Artículo

Godoy Herz, M.A.; Kubaczka, M.G.; Brzyżek, G.; Servi, L.; Krzyszton, M.; Simpson, C.; Brown, J.; Swiezewski, S.; Petrillo, E.; Kornblihtt, A.R. "Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation" (2019) Molecular Cell. 73(5):1066-1074.e3
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues. Godoy Herz et al. provide biochemical and genetic evidence that plants exposed to light show faster gene transcription than those in the dark. This serves as control for alternative mRNA splicing decisions, which demonstrates that coupling between transcription and splicing is important for a whole organism to respond to environmental cues. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation
Autor:Godoy Herz, M.A.; Kubaczka, M.G.; Brzyżek, G.; Servi, L.; Krzyszton, M.; Simpson, C.; Brown, J.; Swiezewski, S.; Petrillo, E.; Kornblihtt, A.R.
Filiación:Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), (C1428EHA), Buenos Aires, Argentina
Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, United Kingdom
Palabras clave:alternative splicing; light control in plants; transcription elongation; histone; messenger RNA; RNA polymerase II; transcription factor II; alternative RNA splicing; Arabidopsis thaliana; Article; carbon fixation; chloroplast; controlled study; darkness; genetic transcription; histone acetylation; intron; light; mammal cell; mutant; nonhuman; plant; regulatory mechanism; transcription elongation
Año:2019
Volumen:73
Número:5
Página de inicio:1066
Página de fin:1074.e3
DOI: http://dx.doi.org/10.1016/j.molcel.2018.12.005
Título revista:Molecular Cell
Título revista abreviado:Mol. Cell
ISSN:10972765
CODEN:MOCEF
CAS:histone, 9062-68-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10972765_v73_n5_p1066_GodoyHerz

Referencias:

  • Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Elela, S.A., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat. Struct. Mol. Biol., 16, pp. 717-724
  • Antosz, W., Pfab, A., Ehrnsberger, H.F., Holzinger, P., Köllen, K., Mortensen, S.A., Bruckmann, A., Griesenbeck, J., The composition of the Arabidopsis RNA polymerase II transcript elongation complex reveals the interplay between elongation and mRNA processing factors (2017) Plant Cell, 29, pp. 854-870
  • Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev., 2, pp. 754-765
  • Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A.V., Tariq, M., Paszkowski, J., Chromatin techniques for plant cells (2004) Plant J., 39, pp. 776-789
  • Calixto, C.P.G., Guo, W., James, A.B., Tzioutziou, N.A., Entizne, J.C., Panter, P.E., Knight, H., Brown, J.W.S., Rapid and dynamic alternative splicing impacts the Arabidopsis Cold Response Transcriptome (2018) Plant Cell, 30, pp. 1424-1444
  • Chen, Y., Chafin, D., Price, D.H., Greenleaf, A.L., Drosophila RNA polymerase II mutants that affect transcription elongation (1996) J. Biol. Chem., 271, pp. 5993-5999
  • Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Nakatani, Y., Reinberg, D., A human RNA polymerase II complex containing factors that modify chromatin structure (1998) Mol. Cell. Biol., 18, pp. 5355-5363
  • Danko, C.G., Hah, N., Luo, X., Martins, A.L., Core, L., Lis, J.T., Siepel, A., Kraus, W.L., Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells (2013) Mol. Cell, 50, pp. 212-222
  • de la Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., Pelisch, F., Cramer, P., Kornblihtt, A.R., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532
  • Dolata, J., Guo, Y., Kołowerzo, A., Smoliński, D., Brzyżek, G., Jarmołowski, A., Świeżewski, S., NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis (2015) EMBO J., 34, pp. 544-558
  • Dujardin, G., Lafaille, C., de la Mata, M., Marasco, L.E., Muñoz, M.J., Le Jossic-Corcos, C., Corcos, L., Kornblihtt, A.R., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell, 54, pp. 683-690
  • Fish, R.N., Kane, C.M., Promoting elongation with transcript cleavage stimulatory factors (2002) Biochim. Biophys. Acta, 1577, pp. 287-307
  • Fong, N., Kim, H., Zhou, Y., Ji, X., Qiu, J., Saldi, T., Diener, K., Bentley, D.L., Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate (2014) Genes Dev., 28, pp. 2663-2676
  • Greenleaf, A.L., Weeks, J.R., Voelker, R.A., Ohnishi, S., Dickson, B., Genetic and biochemical characterization of mutants at an RNA polymerase II locus in D. melanogaster (1980) Cell, 21, pp. 785-792
  • Ip, J.Y., Schmidt, D., Pan, Q., Ramani, A.K., Fraser, A.G., Odom, D.T., Blencowe, B.J., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation (2011) Genome Res., 21, pp. 390-401
  • Jonkers, I., Lis, J.T., Getting up to speed with transcription elongation by RNA polymerase II (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 167-177
  • Kaufmann, I., White, E., Azad, A., Marguerat, S., Bähler, J., Proudfoot, N.J., Transcriptional activation of the general amino acid permease gene per1 by the histone deacetylase Clr6 Is regulated by Oca2 kinase (2010) Mol. Cell. Biol., 30, pp. 3396-3410
  • Kim, J., Guermah, M., Roeder, R.G., The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS (2010) Cell, 140, pp. 491-503
  • Kim, D., Langmead, B., Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements (2015) Nat. Methods, 12, pp. 357-360
  • Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: a pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 153-165
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079
  • Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822
  • Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads (2011) EMBnet J., 17, pp. 10-12
  • Muñoz, M.J., Pérez Santangelo, M.S., Paronetto, M.P., de la Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Lozano, J.J., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell, 137, pp. 708-720
  • Nelson, J., Denisenko, O., Bomsztyk, K., The fast chromatin immunoprecipitation method (2009) Methods Mol. Biol., 567, pp. 45-57
  • Oesterreich, F.C., Herzel, L., Straube, K., Hujer, K., Howard, J., Neugebauer, K.M., Splicing of nascent RNA coincides with intron exit from RNA polymerase II (2016) Cell, 165, pp. 372-381
  • Petrillo, E., Godoy Herz, M.A., Fuchs, A., Reifer, D., Fuller, J., Yanovsky, M.J., Simpson, C., Kornblihtt, A.R., A chloroplast retrograde signal regulates nuclear alternative splicing (2014) Science, 344, pp. 427-430
  • Quinlan, A.R., Hall, I.M., BEDTools: a flexible suite of utilities for comparing genomic features (2010) Bioinformatics, 26, pp. 841-842
  • Saldi, T., Cortazar, M.A., Sheridan, R.M., Bentley, D.L., Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing (2016) J. Mol. Biol., 428, pp. 69-81
  • Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 4325-4330
  • Schor, I.E., Fiszbein, A., Petrillo, E., Kornblihtt, A.R., Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation (2013) EMBO J., 32, pp. 2264-2274
  • Sigurdsson, S., Dirac-Svejstrup, A.B., Svejstrup, J.Q., Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability (2010) Mol. Cell, 38, pp. 202-210
  • Simpson, C.G., Fuller, J., Maronova, M., Kalyna, M., Davidson, D., McNicol, J., Barta, A., Brown, J.W.S., Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts (2008) Plant J., 53, pp. 1035-1048
  • Smith, T., Heger, A., Sudbery, I., UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy (2017) Genome Res., 27, pp. 491-499
  • Staiger, D., Brown, J.W.S., Alternative splicing at the intersection of biological timing, development, and stress responses (2013) Plant Cell, 25, pp. 3640-3656
  • Warkocki, Z., Krawczyk, P.S., Adamska, D., Bijata, K., Garcia-Perez, J.L., Dziembowski, A., Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s (2018) Cell, 174, pp. 1537-1548
  • Wickham, H., ggplot2: Elegant Graphics for Data Analysis (2016), Springer-Verlag; Yeo, G., Burge, C.B., Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals (2004) J. Comput. Biol., 11, pp. 377-394

Citas:

---------- APA ----------
Godoy Herz, M.A., Kubaczka, M.G., Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., Brown, J.,..., Kornblihtt, A.R. (2019) . Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation. Molecular Cell, 73(5), 1066-1074.e3.
http://dx.doi.org/10.1016/j.molcel.2018.12.005
---------- CHICAGO ----------
Godoy Herz, M.A., Kubaczka, M.G., Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., et al. "Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation" . Molecular Cell 73, no. 5 (2019) : 1066-1074.e3.
http://dx.doi.org/10.1016/j.molcel.2018.12.005
---------- MLA ----------
Godoy Herz, M.A., Kubaczka, M.G., Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., et al. "Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation" . Molecular Cell, vol. 73, no. 5, 2019, pp. 1066-1074.e3.
http://dx.doi.org/10.1016/j.molcel.2018.12.005
---------- VANCOUVER ----------
Godoy Herz, M.A., Kubaczka, M.G., Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., et al. Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation. Mol. Cell. 2019;73(5):1066-1074.e3.
http://dx.doi.org/10.1016/j.molcel.2018.12.005