
Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago, Chile
Palabras clave:biomarkers; frontotemporal dementia; functional connectivity; graph-theory and neurodegenerative diseases; adult; Article; brain mapping; controlled study; diagnostic test accuracy study; disease control; female; frontal variant frontotemporal dementia; functional connectivity; functional magnetic resonance imaging; gold standard; human; major clinical study; male; middle aged; multicenter study; neuroimaging; nuclear magnetic resonance scanner; posterior cingulate; priority journal; resting state network; sensitivity and specificity; single photon emission computed tomography; voxel based morphometry
Año:2017
Volumen:38
Número:8
Página de inicio:3804
Página de fin:3822
DOI: http://dx.doi.org/10.1002/hbm.23627
Título revista:Human Brain Mapping
Título revista abreviado:Hum. Brain Mapp.
ISSN:10659471
CODEN:HBMAE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_10659471_v38_n8_p3804_Sedeno

Referencias:

  • Agosta, F., Canu, E., Sarro, L., Comi, G., Filippi, M., Neuroimaging findings in frontotemporal lobar degeneration spectrum of disorders (2012) Cortex, 48, pp. 389-413
  • Agosta, F., Galantucci, S., Valsasina, P., Canu, E., Meani, A., Marcone, A., Magnani, G., Filippi, M., Disrupted brain connectome in semantic variant of primary progressive aphasia (2014) Neurobiol Aging, 35, pp. 2646-2655
  • Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., Cappa, S.F., Filippi, M., Brain network connectivity assessed using graph theory in frontotemporal dementia (2013) Neurology, 81, pp. 134-143
  • Ashburner, J., Friston, K.J., Voxel-based morphometry–the methods (2000) NeuroImage, 11, pp. 805-821
  • Baez, S., Couto, B., Torralva, T., Sposato, L.A., Huepe, D., Montanes, P., Reyes, P., Ibanez, A., Comparing moral judgments of patients with frontotemporal dementia and frontal stroke (2014) JAMA Neurol, 71, pp. 1172-1176
  • Baez, S., Kanske, P., Matallana, D., Montanes, P., Reyes, P., Slachevsky, A., Matus, C., Ibanez, A., Integration of intention and outcome for moral judgment in frontotemporal dementia: Brain structural signatures (2016) Neurodegener Dis, 16, pp. 206-217
  • Baez, S., Morales, J.P., Slachevsky, A., Torralva, T., Matus, C., Manes, F., Ibanez, A., Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia (2016) Cortex, 75, pp. 20-32
  • Baggio, H.C., Sala-Llonch, R., Segura, B., Marti, M.J., Valldeoriola, F., Compta, Y., Tolosa, E., Junque, C., Functional brain networks and cognitive deficits in Parkinson's disease (2014) Hum Brain Mapp, 35, pp. 4620-4634
  • Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., Wang, J., Zhang, Z., Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment (2012) J Neurosci, 32, pp. 4307-4318
  • Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., Morris, J.C., Ances, B.M., Functional connectivity and graph theory in preclinical Alzheimer's disease (2014) Neurobiol Aging, 35, pp. 757-768
  • Bullmore, E., Sporns, O., Complex brain networks: graph theoretical analysis of structural and functional systems (2009) Nat Rev Neurosci, 10, pp. 186-198
  • Bullmore, E.T., Bassett, D.S., Brain graphs: graphical models of the human brain connectome (2011) Annu Rev Clin Psychol, 7, pp. 113-140
  • Cao, H., Plichta, M.M., Schafer, A., Haddad, L., Grimm, O., Schneider, M., Esslinger, C., Tost, H., Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state (2014) NeuroImage, 84, pp. 888-900
  • Cohen, J., (1988) Statistical power analysis for the behavioral sciences, , Hillsdale, N.J, L. Erlbaum Associates
  • Couto, B., Manes, F., Montanes, P., Matallana, D., Reyes, P., Velasquez, M., Yoris, A., Ibanez, A., Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia (2013) Front Hum Neurosci, 7, p. 467
  • Chao-Gan, Y., Yu-Feng, Z., DPARSF: A MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI (2010) Front Syst Neurosci, 4, p. 13
  • De Vico Fallani, F., Richiardi, J., Chavez, M., Achard, S., Graph analysis of functional brain networks: practical issues in translational neuroscience (2014) Philos Trans R Soc Lond B Biol Sci, 369
