Artículo

González, C.A.; Parashar, T.N.; Gomez, D.; Matthaeus, W.H.; Dmitruk, P."Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations" (2019) Physics of Plasmas. 26(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plasma dynamics is a multi-scale problem that involves many spatial and temporal scales. Turbulence connects the disparate scales in this system through a cascade that is established by nonlinear interactions. Most astrophysical plasma systems are weakly collisional, making a fully kinetic Vlasov description of the system essential. The use of reduced models to study such systems is computationally desirable, but careful benchmarking of physics in different models is needed. We perform one such comparison here between the fully kinetic Particle-In-Cell model and a two-fluid model that includes Hall physics and electron inertia, with a particular focus on the sub-proton scale electric field. We show that in general, the two fluid model captures large scale dynamics reasonably well. At smaller scales, the Hall physics is also captured reasonably well by the fluid code, but electron features show departures from the fully kinetic model. Implications for the use of such fluid models are discussed. © 2019 Author(s).

Registro:

Documento: Artículo
Título:Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations
Autor:González, C.A.; Parashar, T.N.; Gomez, D.; Matthaeus, W.H.; Dmitruk, P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States
Instituto de Astronoma y Física Del Espacio, CONICET-UBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Collisional plasmas; Electric fields; Electromagnetic fields; Plasma diagnostics; Plasma flow; Plasma theory; Two phase flow; Astrophysical plasma; Electron inertia; Kinetic modeling; Large-scale dynamics; Multiscale problem; Nonlinear interactions; Particle-in-cell model; Spatial and temporal scale; Kinetics
Año:2019
Volumen:26
Número:1
DOI: http://dx.doi.org/10.1063/1.5054110
Handle:http://hdl.handle.net/20.500.12110/paper_1070664X_v26_n1_p_Gonzalez
Título revista:Physics of Plasmas
Título revista abreviado:Phys. Plasmas
ISSN:1070664X
CODEN:PHPAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v26_n1_p_Gonzalez

Referencias:

  • Kolmogorov, A., The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers (1941) Akad. Nauk SSSR Dokl., 30, pp. 301-305
  • Coleman, P.J., Jr., Turbulence, viscosity, and dissipation in the solar-wind plasma (1968) Astrophys. J., 153, p. 371
  • Goldstein, M.L., Roberts, D.A., Matthaeus, W.H., Magnetohydrodynamic turbulence in the solar wind (1995) Annu. Rev. Astron. Astrophys., 33 (1), pp. 283-325
  • Bruno, R., D'Amicis, R., Bavassano, B., Carbone, V., Sorriso-Valvo, L., Scaling laws and coherent structures in the solar wind (2007) Planet. Space Sci., 55, pp. 2233-2238
  • Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M., André, M., Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock (2006) J. Geophys. Res.: Space Phys., 111 (A12), p. A12208. , https://doi.org/10.1029/2006JA011934
  • Perri, S., Goldstein, M.L., Dorelli, J.C., Sahraoui, F., Detection of small-scale structures in the dissipation regime of solar-wind turbulence (2012) Phys. Rev. Lett., 109
  • Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., Kasper, J.C., Jovanovic, D., Compressive coherent structures at ion scales in the slow solar wind (2016) Astrophys. J., 826 (2), p. 196
  • Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B., Identifying intermittency events in the solar wind (2001) Planet. Space Sci., 49, pp. 1201-1210
