Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We compute the next-to-leading order (NLO) QCD corrections to the 1 → 2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD + QED. © 2014 SISSA.

Registro:

Documento: Artículo
Título:Double collinear splitting amplitudes at next-to-leading order
Autor:Sborlini, G.F.R.; De Florian, D.; Rodrigo, G.
Filiación:Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428), Capital Federal, Argentina
Instituto de Física Corpuscular, Universitat de Valencia - Consejo Superior de Investigaciones Cientificas Parc Cientific, E-46980 Paterna Valencia, Spain
Idioma: Inglés
Palabras clave:Hadronic Colliders; NLO Computations
Año:2014
Volumen:2014
Número:1
Número de artículo:018
DOI: http://dx.doi.org/10.1007/Jhep01(2014)018
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.
ISSN:11266708
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_11266708_v2014_n1_p_Sborlini

Referencias:

  • Bollini, C., Giambiagi, J., Dimensional renormalization: The number of dimensions as a regularizing parameter (1972) Nuovo Cim., 12, p. 20. , [INSPIRE]
  • 'T Hooft, G., Veltman, M., Regularization and renormalization of gauge fields (1972) Nucl. Phys., 44, p. 189. , 1972NuPhB.44.189T 10.1016/0550-3213(72)90279-9 391798 [INSPIRE]
  • Catani, S., The singular behavior of QCD amplitudes at two loop order (1998) Phys. Lett., 427, p. 161. , 1998PhLB.427.161C 10.1016/S0370-2693(98)00332-3 [hep-ph/9802439] [INSPIRE]
  • Sterman, G.F., Tejeda-Yeomans, M.E., Multiloop amplitudes and resummation (2003) Phys. Lett., 552, p. 48. , 2003PhLB.552.48S 10.1016/S0370-2693(02)03100-3 [hep-ph/0210130] [INSPIRE]
  • Aybat, S.M., Dixon, L.J., Sterman, G.F., The two-loop anomalous dimension matrix for soft gluon exchange (2006) Phys. Rev. Lett., 97, p. 072001. , 2006PhRvL.97g2001A 10.1103/PhysRevLett.97.072001 [hep-ph/0606254] [INSPIRE]
  • Aybat, S.M., Dixon, L.J., Sterman, G.F., The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole (2006) Phys. Rev., p. 074004. , 2006PhRvD.74g4004A [hep-ph/0607309] [INSPIRE]50074
  • Dixon, L.J., Magnea, L., Sterman, G.F., Universal structure of subleading infrared poles in gauge theory amplitudes (2008) Jhep, 8, p. 022. , 2008Jhep.08.022D 10.1088/1126-6708/2008/08/022 [arXiv:0805.3515] [INSPIRE]
  • Becher, T., Neubert, M., Infrared singularities of scattering amplitudes in perturbative QCD (2009) Phys. Rev. Lett., 102, p. 162001. , 2009PhRvL.102p2001B 10.1103/PhysRevLett.102.162001 [arXiv:0901.0722] [INSPIRE]
  • Gardi, E., Magnea, L., Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes (2009) Jhep, 3, p. 079. , 2009Jhep.03.079G 10.1088/1126-6708/2009/03/079 [arXiv:0901.1091] [INSPIRE]
  • Becher, T., Neubert, M., On the structure of infrared singularities of gauge-theory amplitudes (2009) Jhep, 6, p. 081. , 2009Jhep.06.081B 10.1088/1126-6708/2009/06/081 2534674 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE]
  • Dixon, L.J., Gardi, E., Magnea, L., On soft singularities at three loops and beyond (2010) Jhep, 2, p. 081. , 2010Jhep.02.081D 10.1007/Jhep02(2010)081 2672715 [arXiv:0910.3653] [INSPIRE]