  • Demertzi, A., Antonopoulos, G., Heine, L., Voss, H.U., Crone, J.S., de Los Angeles, C., Bahri, M.A., Laureys, S., Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients (2015) Brain, 138, pp. 2619-2631
  • Dopper, E.G., Rombouts, S.A., Jiskoot, L.C., den Heijer, T., de Graaf, J.R., de Koning, I., Hammerschlag, A.R., van Swieten, J.C., Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia (2014) Neurology, 83, pp. e19-e26
  • Du, A.T., Schuff, N., Kramer, J.H., Rosen, H.J., Gorno-Tempini, M.L., Rankin, K., Miller, B.L., Weiner, M.W., Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia (2007) Brain, 130, pp. 1159-1166
  • Farb, N.A., Grady, C.L., Strother, S., Tang-Wai, D.F., Masellis, M., Black, S., Freedman, M., Chow, T.W., Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation (2013) Cortex, 49, pp. 1856-1873
  • Fornito, A., Zalesky, A., Breakspear, M., Graph analysis of the human connectome: promise, progress, and pitfalls (2013) NeuroImage, 80, pp. 426-444
  • Fornito, A., Zalesky, A., Bullmore, E.T., Network scaling effects in graph analytic studies of human resting-state FMRI data (2010) Front Syst Neurosci, 4, p. 22
  • Freeman, L., Centrality in social networks conceptual clarification (1978) Soc Network, 1, pp. 215-239
  • Garcia-Cordero, I., Sedeno, L., De la Fuente, L.A., Slachevsky, A., Forno, G., Klein, F., Lillo, P., Ibanez, A., Feeling, learning from and being aware of inner states interoceptive dimensions in neurodegeneration and stroke (2016) Philos Trans R Soc B, 371, p. 20160006
  • Garcia-Cordero, I., Sedeno, L., Fraiman, D., Craiem, D., de la Fuente, L.A., Salamone, P., Serrano, C., Ibanez, A., Stroke and neurodegeneration induce different connectivity aberrations in the insula (2015) Stroke, 46, pp. 2673-2677
  • Garrison, K.A., Scheinost, D., Finn, E.S., Shen, X., Constable, R.T., The (in)stability of functional brain network measures across thresholds (2015) NeuroImage, 118, pp. 651-661
  • Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., Frackowiak, R.S., A voxel-based morphometric study of ageing in 465 normal adult human brains (2001) NeuroImage, 14, pp. 21-36
  • Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Grossman, M., Classification of primary progressive aphasia and its variants (2011) Neurology, 76, pp. 1006-1014
  • Grefkes, C., Fink, G.R., Connectivity-based approaches in stroke and recovery of function (2014) Lancet Neurol, 13, pp. 206-216
  • Henley, S.M., Bates, G.P., Tabrizi, S.J., Biomarkers for neurodegenerative diseases (2005) Curr Opin Neurol, 18, pp. 698-705
  • Holme, P., Edge overload breakdown in evolving networks (2002) Phys Rev E Stat Nonlin Soft Matter Phys, 66, p. 36119
  • Humpel, C., Identifying and validating biomarkers for Alzheimer's disease (2011) Trends Biotechnol, 29, pp. 26-32
  • Ibanez, A., Manes, F., Contextual social cognition and the behavioral variant of frontotemporal dementia (2012) Neurology, 78, pp. 1354-1362
  • Ibáñez, A., Kuljid, R.O., Matallana, D., Manes, F., Bridging psychiatry and neurology through social neuroscience (2014) World Psychiatry, 13, pp. 148-149
  • Ibáñez, A., García, A.M., Esteves, S., Yoris, A., Muñoz, E., Reynaldo, L., Pietto, M.L., Manes, F., Social neuroscience: Undoing the schism between neurology and psychiatry (2016) Soc Neurosci, 27, pp. 1-39
  • Irish, M., Piguet, O., Hodges, J.R., Hornberger, M., Common and unique gray matter correlates of episodic memory dysfunction in frontotemporal dementia and Alzheimer's disease (2014) Hum Brain Mapp, 35, pp. 1422-1435
  • Li, Y., Qin, Y., Chen, X., Li, W., Exploring the functional brain network of Alzheimer's disease: based on the computational experiment (2013) PloS One, 8
  • Liu, Z., Zhang, Y., Yan, H., Bai, L., Dai, R., Wei, W., Zhong, C., Tian, J., Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer's disease: a resting-state fMRI study (2012) Psychiatry Res, 202, pp. 118-125
  • Lu, P.H., Mendez, M.F., Lee, G.J., Leow, A.D., Lee, H.W., Shapira, J., Jimenez, E., Knopman, D.S., Patterns of brain atrophy in clinical variants of frontotemporal lobar degeneration (2013) Dement Geriatr Cogn Disord, 35, pp. 34-50