  • Greco, A., Matthaeus, W.H., D'Amicis, R., Servidio, S., Dmitruk, P., Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere (2012) Astrophys. J., 749 (2), p. 105
  • Zhdankin, V., Boldyrev, S., Mason, J., Perez, J.C., Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind (2012) Phys. Rev. Lett., 108
  • Greco, A., Chuychai, P., Matthaeus, W.H., Servidio, S., Dmitruk, P., Intermittent MHD structures and classical discontinuities (2008) Geophys. Res. Lett., 35 (19), p. L19111. , https://doi.org/10.1029/2008GL035454
  • Tessein, J.A., Matthaeus, W.H., Wan, M., Osman, K.T., Ruffolo, D., Giacalone, J., Association of suprathermal particles with coherent structures and shocks (2013) Astrophys. J. Lett., 776 (1), p. L8
  • Tessein, J.A., Ruffolo, D., Matthaeus, W.H., Wan, M., Giacalone, J., Neugebauer, M., Effect of coherent structures on energetic particle intensity in the solar wind at 1 au (2015) Astrophys. J., 812 (1), p. 68
  • Dmitruk, P., Matthaeus, W.H., Seenu, N., Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence (2004) Astrophys. J., 617 (1), p. 667
  • González, C.A., Dmitruk, P., Mininni, P.D., Matthaeus, W.H., Test particle energization and the anisotropic effects of dynamical mhd turbulence (2017) Astrophys. J., 850 (1), p. 19
  • Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K., Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence (1998) Astrophys. J. Lett., 507 (2), p. L181
  • Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J., Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade (2006) Astrophys. J. Lett., 645 (1), p. L85
  • Sahraoui, F., Huang, S.Y., Belmont, G., Goldstein, M.L., Rétino, A., Robert, P., De Patoul, J., Scaling of the electron dissipation range of solar wind turbulence (2013) Astrophys. J., 777 (1), p. 15
  • Goldstein, M.L., Wicks, R.T., Perri, S., Sahraoui, F., Kinetic scale turbulence and dissipation in the solar wind: Key observational results and future outlook (2015) Philos. Trans. R. Soc. A, 373 (2041)
  • Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovic, M., Solar wind turbulent spectrum at plasma kinetic scales (2012) Astrophys. J., 760 (2), p. 121
  • Parashar, T.N., Salem, C., Wicks, R.T., Karimabadi, H., Peter Gary, S., Matthaeus, W.H., Turbulent dissipation challenge: A community-driven effort (2015) J. Plasma Phys., 81 (5)
  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P., Universality of solar-wind turbulent spectrum from mhd to electron scales (2009) Phys. Rev. Lett., 103
  • Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L., Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind (2010) Phys. Rev. Lett., 105
  • Salem, C.S., Howes, G.G., Sundkvist, D., Bale, S.D., Chaston, C.C., Chen, C.H.K., Mozer, F.S., Identification of kinetic Alfvén wave turbulence in the solar wind (2012) Astrophys. J. Lett., 745 (1), p. L9
  • Saito, S., Peter Gary, S., Narita, Y., Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation (2010) Phys. Plasmas, 17 (12)
  • Narita, Y., Gary, S.P., Inertial-range spectrum of whistler turbulence (2010) Ann. Geophys., 28 (2), pp. 597-601
  • Podesta, J.J., Gary, S.P., Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field (2011) Astrophys. J., 734 (1), p. 15
  • Scott Hughes, R., Peter Gary, S., Wang, J., Parashar, T.N., Kinetic Alfvén turbulence: Electron and ion heating by particle-in-cell simulations (2017) Astrophys. J. Lett., 847 (2), p. L14
  • Grošelj, D., Mallet, A., Loureiro, N.F., Jenko, F., Fully kinetic simulation of 3d kinetic Alfvén turbulence (2018) Phys. Rev. Lett., 120
