Giribet, G."Stringy horizons and generalized FZZ duality in perturbation theory" (2017) Journal of High Energy Physics. 2017(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n − 2 winding modes actually coincide with the correlation functions in the SL(2ℝ)/U(1) gauged WZW model that include n − 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature. © 2017, The Author(s).


Documento: Artículo
Título:Stringy horizons and generalized FZZ duality in perturbation theory
Autor:Giribet, G.
Filiación:Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, United States
Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Palabras clave:Black Holes in String Theory; Bosonic Strings; Conformal Field Models in String Theory; Tachyon Condensation
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.


  • Giveon, A., Itzhaki, N., Kutasov, D., Stringy horizons II (2016) JHEP, 10, p. 157. , [arXiv:1603.05822] [INSPIRE]
  • V. Fateev, A. Zamolodchikov, and Al. Zamolodchikov, unpublished; Kazakov, V., Kostov, I.K., Kutasov, D., A matrix model for the two-dimensional black hole (2002) Nucl. Phys., B 622, p. 141. , [hep-th/0101011] [INSPIRE]
  • Hikida, Y., Schomerus, V., The FZZ-duality conjecture: a proof (2009) JHEP, 3, p. 095. , [arXiv:0805.3931] [INSPIRE]
  • Elitzur, S., Forge, A., Rabinovici, E., Some global aspects of string compactifications (1991) Nucl. Phys., B 359, p. 581. , [INSPIRE]
  • Mandal, G., Sengupta, A.M., Wadia, S.R., Classical solutions of two-dimensional string theory (1991) Mod. Phys. Lett., A 6, p. 1685. , [INSPIRE]
  • Witten, E., On string theory and black holes (1991) Phys. Rev., 500, p. 314. , [INSPIRE]
  • Giveon, A., Kutasov, D., Notes on AdS3 (2002) Nucl. Phys., B 621, p. 303. , [hep-th/0106004] [INSPIRE]
  • Hikida, Y., Takayanagi, T., On solvable time-dependent model and rolling closed string tachyon (2004) Phys. Rev., 500, p. 126013. , [hep-th/0408124] [INSPIRE]
  • Hori, K., Kapustin, A., Duality of the fermionic 2D black hole and N = 2 Liouville theory as mirror symmetry (2001) JHEP, 8, p. 045. , [hep-th/0104202] [INSPIRE]
  • Maldacena, J.M., Long strings in two dimensional string theory and non-singlets in the matrix model (2005) JHEP, 9, p. 078. , [hep-th/0503112] [INSPIRE]
  • Mukherjee, A., Mukhi, S., Pakman, A., FZZ algebra (2007) JHEP, 1, p. 025. , [hep-th/0606037] [INSPIRE]
  • Giribet, G., Scattering of low lying states in the black hole atmosphere (2016) Phys. Rev., 500, p. 026008. , [arXiv:1606.06919] [INSPIRE]
  • Giveon, A., Itzhaki, N., Kutasov, D., Stringy horizons (2015) JHEP, 6, p. 064. , [arXiv:1502.03633] [INSPIRE]
  • Giribet, G., Núñez, C.A., Correlators in AdS3 string theory (2001) JHEP, 6, p. 010. , [hep-th/0105200] [INSPIRE]
  • J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the S L (2 ℝ) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006; Fukuda, T., Hosomichi, K., Three point functions in sine-Liouville theory (2001) JHEP, 9, p. 003. , [hep-th/0105217] [INSPIRE]
  • Dorn, H., Otto, H.J., Two and three point functions in Liouville theory (1994) Nucl. Phys., B 429, p. 375. , [hep-th/9403141] [INSPIRE]
  • Zamolodchikov, A.B., Zamolodchikov, A.B., Structure constants and conformal bootstrap in Liouville field theory (1996) Nucl. Phys., B 477, p. 577. , [hep-th/9506136] [INSPIRE]
  • Dotsenko, V.S., Fateev, V.A., Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1 (1985) Nucl. Phys., B 251, p. 691. , [INSPIRE]
  • Baseilhac, P., Fateev, V.A., Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories (1998) Nucl. Phys., B 532, p. 567. , [hep-th/9906010] [INSPIRE]
  • Fateev, V.A., Litvinov, A.V., Coulomb integrals in Liouville theory and Liouville gravity (2007) JETP Lett., 84, p. 531. , [INSPIRE]
  • Fateev, V.A., Litvinov, A.V., Multipoint correlation functions in Liouville field theory and minimal Liouville gravity (2008) Theor. Math. Phys., 154, p. 454. , [arXiv:0707.1664] [INSPIRE]
  • V. Fateev, privated communication; Giribet, G., The string theory on AdS3 as a marginal deformation of a linear dilaton background (2006) Nucl. Phys., B 737, p. 209. , [hep-th/0511252] [INSPIRE]
  • G. Giribet and M. Leoni, A twisted FZZ-like dual for the 2D black hole, Rept. Math. Phys. 61 (2008)151; Giribet, G., One-loop amplitudes of winding strings in AdS3 and the Coulomb gas approach (2016) Phys. Rev., 500, p. 064037. , [arXiv:1511.04017] [INSPIRE]
  • A.V. Stoyanovsky, A relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations; Ribault, S., Teschner, J., H + (3)-WZNW correlators from Liouville theory (2005) JHEP, 6, p. 014. , [hep-th/0502048] [INSPIRE]
  • Hikida, Y., Schomerus, V., H+(3) WZNW model from Liouville field theory (2007) JHEP, 10, p. 064. , [arXiv:0706.1030] [INSPIRE]
  • Ribault, S., Knizhnik-Zamolodchikov equations and spectral flow in AdS3 string theory (2005) JHEP, 9, p. 045. , [hep-th/0507114] [INSPIRE]
  • Goulian, M., Li, M., Correlation functions in Liouville theory (1991) Phys. Rev. Lett., 66, p. 2051. , [INSPIRE]
  • A.B. Zamolodchikov, Perturbed conformal field theory on fluctuating sphere; (2001), J.M. Maldacena and H. Ooguri, Strings in AdS 3 and S L (2 ℝ) WZW model 1. The spectrum, J. Math. Phys. 42 2929; Becker, K., Becker, M., Interactions in the SL(2ℝ)/U(1) black hole background (1994) Nucl. Phys., B 418, p. 206. , [hep-th/9310046] [INSPIRE]
  • Bershadsky, M., Kutasov, D., Comment on gauged WZW theory (1991) Phys. Lett., B 266, p. 345. , [INSPIRE]
  • Dijkgraaf, R., Verlinde, H.L., Verlinde, E.P., String propagation in a black hole geometry (1992) Nucl. Phys., B 371, p. 269. , [INSPIRE]
  • Giribet, G.E., Lopez-Fogliani, D.E., Remarks on free field realization of SL(2ℝ)(k)/U(1)×U(1) WZNW model (2004) JHEP, 6, p. 026. , [hep-th/0404231] [INSPIRE]


---------- APA ----------
(2017) . Stringy horizons and generalized FZZ duality in perturbation theory. Journal of High Energy Physics, 2017(2).
---------- CHICAGO ----------
Giribet, G. "Stringy horizons and generalized FZZ duality in perturbation theory" . Journal of High Energy Physics 2017, no. 2 (2017).
---------- MLA ----------
Giribet, G. "Stringy horizons and generalized FZZ duality in perturbation theory" . Journal of High Energy Physics, vol. 2017, no. 2, 2017.
---------- VANCOUVER ----------
Giribet, G. Stringy horizons and generalized FZZ duality in perturbation theory. J. High Energy Phys. 2017;2017(2).