  • Maris, E., Oostenveld, R., Nonparametric statistical testing of EEG- and MEG-data (2007) J Neurosci Methods, 164, pp. 177-190
  • McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Phelps, C.H., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 263-269
  • Melloni, M., Billeke, P., Baez, S., Hesse, E., de la Fuente, L., Forno, G., Birba, A., Ibanez, A., Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining (2016) Brain., 139, pp. 3022-3040
  • Menon, V., Large-scale brain networks and psychopathology: a unifying triple network model (2011) Trends Cognit Sci, 15, pp. 483-506
  • Nichols, T.E., Holmes, A.P., Nonparametric permutation tests for functional neuroimaging: a primer with examples (2002) Hum Brain Mapp, 15, pp. 1-25
  • Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data (2011) Comput Intell Neurosci, 2011, p. 156869
  • Papo, D., Zanin, M., Pineda-Pardo, J.A., Boccaletti, S., Buldu, J.M., Functional brain networks: great expectations, hard times and the big leap forward (2014) Philos Trans R Soc Lond B Biol Sci, 369
  • Pievani, M., de Haan, W., Wu, T., Seeley, W.W., Frisoni, G.B., Functional network disruption in the degenerative dementias (2011) Lancet. Neurol, 10, pp. 829-843
  • Pievani, M., Filippini, N., van den Heuvel, M.P., Cappa, S.F., Frisoni, G.B., Brain connectivity in neurodegenerative diseases–from phenotype to proteinopathy (2014) Nat Rev Neurol, 10, pp. 620-633
  • Piguet, O., Hornberger, M., Mioshi, E., Hodges, J.R., Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management (2011) Lancet Neurol, 10, pp. 162-172
  • Piguet, O., Petersen, A., Yin Ka Lam, B., Gabery, S., Murphy, K., Hodges, J.R., Halliday, G.M., Eating and hypothalamus changes in behavioral-variant frontotemporal dementia (2011) Ann Neurol, 69, pp. 312-319
  • Prince, M., Wimo, A., Guerchet, M., Gemma-Claire, A., Wu, Y.T., Prina, M., (2015) World Alzheimer Report 2015 The Global Impact of Dementia - An analysis of prevalence, incidence, cost and trends
  • Rabinovici, G.D., Seeley, W.W., Kim, E.J., Gorno-Tempini, M.L., Rascovsky, K., Pagliaro, T.A., Allison, S.C., Rosen, H.J., Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration (2007) Am J Alzheimers Dis Other Demen, 22, pp. 474-488
  • Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., van Swieten, J.C., Miller, B.L., Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia (2011) Brain, 134, pp. 2456-2477
  • Reijneveld, J.C., Ponten, S.C., Berendse, H.W., Stam, C.J., The application of graph theoretical analysis to complex networks in the brain (2007) Clin Neurophysiol, 118, pp. 2317-2331
  • Rubinov, M., Sporns, O., Complex network measures of brain connectivity: uses and interpretations (2010) NeuroImage, 52, pp. 1059-1069
  • Sanabria-Diaz, G., Martinez-Montes, E., Melie-Garcia, L., Alzheimer's Disease Neuroimaging, I., Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer's disease and mild cognitive impairment (2013) PloS One, 8
  • Santamaria-Garcia, H., Reyes, P., Garcia, A., Baez, S., Martinez, A., Santacruz, J.M., Slachevsky, A., Ibanez, A., First symptoms and neurocognitive correlates of behavioral variant frontotemporal dementia (2016) J Alzheimers Dis, 54, pp. 957-970
  • Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., Scheltens, P., Stam, C.J., Loss of ‘small-world’ networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity (2010) PloS One, 5
  • Sedeno, L., Couto, B., Garcia-Cordero, I., Melloni, M., Baez, S., Morales Sepulveda, J.P., Fraiman, D., Ibanez, A., Brain network organization and social executive performance in frontotemporal dementia (2016) J Int Neuropsychol Soc, 22, pp. 250-262
  • Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., Neurodegenerative diseases target large-scale human brain networks (2009) Neuron, 62, pp. 42-52
  • Seo, E.H., Lee, D.Y., Lee, J.M., Park, J.S., Sohn, B.K., Choe, Y.M., Byun, M.S., Woo, J.I., Influence of APOE genotype on whole-brain functional networks in cognitively normal elderly (2013) PloS One, 8
  • Seo, E.H., Lee, D.Y., Lee, J.M., Park, J.S., Sohn, B.K., Lee, D.S., Choe, Y.M., Woo, J.I., Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer's disease (2013) PloS One, 8
