Artículo

Garrido, M.F.; Martin, N.J.-P.; Bertrand, M.; Gaudin, C.; Commo, F.E.; Kalaany, N.E.; Nakouzi, N.A.; Fazli, L.; Nery, E.D.; Camonis, J.; Perez, F.; Lerondel, S.; Le Pape, A.; Compagno, D.; Gleave, M.; Loriot, Y.; Desaubry, L.; Vagner, S. (...) Chauchereau, A. "Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer" (2019) Clinical Cancer Research. 25(2):710-723
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Purpose: Targeted therapies that use the signaling path-characterize the function of human FKBP7 and explore its ways involved in prostate cancer are required to overcome role in cancer. We discovered that FKBP7 was upregulated chemoresistance and improve treatment outcomes for men. in human prostate cancers and its expression correlated Molecular chaperones play a key role in the regulation of with the recurrence observed in patients receiving doce-protein homeostasis and are potential targets for overcom-taxel. FKBP7 silencing showed that FKBP7 is required to ing chemoresistance. maintain the growth of chemoresistant cell lines and Experimental Design: We established 4 chemoresistant chemoresistant tumors in mice. Mass spectrometry analysis prostate cancer cell lines and used image-based high-content revealed that FKBP7 interacts with eIF4G, a component of siRNA functional screening, based on gene-expression signa-the eIF4F translation initiation complex, to mediate the ture, to explore mechanisms of chemoresistance and identify survival of chemoresistant cells. Using small-molecule new potential targets with potential roles in taxane resistance. inhibitors of eIF4A, the RNA helicase component of The functional role of a new target was assessed by in vitro and eIF4F, we were able to kill docetaxel- and cabazitaxel-in vivo silencing, and mass spectrometry analysis was used to resistant cells. identify its downstream effectors. Conclusions: Targeting FKBP7 or the eIF4G-containing Results: We identified FKBP7, a prolyl-peptidyl isomer-eIF4F translation initiation complex could be novel thera-ase overexpressed in docetaxel-resistant and in cabazitaxel-peutic strategies to eradicate taxane-resistant prostate cancer resistant prostate cancer cells. This is the first study to cells. © 2018 American Association for Cancer Research.

Registro:

Documento: Artículo
Título:Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer
Autor:Garrido, M.F.; Martin, N.J.-P.; Bertrand, M.; Gaudin, C.; Commo, F.E.; Kalaany, N.E.; Nakouzi, N.A.; Fazli, L.; Nery, E.D.; Camonis, J.; Perez, F.; Lerondel, S.; Le Pape, A.; Compagno, D.; Gleave, M.; Loriot, Y.; Desaubry, L.; Vagner, S.; Fizazi, K.; Chauchereau, A.
Filiación:Prostate Cancer Group, INSERM UMR981, Villejuif, France
Univ Paris-Sud, UMR981, Villejuif, France
Gustave Roussy, Villejuif, France
Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
Institut Curie, PSL Research University, Paris, France
Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
INSERM, U830, Paris, France
CNRS, UMR144, Paris, France
PHENOMIN-TAAM, CIPA, CNRS UPS44, Orleans, France
Molecular and Functional Glyco-Oncology Lab, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
CNRS UMR7200, Strasbourg University, Illkirch, France
CNRS, UMR3348, Orsay, France
Institut Gustave Roussy, 114 rue Edouard Vaillant, B2M building, Villejuif, 94800, France
Palabras clave:cabazitaxel; docetaxel; initiation factor 4F; initiation factor 4FG; peptidylprolyl isomerase; peptidylprolyl isomerase FKBP7; short hairpin RNA; small interfering RNA; taxane derivative; unclassified drug; animal experiment; animal model; animal tissue; Article; cancer resistance; carcinogenicity; cell proliferation; cell survival; controlled study; drug targeting; enzyme activity; gene expression regulation; gene knockdown; gene silencing; genetic transfection; human; human cell; human tissue; in vitro study; in vivo study; intracellular signaling; male; mass spectrometry; nonhuman; priority journal; prostate cancer cell line; protein expression; protein protein interaction; tissue microarray; translation initiation; translation regulation; tumor xenograft; upregulation
Año:2019
Volumen:25
Número:2
Página de inicio:710
Página de fin:723
DOI: http://dx.doi.org/10.1158/1078-0432.CCR-18-0704
Título revista:Clinical Cancer Research
Título revista abreviado:Clin. Cancer Res.
ISSN:10780432
CODEN:CCREF
CAS:cabazitaxel, 183133-96-2; cyclophilin A; cyclophilin B; cyclophilin C; cyclophilin D; docetaxel, 114977-28-5; peptidylprolyl isomerase, 95076-93-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10780432_v25_n2_p710_Garrido

