Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Proteins are main targets of oxidants in biological systems. This oxidation may occur in the protein backbone as well as in certain amino acid side chains, depending on the oxidant and amino acid intrinsic reactivity. Moreover, many enzymes are capable of generating stable amino acid radicals, such as tyrosyl, tryptophanyl and cysteinyl radicals. These species react very rapidly (many times as diffusion-controlled reactions) with relevant cellular open-shell species such as nitric oxide (·NO) or molecular oxygen (O 2 ). The exception to this apparent rule is tyrosyl radical, that reacts at diffusion rates with ·NO, but shows very slow reactivity towards O 2 (rate constant <10 3 M −1 s −1 ). In this work, we provide a comparative molecular-level description of the reaction mechanisms involved in the reactions of tyrosyl, tryptophanyl and cysteinyl radicals towards ·NO and O 2 , through quantum mechanics simulations which allow us to obtain relevant energetic and structural parameters, proposing a molecular explanation to this tyrosyl discrimination capability, namely, its marginal reactivity with O 2 . © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.


Documento: Artículo
Título:A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen
Autor:Pedron, F.N.; Bartesaghi, S.; Estrin, D.A.; Radi, R.; Zeida, A.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, Argentina
Departamento de Bioquímica, Universidad de la República, Montevideo, Uruguay
Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Palabras clave:Amino acid-derived radicals; nitric oxide; one-electron oxidation; oxygen; cysteinyl radical; nitric oxide; oxidizing agent; oxygen; radical; tryptophanyl radical; tyrosyl radical; unclassified drug; Article; diffusion; energy transfer; mathematical computing; oxidation; quantum mechanics; rate constant; reaction analysis
Página de inicio:18
Página de fin:25
Título revista:Free Radical Research
Título revista abreviado:Free Radic. Res.
CAS:nitric oxide, 10102-43-9; oxygen, 7782-44-7