  • Catani, S., Seymour, M., A general algorithm for calculating jet cross-sections in NLO QCD (1997) Nucl. Phys., 485, p. 291. , 1997NuPhB.485.291C 10.1016/S0550-3213(96)00589-5 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE]
  • Collins, J.C., Soper, D.E., Sterman, G.F., Factorization of hard processes in QCD, in Perturbative quantum chromodynamics (1988) Adv. Ser. Direct. High Energy Phys., 5, p. 1. , A.H. Mueller ed. [ hep-ph/0409313 ] [ INSPIRE ]
  • Catani, S., De Florian, D., Rodrigo, G., Space-like (versus time-like) collinear limits in QCD: Is factorization violated? (2012) Jhep, 7, p. 026. , 2012Jhep.07.026C 10.1007/Jhep07(2012)026 [arXiv:1112.4405] [INSPIRE]
  • Forshaw, J.R., Seymour, M.H., Siodmok, A., On the breaking of collinear factorization in QCD (2012) Jhep, 11, p. 066. , 2012Jhep.11.066F 10.1007/Jhep11(2012)066 [arXiv:1206.6363] [INSPIRE]
  • Catani, S., De Florian, D., Rodrigo, G., Factorization violation in the multiparton collinear limit PoS (LL2012), 35. , [ arXiv:1211.7274 ] [ INSPIRE ]
  • Altarelli, G., Parisi, G., Asymptotic freedom in parton language (1977) Nucl. Phys., 126, p. 298. , 1977NuPhB.126.298A 10.1016/0550-3213(77)90384-4 [INSPIRE]
  • Berends, F.A., Giele, W., Recursive calculations for processes with n gluons (1988) Nucl. Phys., 306, p. 759. , 1988NuPhB.306.759B 10.1016/0550-3213(88)90442-7 [INSPIRE]
  • Mangano, M.L., Parke, S.J., Multiparton amplitudes in gauge theories (1991) Phys. Rept., 200, p. 301. , 1991PhR.200.301M 10.1016/0370-1573(91)90091-Y [hep-th/0509223] [INSPIRE]
  • Bern, Z., Del Duca, V., Schmidt, C.R., The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order (1998) Phys. Lett., 445, p. 168. , 1998PhLB.445.168B 10.1016/S0370-2693(98)01495-6 [hep-ph/9810409] [INSPIRE]
  • Bern, Z., Del Duca, V., Kilgore, W.B., Schmidt, C.R., The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order (1999) Phys. Rev., p. 116001. , 1999PhRvD.60k6001B [hep-ph/9903516] [INSPIRE]50060
  • Bern, Z., Chalmers, G., Dixon, L.J., Kosower, D.A., One loop n gluon amplitudes with maximal helicity violation via collinear limits (1994) Phys. Rev. Lett., 72, p. 2134. , 1994PhRvL.72.2134B 10.1103/PhysRevLett.72.2134 [hep-ph/9312333] [INSPIRE]
  • Bern, Z., Dixon, L.J., Dunbar, D.C., Kosower, D.A., One loop n point gauge theory amplitudes, unitarity and collinear limits (1994) Nucl. Phys., 425, p. 217. , 1994NuPhB.425.217B 10.1016/0550-3213(94)90179-1 1292626 [hep-ph/9403226] [INSPIRE]
  • Bern, Z., Chalmers, G., Factorization in one loop gauge theory (1995) Nucl. Phys., 447, p. 465. , 1995NuPhB.447.465B 10.1016/0550-3213(95)00226-I [hep-ph/9503236] [INSPIRE]
  • Kosower, D.A., Uwer, P., One loop splitting amplitudes in gauge theory (1999) Nucl. Phys., 563, p. 477. , 1999NuPhB.563.477K 10.1016/S0550-3213(99)00583-0 [hep-ph/9903515] [INSPIRE]
  • Bern, Z., Dixon, L.J., Kosower, D.A., Two-loop g → gg splitting amplitudes in QCD (2004) Jhep, 8, p. 012. , 2004Jhep.08.012B 10.1088/1126-6708/2004/08/012 2109882 [hep-ph/0404293] [INSPIRE]