Referencias:

  • Ischia, J., Saad, F., Gleave, M., The promise of heat shock protein inhibitors in the treatment of castration resistant prostate cancer (2013) Curr Opin Urol, 23, pp. 194-200
  • Lamoureux, F., Thomas, C., Yin, M.-J., Fazli, L., Zoubeidi, A., Gleave, M.E., Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer (2014) Eur Urol, 66, pp. 145-155
  • Hurwitz, M., Chemotherapy in prostate cancer (2015) Curr Oncol Rep, 17, p. 44
  • James, N.D., Sydes, M.R., Clarke, N.W., Mason, M.D., Dearnaley, D.P., Spears, M.R., Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial (2016) Lancet, 387, pp. 1163-1177
  • Seruga, B., Ocana, A., Tannock, I.F., Drug resistance in metastatic castration-resistant prostate cancer (2011) Nat Rev Clin Oncol, 8, pp. 12-23
  • Mahon, K.L., Henshall, S.M., Sutherland, R.L., Horvath, L.G., Pathways of chemotherapy resistance in castration-resistant prostate cancer (2011) Endocr Relat Cancer, 18, pp. R103-R123
  • Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr Opin Pharmacol, 11, pp. 320-325
  • Zoubeidi, A., Gleave, M., Small heat shock proteins in cancer therapy and prognosis (2012) Int J Biochem Cell Biol, 44, pp. 1646-1656
  • Bierer, B.E., Mattila, P.S., Standaert, R.F., Herzenberg, L.A., Burakoff, S.J., Crabtree, G., Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin (1990) Proc Natl Acad Sci U S A, 87, pp. 9231-9235
  • Cioffi, D.L., Hubler, T.R., Scammell, J.G., Organization and function of the FKBP52 and FKBP51 genes (2011) Curr Opin Pharmacol, 11, pp. 308-313
  • Nakamura, T., Yabe, D., Kanazawa, N., Tashiro, K., Sasayama, S., Honjo, T., Molecular cloning, characterization, and chromosomal localization of FKBP23, a novel FK506-binding protein with Ca2þ-binding ability (1998) Genomics, 54, pp. 89-98
  • Zhang, X., Wang, Y., Li, H., Zhang, W., Wu, D., Mi, H., The mouse FKBP23 binds to BiP in ER and the binding of C-terminal domain is interrelated with Ca2þ concentration (2004) FEBS Lett, 559, pp. 57-60
  • Al, N.N., Cotteret, S., Commo, F., Gaudin, C., Rajpar, S., Dessen, P., Targeting CDC25C, PLK1 and CHEK1 to overcome docetaxel resistance induced by loss of LZTS1 in prostate cancer (2014) Oncotarget, 5, pp. 667-678
  • Giraldo, J., Vivas, N.M., Vila, E., Badia, A., Assessing the (a)symmetry of concentration-effect curves: Empirical versus mechanistic models (2002) Pharmacol Ther, 95, pp. 21-45
  • Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing (1995) J R Stat Soc, 57, pp. 289-300
  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes (2006) Nat Protoc, 1, pp. 2856-2860
  • Chauchereau, A., Al Nakouzi, N., Gaudin, C., Le Moulec, S., Compagno, D., Auger, N., Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer (2011) Exp Cell Res, 317, pp. 262-275
  • Gifford, J.B., Huang, W., Zeleniak, A.E., Hindoyan, A., Wu, H., Donahue, T.R., Expression Of GRP78, master regulator of the unfolded protein response, increases chemoresistance in pancreatic ductal adenocarcinoma (2016) Mol Cancer Ther, 15, pp. 1043-1052
  • Roller, C., Maddalo, D., The molecular chaperone GRP78/BiP in the development of chemoresistance: Mechanism and possible treatment (2013) Front Pharmacol, 4, p. 10
  • Kuruma, H., Matsumoto, H., Shiota, M., Bishop, J., Lamoureux, F., Thomas, C., A novel antiandrogen, compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and in vivo (2013) Mol Cancer Ther, 12, pp. 567-576
  • Yamamoto, Y., Loriot, Y., Beraldi, E., Zhang, F., Wyatt, A.W., Nakouzi, N.A., Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth (2015) Clin Cancer Res, 21, pp. 1675-1687
  • Grasso, C.S., Wu, Y.-M., Robinson, D.R., Cao, X., Dhanasekaran, S.M., Khan, A.P., The mutational landscape of lethal castration-resistant prostate cancer (2012) Nature, 487, pp. 239-243
  • Cencic, R., Hall, D.R., Robert, F., Du, Y., Min, J., Li, L., Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F (2011) Proc Natl Acad Sci U S A, 108, pp. 1046-1051
  • Boussemart, L., Malka-Mahieu, H., Girault, I., Allard, D., Hemmingsson, O., Tomasic, G., EIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies (2014) Nature, 513, pp. 105-109
  • Robert, F., Roman, W., Bramoulle, A., Fellmann, C., Roulston, A., Shustik, C., Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma (2014) Proc Natl Acad Sci U S A, 111, pp. 13421-13426