  • Davies, M.J., The oxidative environment and protein damage (2005) Biochim Biophys Acta, 1703, pp. 93-109
  • Stadtman, E.R., Levine, R.L., Free radical-mediated oxidation of free amino acids and amino acid residues in proteins (2003) Amino Acids, 25, pp. 207-218
  • Aicardo, A., Mastrogiovanni, M., Cassina, A., Propagation of free-radical reactions in concentrated protein solutions (2018) Free Radic Res, 52, pp. 159-170
  • Hawkins, C.L., Davies, M.J., Generation and propagation of radical reactions on proteins (2001) Biochim Biophys Acta, 1504, pp. 196-219
  • Stubbe, J., van der Donk, W.A., Protein radicals in enzyme catalysis (1998) Chem Rev, 98, pp. 705-762
  • Romero, N., Radi, R., Linares, E., Reaction of human hemoglobin with peroxynitrite: isomerization to nitrate and secondary formation of protein radicals (2003) J Biol Chem, 278, pp. 44049-44057
  • Hugo, M., Martínez, A., Trujillo, M., Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (Tc/APx-CcP) (2017) Proc Natl Acad Sci USA, 114, pp. E1326-E1335
  • Augusto, O., Bonini, M.G., Trindade, D., Spin trapping of glutathiyl and protein radicals produced from nitric oxide-derived oxidants (2004) Free Radic Biol Med, 36, pp. 1224-1232
  • Guittet, O., Roy, B., Lepoivre, M., Nitric oxide: a radical molecule in quest of free radicals in proteins (1999) Cell Mol Life Sci, 55, pp. 1054-1067
  • Stadtman, E.R., Protein oxidation and aging (2006) Free Radic Res, 40, pp. 1250-1258
  • Tamba, M., Simone, G., Quintiliani, M., Interactions of thiyl free radicals with oxygen: a pulse radiolysis study (1986) Int J Radiat Biol Relat Stud Phys Chem Med, 50, pp. 595-600
  • Winterbourn, C.C., Reconciling the chemistry and biology of reactive oxygen species (2008) Nat Chem Biol, 4, pp. 278-286
  • Madej, E., Folkes, L.K., Wardman, P., Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit (2008) Free Radic Biol Med, 44, pp. 2013-2018
  • Schaefer, K., Bonifacic, M., Bahnemann, D., Addition of oxygen to organic sulfur radicals (1978) J Phys Chem, 82, pp. 2777-2780
  • Candeias, L.P., Wardman, P., Mason, R.P., The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid (1997) Biophys Chem, 67, pp. 229-237
  • Eiserich, J.P., Butler, J., van der Vliet, A., Nitric oxide rapidly scavenges tyrosine and tryptophan radicals (1995) Biochem J, 310, pp. 745-749
  • Hunter, E.P., Desrosiers, M.F., Simic, M.G., The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization (1989) Free Radic Biol Med, 6, pp. 581-585
  • Granold, M., Hajieva, P., Toşa, M.I., Modern diversification of the amino acid repertoire driven by oxygen (2018) Proc Natl Acad Sci USA, 115, pp. 41-46
  • Ferrer-Sueta, G., Campolo, N., Trujillo, M., Biochemistry of peroxynitrite and protein tyrosine nitration (2018) Chem Rev, 118, pp. 1338-1408
  • Bartesaghi, S., Radi, R., Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration (2018) Redox Biol, 14, pp. 618-625
  • Nagy, P., Kettle, A.J., Winterbourn, C.C., Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer (2009) J Biol Chem, 284, pp. 14723-14733
  • Sturgeon, B.E., Glover, R.E., Chen, Y.-R., Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine (2001) J Biol Chem, 276, pp. 45516-45521
  • Goldstein, S., Czapski, G., Lind, J., Tyrosine nitration by simultaneous generation of ⋅NO and O 2 under physiological conditions: how the radicals do the job (2000) J Biol Chem, 275, pp. 3031-3036
  • Chen, Y.-R., Chen, C.-L., Chen, W., Formation of Protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical (2004) J Biol Chem, 279, pp. 18054-18062
  • Sanakis, Y., Goussias, C., Mason, R.P., interacts with the tyrosine radical YD• of photosystem II to form an iminoxyl radical (1997) Biochemistry, 36, pp. 1411-1417
  • Chadha, R., Mahal, H.S., Mukherjee, T., Evidence for a possible role of 3-hydroxyanthranilic acid as an antioxidant (2009) J Phys Org Chem, 22, pp. 349-354
  • Hartung, J., Organic radical reactions associated with nitrogen monoxide (2009) Chem Rev, 109, pp. 4500-4517
  • Karmakar, S., Datta, A., Understanding the reactivity of CO3·− and NO2·radicals toward S-containing and aromatic amino acids (2017) J Phys Chem B, 121, pp. 7621-7632
  • Maniero, A.L., Chis, V., Zoleo, A., Three different tyrosyl radicals identified in l-tyrosine hcl crystals upon γ-irradiation: magnetic characterization and temporal evolution (2008) J Phys Chem B, 112, pp. 3812-3820
  • Sandhiya, L., Kolandaivel, P., Senthilkumar, K., Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications (2014) J Phys Chem B, 118, pp. 3479-3490
  • Bernardi, F., Olivucci, M., Robb, M.A., Potential energy surface crossings in organic photochemistry (1996) Chem Soc Rev, 25, pp. 321-328
  • Etinski, M., Fleig, T., Marian, C.M., Intersystem crossing and characterization of dark states in the pyrimidine nucleobases uracil, thymine, and 1-Methylthymine (2009) J Phys Chem A, 113, pp. 11809-11816
  • Penfold, T.J., Gindensperger, E., Daniel, C., Spin-vibronic mechanism for intersystem crossing (2018) Chem Rev, 118, pp. 6975-7025
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., (2009) Gaussian 09, , Wallingford, CT: Gaussian, Inc
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, pp. 3865-3868
  • Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem Rev, 105, pp. 2999-3093
  • Lam, M.A., Pattison, D.I., Bottle, S.E., Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals (2008) Chem Res Toxicol, 21, pp. 2111-2119
  • Cucinotta, C.S., Ruini, A., Catellani, A., Ab initio molecular dynamics study of the keto–enol tautomerism of acetone in solution (2006) ChemPhysChem, 7, pp. 1229-1234
  • Lee, D., Kim, C.K., Lee, B.-S., A theoretical study on keto-enol tautomerization involving simple carbonyl derivatives (1997) J Comput Chem, 18, pp. 56-69
  • Simm, G.N., Reiher, M., Systematic error estimation for chemical reaction energies (2016) J Chem Theory Comput, 12, pp. 2762-2773
  • Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J Chem Phys, 83, pp. 735-746
  • Trujillo, M., Alvarez, B., Radi, R., One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates (2016) Free Radic Res, 50, pp. 150-171


---------- APA ----------
Pedron, F.N., Bartesaghi, S., Estrin, D.A., Radi, R. & Zeida, A. (2019) . A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen. Free Radical Research, 53(1), 18-25.
---------- CHICAGO ----------
Pedron, F.N., Bartesaghi, S., Estrin, D.A., Radi, R., Zeida, A. "A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen" . Free Radical Research 53, no. 1 (2019) : 18-25.
---------- MLA ----------
Pedron, F.N., Bartesaghi, S., Estrin, D.A., Radi, R., Zeida, A. "A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen" . Free Radical Research, vol. 53, no. 1, 2019, pp. 18-25.
---------- VANCOUVER ----------
Pedron, F.N., Bartesaghi, S., Estrin, D.A., Radi, R., Zeida, A. A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen. Free Radic. Res. 2019;53(1):18-25.