  • Shaw, L.M., Korecka, M., Clark, C.M., Lee, V.M., Trojanowski, J.Q., Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics (2007) Nat Rev Drug Discov, 6, pp. 295-303
  • Sporns, O., Contributions and challenges for network models in cognitive neuroscience (2014) Nat Neurosci, 17, pp. 652-660
  • Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., Scheltens, P., Small-world networks and functional connectivity in Alzheimer's disease (2007) Cereb Cortex, 17, pp. 92-99
  • Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., Network analysis of intrinsic functional brain connectivity in Alzheimer's disease (2008) PLoS Comput Biol, 4
  • Telesford, Q.K., Burdette, J.H., Laurienti, P.J., An exploration of graph metric reproducibility in complex brain networks (2013) Front Neurosci, 7, p. 67
  • Telesford, Q.K., Simpson, S.L., Burdette, J.H., Hayasaka, S., Laurienti, P.J., The brain as a complex system: using network science as a tool for understanding the brain (2011) Brain Connectivity, 1, pp. 295-308
  • Tijms, B.M., Wink, A.M., de Haan, W., van der Flier, W.M., Stam, C.J., Scheltens, P., Barkhof, F., Alzheimer's disease: connecting findings from graph theoretical studies of brain networks (2013) Neurobiol Aging, 34, pp. 2023-2036
  • Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T., Manes, F., A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia (2009) Brain, 132, pp. 1299-1309
  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain (2002) NeuroImage, 15, pp. 273-289
  • van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E., Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain (2008) NeuroImage, 43, pp. 528-539
  • van Wijk, B.C., Stam, C.J., Daffertshofer, A., Comparing brain networks of different size and connectivity density using graph theory (2010) PloS One, 5
  • Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., Jia, J., He, Y., Disrupted functional brain connectome in individuals at risk for Alzheimer's disease (2013) Biol Psychiatry, 73, pp. 472-481
  • Watts, D.J., Strogatz, S.H., Collective dynamics of ‘small-world’ networks (1998) Nature, 393, pp. 440-442
  • Whitwell, J.L., Josephs, K.A., Avula, R., Tosakulwong, N., Weigand, S.D., Senjem, M.L., Vemuri, P., Jack, C.R., Jr., Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD (2011) Neurology, 77, pp. 866-874
  • Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Ivnik, R.J., Vemuri, P., Gunter, J.L., Senjem, M.L., Josephs, K.A., Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study (2009) Brain, 132, pp. 2932-2946
  • Xiang, J., Guo, H., Cao, R., Liang, H., Chen, J., An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease (2013) Neural Regen Res, 8, pp. 2789-2799
  • Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., Alzheimer's Disease Neuroimaging, I., Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease (2010) PLoS Comput Biol, 6
  • Zalesky, A., Fornito, A., Bullmore, E.T., Network-based statistic: identifying differences in brain networks (2010) NeuroImage, 53, pp. 1197-1207

Citas:

---------- APA ----------
Sedeño, L., Piguet, O., Abrevaya, S., Desmaras, H., García-Cordero, I., Baez, S., Alethia de la Fuente, L.,..., Ibanez, A. (2017) . Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia. Human Brain Mapping, 38(8), 3804-3822.
http://dx.doi.org/10.1002/hbm.23627
---------- CHICAGO ----------
Sedeño, L., Piguet, O., Abrevaya, S., Desmaras, H., García-Cordero, I., Baez, S., et al. "Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia" . Human Brain Mapping 38, no. 8 (2017) : 3804-3822.
http://dx.doi.org/10.1002/hbm.23627
---------- MLA ----------
Sedeño, L., Piguet, O., Abrevaya, S., Desmaras, H., García-Cordero, I., Baez, S., et al. "Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia" . Human Brain Mapping, vol. 38, no. 8, 2017, pp. 3804-3822.
http://dx.doi.org/10.1002/hbm.23627
---------- VANCOUVER ----------
Sedeño, L., Piguet, O., Abrevaya, S., Desmaras, H., García-Cordero, I., Baez, S., et al. Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia. Hum. Brain Mapp. 2017;38(8):3804-3822.
http://dx.doi.org/10.1002/hbm.23627