  • Zindy, P., Berge, Y., Allal, B., Filleron, T., Pierredon, S., Cammas, A., Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors (2011) Cancer Res, 71, pp. 4068-4073
  • Bordeleau, M.-E., Robert, F., Gerard, B., Lindqvist, L., Chen, S.M.H., Wendel, H.-G., Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model (2008) J Clin Invest, 118, pp. 2651-2660
  • Cencic, R., Carrier, M., Galicia-Vazquez, G., Bordeleau, M.-E., Sukarieh, R., Bourdeau, A., Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol (2009) PLoS One, 4, p. e5223
  • Chambers, J.M., Lindqvist, L.M., Webb, A., Huang, D.C.S., Savage, G.P., Rizzacasa, M.A., Synthesis of biotinylated episilvestrol: Highly selective targeting of the translation factors eIF4AI/II (2013) Org Lett, 15, pp. 1406-1409
  • Gupta, S.V., Sass, E.J., Davis, M.E., Edwards, R.B., Lozanski, G., Heerema, N.A., Resistance to the translation initiation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells (2011) AAPS J, 13, pp. 357-364
  • Thuaud, F., Bernard, Y., Turkeri, G., Dirr, R., Aubert, G., Cresteil, T., Synthetic analogue of rocaglaol displays a potent and selective cytotoxicity in cancer cells: Involvement of apoptosis inducing factor and caspase-12 (2009) J Med Chem, 52, pp. 5176-5187
  • Rebucci, M., Michiels, C., Molecular aspects of cancer cell resistance to chemotherapy (2013) Biochem Pharmacol, 85, pp. 1219-1226
  • Zhang, W., Meng, Y., Liu, N., Wen, X.-F., Yang, T., Insights into chemoresistance of prostate cancer (2015) Int J Biol Sci, 11, pp. 1160-1170
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol Metab, 22, pp. 481-490
  • Li, L., Fridley, B., Kalari, K., Jenkins, G., Batzler, A., Safgren, S., Gemcitabine and cytosine arabinoside cytotoxicity: Association with lymphoblastoid cell expression (2008) Cancer Res, 68, pp. 7050-7058
  • Pei, H., Li, L., Fridley, B.L., Jenkins, G.D., Kalari, K.R., Lingle, W., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt (2009) Cancer Cell, 16, pp. 259-266
  • Romano, M.F., Avellino, R., Petrella, A., Bisogni, R., Romano, S., Venuta, S., Rapamycin inhibits doxorubicin-induced NF-kappaB/rel nuclear activity and enhances the apoptosis of melanoma cells (2004) Eur J Cancer, 40, pp. 2829-2836
  • Sun, N.-K., Huang, S.-L., Chang, P.-Y., Lu, H.-P., Chao, C.C.-K., Transcriptomic profiling of taxol-resistant ovarian cancer cells identifies FKBP5 and the androgen receptor as critical markers of chemotherapeutic response (2014) Oncotarget, 5, pp. 11939-11956
  • Robson, T., James, I.F., The therapeutic and diagnostic potential of FKBPL; a novel anticancer protein (2012) Drug Discov Today, 17, pp. 544-548
  • Paulo, P., Ribeiro, F.R., Santos, J., Mesquita, D., Almeida, M., Barros-Silva, J.D., Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements (2012) Neoplasia, 14, pp. 600-611
  • Olesen, S.H., Christensen, L.L., Sørensen, F.B., Cabezon, T., Laurberg, S., Orntoft, T.F., Human FK506 binding protein 65 is associated with colorectal cancer (2005) Mol Cell Proteomics, 4, pp. 534-544
  • Quinn, M.C.J., Wojnarowicz, P.M., Pickett, A., Provencher, D.M., Mes-Masson, A.-M., Davis, E.C., FKBP10/FKBP65 expression in high-grade ovarian serous carcinoma and its association with patient outcome (2013) Int J Oncol, 42, pp. 912-920
  • Lu, M., Miao, Y., Qi, L., Bai, M., Zhang, J., Feng, Y., RNAi-mediated downregulation of FKBP14 suppresses the growth of human ovarian cancer cells (2016) Oncol Res, 23, pp. 267-274
  • Huang, Z., Li, J., Du, S., Tang, Y., Huang, L., Xiao, L., FKBP14 overexpression contributes to osteosarcoma carcinogenesis and indicates poor survival outcome (2016) Oncotarget, 7, pp. 39871-39884
  • Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., Topisirovic, I., Targeting the translation machinery in cancer (2015) Nat Rev Drug Discov, 14, pp. 261-278
  • Lu, K.P., Finn, G., Lee, T.H., Nicholson, L.K., Prolyl cis-trans isomerization as a molecular timer (2007) Nat Chem Biol, 3, pp. 619-629
  • Blackburn, E.A., Walkinshaw, M.D., Targeting FKBP isoforms with small-molecule ligands (2011) Curr Opin Pharmacol, 11, pp. 365-371
  • Thuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T., Desaubry, L., Novel flavaglines displaying improved cytotoxicity (2011) J Med Chem, 54, pp. 411-415
  • Ribeiro, N., Thuaud, F., Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Flavaglines as potent anticancer and cytoprotective agents (2012) J Med Chem, 55, pp. 10064-10073