  • Cerri, S.S., Califano, F., Jenko, F., Told, D., Rincon, F., Subproton-scale cascades in solar wind turbulence: Driven hybrid-kinetic simulations (2016) Astrophys. J. Lett., 822 (1), p. L12
  • Mozer, F.S., Chen, C.H.K., Parallel electric field spectrum of solar wind turbulence (2013) Astrophys. J. Lett., 768 (1), p. L10
  • Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H., Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence (2005) Phys. Rev. Lett., 94
  • Matteini, L., Alexandrova, O., Chen, C.H.K., Lacombe, C., Electric and magnetic spectra from MHD to electron scales in the magnetosheath (2017) Mon. Not. R. Astron. Soc., 466, pp. 945-951
  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas (2009) Astrophys. J. Suppl. Ser., 182 (1), p. 310
  • Quataert, E., Particle heating by Alfvénic turbulence in hot accretion flows (1998) Astrophys. J., 500 (2), p. 978
  • Ghosh, S., Goldstein, M.L., Anisotropy in Hall MHD turbulence due to a mean magnetic field (1997) J. Plasma Phys., 57, pp. 129-154
  • Ghosh, S., Siregar, E., Roberts, D.A., Goldstein, M.L., Simulation of high frequency solar wind power spectra using hall magnetohydrodynamics (1996) J. Geophys. Res.: Space Phys., 101 (A2), pp. 2493-2504. , https://doi.org/10.1029/95JA03201
  • Biskamp, D., Schwarz, E., Zeiler, A., Celani, A., Drake, J.F., Electron magnetohydrodynamic turbulence (1999) Phys. Plasmas, 6 (3), pp. 751-758
  • Das, A., Diamond, P.H., Theory of two-dimensional mean field electron magnetohydrodynamics (2000) Phys. Plasmas, 7 (1), pp. 170-177
  • Shaikh, D., Whistler wave cascades in solar wind plasma (2009) Mon. Not. R. Astron. Soc., 395 (4), pp. 2292-2298
  • Andrés, N., Gonzalez, C., Martin, L., Dmitruk, P., Gómez, D., Two-fluid turbulence including electron inertia (2014) Phys. Plasmas, 21 (12)
  • Hammett, G.W., Perkins, F.W., Fluid moment models for landau damping with application to the ionerature-gradient instability (1990) Phys. Rev. Lett., 64, pp. 3019-3022
  • Passot, T., Sulem, P.L., A landau fluid model for dispersive magnetohydrodynamics (2004) Phys. Plasmas, 11 (11), pp. 5173-5189
  • Sulem, P.L., Passot, T., Laveder, D., Borgogno, D., Influence of the nonlinearity parameter on the solar wind sub-ion magnetic energy spectrum: Flrlandau fluid simulations (2016) Astrophys. J., 818 (1), p. 66
  • Vencels, J., Delzanno, G.L., Manzini, G., Markidis, S., Peng, I.B., Roytershteyn, V., Spectralplasmasolver: A spectral code for multiscale simulations of collisionless, magnetized plasmas (2016) J. Phys.: Conf. Ser., 719 (1)
  • Juno, J., Hakim, A., Tenbarge, J., Shi, E., Dorland, W., Discontinuous Galerkin algorithms for fully kinetic plasmas (2018) J. Comput. Phys., 353, pp. 110-147
  • Birdsall, C.K., Langdon, A.B., Plasma Physics via Computer Simulation (2004) Series in Plasma Physics, , 1st ed. (Taylor & Francis)
  • Hockney, R.W., Eastwood, J.W., (1989) Computer Simulation Using Particles, , Taylor & Francis
  • Valentini, F., Trávníček, P., Califano, F., Hellinger, P., Mangeney, A., A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma (2007) J. Comput. Phys., 225 (1), pp. 753-770
  • Cerri, S.S., Franci, L., Califano, F., Landi, S., Hellinger, P., Plasma turbulence at ion scales: A comparison between particle in cell and Eulerian hybrid-kinetic approaches (2017) J. Plasma Phys., 83 (2)
  • Grošelj, D., Cerri, S.S., Bañón Navarro, A., Willmott, C., Told, D., Loureiro, N.F., Califano, F., Jenko, F., Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence (2017) Astrophys. J. Lett., 847, p. 28