  • Badger, S., Glover, E.N., Two loop splitting functions in QCD (2004) Jhep, 7, p. 040. , 2004Jhep.07.040B 10.1088/1126-6708/2004/07/040 [hep-ph/0405236] [INSPIRE]
  • Kosower, D.A., All order collinear behavior in gauge theories (1999) Nucl. Phys., 552, p. 319. , 1999NuPhB.552.319K 10.1016/S0550-3213(99)00251-5 [hep-ph/9901201] [INSPIRE]
  • Campbell, J.M., Glover, E.N., Double unresolved approximations to multiparton scattering amplitudes (1998) Nucl. Phys., 527, p. 264. , 1998NuPhB.527.264C 10.1016/S0550-3213(98)00295-8 [hep-ph/9710255] [INSPIRE]
  • Catani, S., Grazzini, M., Collinear factorization and splitting functions for next-to-next-to- leading order QCD calculations (1999) Phys. Lett., 446, p. 143. , 1999PhLB.446.143C 10.1016/S0370-2693(98)01513-5 [hep-ph/9810389] [INSPIRE]
  • Del Duca, V., Frizzo, A., Maltoni, F., Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit (2000) Nucl. Phys., 568, p. 211. , 2000NuPhB.568.211D 10.1016/S0550-3213(99)00657-4 [hep-ph/9909464] [INSPIRE]
  • Birthwright, T.G., Glover, E.W.N., Khoze, V.V., Marquard, P., Multi-gluon collinear limits from MHV diagrams (2005) Journal of High Energy Physics, (5), pp. 248-273. , DOI 10.1088/1126-6708/2005/05/013
  • Birthwright, T.G., Glover, E.W.N., Khoze, V.V., Marquard, P., Collinear limits in QCD from MHV rules (2005) Journal of High Energy Physics, (7), pp. 1731-1757. , DOI 10.1088/1126-6708/2005/07/068
  • Catani, S., Grazzini, M., Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond (2000) Nucl. Phys., 570, p. 287. , 2000NuPhB.570.287C 10.1016/S0550-3213(99)00778-6 [hep-ph/9908523] [INSPIRE]
  • Catani, S., De Florian, D., Rodrigo, G., The triple collinear limit of one loop QCD amplitudes (2004) Phys. Lett., 586, p. 323. , 2004PhLB.586.323C 10.1016/j.physletb.2004.02.039 [hep-ph/0312067] [INSPIRE]
  • Catani, S., Seymour, M., Trócsányi, Z., Regularization scheme independence and unitarity in QCD cross-sections (1997) Phys. Rev., p. 6819. , 1997PhRvD.55.6819C [hep-ph/9610553] [INSPIRE]50055
  • Kunszt, Z., Signer, A., Trócsányi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory (1994) Nucl. Phys., 411, p. 397. , 1994NuPhB.411.397K 10.1016/0550-3213(94)90456-1 [hep-ph/9305239] [INSPIRE]
  • Harlander, R.V., Kant, P., Mihaila, L., Steinhauser, M., Dimensional reduction applied to QCD at three loops (2006) Journal of High Energy Physics, 2006 (9), p. 053. , DOI 10.1088/1126-6708/2006/09/053
  • Kilgore, W.B., Regularization schemes and higher order corrections (2011) Phys. Rev., p. 114005. , 2011PhRvD.83k4005K [arXiv:1102.5353] [INSPIRE]50083
  • Signer, A., Stockinger, D., Factorization and regularization by dimensional reduction (2005) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 626 (1-4), pp. 127-138. , DOI 10.1016/j.physletb.2005.08.112, PII S0370269305012797
  • Signer, A., Stöckinger, D., Using dimensional reduction for hadronic collisions (2009) Nucl. Phys., 808, p. 88. , 2009NuPhB.808.88S 10.1016/j.nuclphysb.2008.09.016 [arXiv:0807.4424] [INSPIRE]