Citas:

---------- APA ----------
Garrido, M.F., Martin, N.J.-P., Bertrand, M., Gaudin, C., Commo, F.E., Kalaany, N.E., Nakouzi, N.A.,..., Chauchereau, A. (2019) . Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer. Clinical Cancer Research, 25(2), 710-723.
http://dx.doi.org/10.1158/1078-0432.CCR-18-0704
---------- CHICAGO ----------
Garrido, M.F., Martin, N.J.-P., Bertrand, M., Gaudin, C., Commo, F.E., Kalaany, N.E., et al. "Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer" . Clinical Cancer Research 25, no. 2 (2019) : 710-723.
http://dx.doi.org/10.1158/1078-0432.CCR-18-0704
---------- MLA ----------
Garrido, M.F., Martin, N.J.-P., Bertrand, M., Gaudin, C., Commo, F.E., Kalaany, N.E., et al. "Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer" . Clinical Cancer Research, vol. 25, no. 2, 2019, pp. 710-723.
http://dx.doi.org/10.1158/1078-0432.CCR-18-0704
---------- VANCOUVER ----------
Garrido, M.F., Martin, N.J.-P., Bertrand, M., Gaudin, C., Commo, F.E., Kalaany, N.E., et al. Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer. Clin. Cancer Res. 2019;25(2):710-723.
http://dx.doi.org/10.1158/1078-0432.CCR-18-0704