  • Stanier, A., Daughton, W., Simakov, A.N., Chacón, L., Le, A., Karimabadi, H., Ng, J., Bhattacharjee, A., The role of guide field in magnetic reconnection driven by island coalescence (2017) Phys. Plasmas, 24 (2)
  • Franci, L., Cerri, S.S., Califano, F., Landi, S., Papini, E., Verdini, A., Matteini, L., Hellinger, P., Magnetic reconnection as a driver for a sub-ion-scale cascade in plasma turbulence (2017) Astrophys. J. Lett., 850 (1), p. L16
  • Pezzi, O., Parashar, T.N., Servidio, S., Valentini, F., Vásconez, C.L., Yang, Y., Malara, F., Veltri, P., Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations (2017) J. Plasma Phys., 83 (1)
  • Perrone, D., Passot, T., Laveder, D., Valentini, F., Sulem, P.L., Zouganelis, I., Veltri, P., Servidio, S., Fluid simulations of plasma turbulence at ion scales: Comparison with vlasov-maxwell simulations (2018) Phys. Plasmas, 25 (5)
  • Papini, E., Franci, L., Landi, S., Verdini, A., Matteini, L., Hellinger, P., (2018) Can Hall Magnetohydrodynamics Explain Plasma Turbulence at Sub-ion Scales?, , preprint arXiv:1810.02210
  • Klein, K.G., Howes, G.G., Measuring collisionless damping in heliospheric plasmas using field-particle correlations (2016) Astrophys. J. Lett., 826 (2), p. L30
  • Yang, Y., Matthaeus, W.H., Parashar, T.N., Wu, P., Wan, M., Shi, Y., Chen, S., Daughton, W., Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence (2017) Phys. Rev., 95 (6)
  • Yang, Y., Matthaeus, W.H., Parashar, T.N., Wu, P., Wan, M., Shi, Y., Chen, S., Daughton, W., Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence (2017) Phys. Rev. E, 95
  • Howes, G.G., Klein, K.G., Li, T.C., Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas (2017) J. Plasma Phys., 83 (1)
  • Chasapis, A., Yang, Y., Matthaeus, W.H., Parashar, T.N., Haggerty, C.C., Burch, J.L., Moore, T.E., Russell, C.T., Energy conversion and collisionless plasma dissipation channels in the turbulent magnetosheath observed by the magnetospheric multiscale mission (2018) Astrophys. J., 862 (1), p. 32
  • Vasylinas, V.M., Time evolution of electric fields and currents and the generalized Ohm's law (2005) Ann. Geophys., 23 (4), pp. 1347-1354
  • Krishnaswami, G.S., Sachdev, S., Thyagaraja, A., Conservative regularization of compressible dissipationless two-fluid plasmas (2018) Phys. Plasma, 25 (2)
  • Che, H., Schiff, C., Le, G., Dorelli, J.C., Giles, B.L., Moore, T.E., Quantifying the effect of non-Larmor motion of electrons on the pressure tensor (2018) Phys. Plasmas, 25 (3)
  • Zeiler, A., Biskamp, D., Drake, J.F., Rogers, B.N., Shay, M.A., Scholer, M., Three-dimensional particle simulations of collisionless magnetic reconnection (2002) J. Geophys. Res. (Space Phys.), 107, p. 1230. , https://doi.org/10.1029/95JA03201
  • Parashar, T.N., Matthaeus, W.H., Shay, M.A., Wan, M., Transition from kinetic to mhd behavior in a collisionless plasma (2015) Astrophys. J., 811 (2), p. 112
  • Turner, M.M., Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions (2006) Phys. Plasmas, 13 (3)
  • Haggerty, C.C., Parashar, T.N., Matthaeus, W.H., Shay, M.A., Yang, Y., Wan, M., Wu, P., Servidio, S., Exploring the statistics of magnetic reconnection x-points in kinetic particle-in-cell turbulence (2017) Phys. Plasmas, 24 (10)
  • Parashar, T.N., Matthaeus, W.H., Shay, M.A., Dependence of kinetic plasma turbulence on plasma β (2018) Astrophys. J., 864 (1), p. L21
  • Wan, M., Matthaeus, W.H., Roytershteyn, V., Parashar, T.N., Wu, P., Karimabadi, H., Intermittency, coherent structures and dissipation in plasma turbulence (2016) Phys. Plasmas, 23 (4)