  • Gastmans, R., Meuldermans, R., Dimensional regularization of the infrared problem (1973) Nucl. Phys., 63, p. 277. , 1973NuPhB.63.277G 10.1016/0550-3213(73)90146-6 [INSPIRE]
  • Siegel, W., Supersymmetric dimensional regularization via dimensional reduction (1979) Phys. Lett., 84, p. 193. , 1979PhLB.84.193S 10.1016/0370-2693(79)90282-X [INSPIRE]
  • Capper, D., Jones, D., Van Nieuwenhuizen, P., Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories (1980) Nucl. Phys., 167, p. 479. , 1980NuPhB.167.479C 10.1016/0550-3213(80)90244-8 [INSPIRE]
  • Harlander, R., Kant, P., Mihaila, L., Steinhauser, M., Dimensional Reduction Applied to QCD at Higher Orders, , arXiv:0706.2982 [ INSPIRE ]
  • Mertig, R., Boehm, M., Denner, A., Feyn Calc - computer-algebraic calculation of Feynman amplitudes (1991) Computer Physics Communications, 64 (3), pp. 345-359. , DOI 10.1016/0010-4655(91)90130-D
  • Chetyrkin, K., Tkachov, F., Integration by parts: The algorithm to calculate β-functions in 4 loops (1981) Nucl. Phys., 192, p. 159. , 1981NuPhB.192.159C 10.1016/0550-3213(81)90199-1 [INSPIRE]
  • Smirnov, A., Algorithm FIRE - Feynman Integral REduction (2008) Jhep, 10, p. 107. , 2008Jhep.10.107S 10.1088/1126-6708/2008/10/107 [arXiv:0807.3243] [INSPIRE]
  • Smirnov, A., Smirnov, V., FIRE4, LiteRed and accompanying tools to solve integration by parts relations (2013) Comput. Phys. Commun., 184, p. 2820. , 2013CoPhC.184.2820S 10.1016/j.cpc.2013.06.016 3128921 [arXiv:1302.5885] [INSPIRE]
  • Catani, S., Seymour, M., The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order (1996) Phys. Lett., 378, p. 287. , 1996PhLB.378.287C 10.1016/0370-2693(96)00425-X [hep-ph/9602277] [INSPIRE]
  • Pritchard, D., Stirling, W.J., QCD calculations in the light cone gauge. 1 (1980) Nucl. Phys., 165, p. 237. , 1980NuPhB.165.237P 10.1016/0550-3213(80)90086-3
  • Catani, S., Draggiotis, P., Rodrigo, G., Recursion relations for the multiparton collinear limit and splitting functions PoS (LL2012), 54. , [ arXiv:1210.0698 ] [ INSPIRE ]

Citas:

---------- APA ----------
Sborlini, G.F.R., De Florian, D. & Rodrigo, G. (2014) . Double collinear splitting amplitudes at next-to-leading order. Journal of High Energy Physics, 2014(1).
http://dx.doi.org/10.1007/Jhep01(2014)018
---------- CHICAGO ----------
Sborlini, G.F.R., De Florian, D., Rodrigo, G. "Double collinear splitting amplitudes at next-to-leading order" . Journal of High Energy Physics 2014, no. 1 (2014).
http://dx.doi.org/10.1007/Jhep01(2014)018
---------- MLA ----------
Sborlini, G.F.R., De Florian, D., Rodrigo, G. "Double collinear splitting amplitudes at next-to-leading order" . Journal of High Energy Physics, vol. 2014, no. 1, 2014.
http://dx.doi.org/10.1007/Jhep01(2014)018
---------- VANCOUVER ----------
Sborlini, G.F.R., De Florian, D., Rodrigo, G. Double collinear splitting amplitudes at next-to-leading order. J. High Energy Phys. 2014;2014(1).
http://dx.doi.org/10.1007/Jhep01(2014)018