  • Cerri, S.S., Califano, F., Reconnection and small-scale fields in 2d-3v hybrid-kinetic driven turbulence simulations (2017) New J. Phys., 19 (2)
  • Loureiro, N.F., Boldyrev, S., (2018) Turbulence in Magnetized Pair Plasmas, , preprint arXiv:1805.09224
  • Dahlin, J.T., Drake, J.F., Swisdak, M., The mechanisms of electron heating and acceleration during magnetic reconnection (2014) Phys. Plasmas, 21 (9)
  • Dalena, S., Greco, A., Rappazzo, A.F., MacE, R.L., Matthaeus, W.H., Magnetic moment nonconservation in magnetohydrodynamic turbulence models (2012) Phys. Rev. E, 86
  • Le Roux, J.A., Zank, G.P., Webb, G.M., Khabarova, O., A kinetic transport theory for particle acceleration and transport in regions of multiple contracting and reconnecting inertial-scale flux ropes (2015) Astrophys. J., 801 (2), p. 112
  • Zank, G.P., Le Roux, J.A., Webb, G.M., Dosch, A., Khabarova, O., Particle acceleration via reconnection processes in the supersonic solar wind (2014) Astrophys. J., 797, p. 28
  • Dahlin, J.T., Drake, J.F., Swisdak, M., The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection (2017) Phys. Plasmas, 24 (9)
  • Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E., Schekochihin, A.A., Tatsuno, T., Kinetic simulations of magnetized turbulence in astrophysical plasmas (2008) Phys. Rev. Lett., 100
  • Passot, T., Henri, P., Laveder, D., Sulem, P.-L., Fluid simulations of ion scale plasmas with weakly distorted magnetic fields (2014) Eur. Phys. J. D, 68 (7), p. 207. , ISSN 1434-6079
  • Wan, M., Matthaeus, W.H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Chapman, S.C., Intermittent dissipation at kinetic scales in collisionless plasma turbulence (2012) Phys. Rev. Lett., 109
  • Franci, L., Landi, S., Matteini, L., Verdini, A., Hellinger, P., Plasma beta dependence of the ion-scale spectral break of solar wind turbulence: High-resolution 2d hybrid simulations (2016) Astrophys. J., 833 (1), p. 91
  • Bruno, R., Trenchi, L., Telloni, D., Spectral slope variation at proton scales from fast to slow solar wind (2014) Astrophys. J. Lett., 793 (1), p. L15
  • Bai, X.-N., Caprioli, D., Sironi, L., Spitkovsky, A., Magnetohydrodynamic-particle-in-cell method for coupling cosmic rays with a thermal plasma: Application to non-relativistic shocks (2015) Astrophys. J., 809 (1), p. 55
  • Vech, D., Mallet, A., Klein, K.G., Kasper, J.C., Magnetic reconnection may control the ion-scale spectral break of solar wind turbulence (2018) Astrophys. J. Lett., 855 (2), p. L27
  • Yajima, N., The effect of finite ion Larmor radius on the propagation of magnetoacoustic waves (1966) Prog. Theor. Phys., 36 (1), pp. 1-16

Citas:

---------- APA ----------
González, C.A., Parashar, T.N., Gomez, D., Matthaeus, W.H. & Dmitruk, P. (2019) . Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations. Physics of Plasmas, 26(1).
http://dx.doi.org/10.1063/1.5054110
---------- CHICAGO ----------
González, C.A., Parashar, T.N., Gomez, D., Matthaeus, W.H., Dmitruk, P. "Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations" . Physics of Plasmas 26, no. 1 (2019).
http://dx.doi.org/10.1063/1.5054110
---------- MLA ----------
González, C.A., Parashar, T.N., Gomez, D., Matthaeus, W.H., Dmitruk, P. "Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations" . Physics of Plasmas, vol. 26, no. 1, 2019.
http://dx.doi.org/10.1063/1.5054110
---------- VANCOUVER ----------
González, C.A., Parashar, T.N., Gomez, D., Matthaeus, W.H., Dmitruk, P. Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations. Phys. Plasmas. 2019;26(1).
http://dx.doi.org/10.1063/1.5054110