Artículo

Cagnacci, Y.; Codina, T.; Marques, D."L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity" (2019) Journal of High Energy Physics. 2019(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We show how the gauge and field structure of the tensor hierarchies in Double and E 7(7) Exceptional Field Theory fits into L ∞ algebras. Special attention is paid to redefinitions, the role of covariantly constrained fields and intertwiners. The results are connected to Gauged Supergravities through generalized Scherk-Schwarz reductions. We find that certain gauging-dependent parameters generate trivial gauge transformations, giving rise to novel symmetries for symmetries that are absent in their ungauged counterparts. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity
Autor:Cagnacci, Y.; Codina, T.; Marques, D.
Filiación:Instituto de Astronomía y Física del Espacio (CONICET-UBA), Buenos Aires, Argentina
Palabras clave:Extended Supersymmetry; String Duality
Año:2019
Volumen:2019
Número:1
DOI: http://dx.doi.org/10.1007/JHEP01(2019)117
Handle:http://hdl.handle.net/20.500.12110/paper_11266708_v2019_n1_p_Cagnacci
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.
ISSN:11266708
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11266708_v2019_n1_p_Cagnacci

Referencias:

  • Stasheff, J., Homotopy associativity of H-spaces. II (1963) Trans. Am. Math. Soc., 108, p. 293
  • Stasheff, J., (1970) H-spaces from a hotompy point of view, Lecture Notes in Mathematics, 161. , Springer Verlag
  • Zwiebach, B., Closed string field theory: Quantum action and the B-V master equation (1993) Nucl. Phys. B, 390, p. 33. , (,), [hep-th/9206084] [INSPIRE]
  • Lada, T., Stasheff, J., Introduction to SH Lie algebras for physicists (1993) Int. J. Theor. Phys., 32, p. 1087. , [hep-th/9209099] [INSPIRE]
  • Barnich, G., Fulp, R., Lada, T., Stasheff, J., The sh Lie structure of Poisson brackets in field theory (1998) Commun. Math. Phys., 191, p. 585. , [hep-th/9702176] [INSPIRE]
  • Sen, A., Wilsonian Effective Action of Superstring Theory (2017) JHEP, 1, p. 108. , [] [INSPIRE]
  • Berends, F.A., Burgers, G.J.H., van Dam, H., On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles (1985) Nucl. Phys. B, 260, p. 295. , (,), [INSPIRE]
  • Fulp, R., Lada, T., Stasheff, J., sh-Lie algebras induced by gauge transformations (2002) Commun. Math. Phys., 231, p. 25. , (,), [INSPIRE]
  • Zeitlin, A.M., Homotopy Lie Superalgebra in Yang-Mills Theory (2007) JHEP, 9, p. 068. , [] [INSPIRE]
  • Zeitlin, A.M., String field theory-inspired algebraic structures in gauge theories (2009) J. Math. Phys., 50. , (,), [], [INSPIRE]
  • Zeitlin, A.M., Conformal Field Theory and Algebraic Structure of Gauge Theory (2010) JHEP, 3, p. 056. , [] [INSPIRE]
  • Hohm, O., Zwiebach, B., L ∞ Algebras and Field Theory (2017) Fortsch. Phys., 65, p. 1700014. , (,), [], [INSPIRE]
  • Blumenhagen, R., Fuchs, M., Traube, M., W algebras are L ∞ algebras (2017) JHEP, 7, p. 060. , (,), [], [INSPIRE]
  • Blumenhagen, R., Fuchs, M., Traube, M., On the Structure of Quantum L ∞ algebras (2017) JHEP, 10, p. 163. , (,), [], [INSPIRE]
  • Blumenhagen, R., Brunner, I., Kupriyanov, V., Lüst, D., Bootstrapping non-commutative gauge theories from L ∞ algebras (2018) JHEP, 5, p. 097. , (,), [], [INSPIRE]
  • Blumenhagen, R., Brinkmann, M., Kupriyanov, V., Traube, M., On the Uniqueness of L ∞ bootstrap: Quasi-isomorphisms are Seiberg-Witten Maps (2018) J. Math. Phys., 59, p. 123505. , (,), [], [INSPIRE]
  • Siegel, W., Superspace duality in low-energy superstrings (1993) Phys. Rev. D, 48, p. 2826. , (,), [hep-th/9305073] [INSPIRE]
  • Siegel, W., Two vierbein formalism for string inspired axionic gravity (1993) Phys. Rev. D, 47, p. 5453. , (,), [hep-th/9302036] [INSPIRE]
  • Hull, C., Zwiebach, B., Double Field Theory (2009) JHEP, 9, p. 099. , [] [INSPIRE]
  • Roytenberg, D., Weinstein, A., Courant Algebroids and Strongly Homotopy Lie Algebras, math/9802118
  • Hull, C., Zwiebach, B., The Gauge algebra of double field theory and Courant brackets (2009) JHEP, 9, p. 090. , [] [INSPIRE]
  • A. Deser and C. Sämann, Extended Riemannian Geometry I: Local Double Field Theory, arXiv:1611.02772 [INSPIRE]; Deser, A., Heller, M.A., Sämann, C., Extended Riemannian Geometry II: Local Heterotic Double Field Theory (2018) JHEP, 4, p. 106. , [] [INSPIRE]
  • de Wit, B., Nicolai, H., Samtleben, H., Gauged Supergravities, Tensor Hierarchies and M-theory (2008) JHEP, 2, p. 044. , [] [INSPIRE]
  • Baraglia, D., Leibniz algebroids, twistings and exceptional generalized geometry (2012) J. Geom. Phys., 62, p. 903. , [] [INSPIRE]
  • M. Cederwall and J. Palmkvist, L ∞ algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE]; M. Cederwall, Algebraic structures in exceptional geometry, 2017, arXiv:1712.06995, DOI [INSPIRE]; A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L ∞ -algebroid, arXiv:1804.07303 [INSPIRE]; O. Hohm and H. Samtleben, Leibniz-Chern-Simons Theory and Phases of Exceptional Field Theory, arXiv:1805.03220 [INSPIRE]; Riccioni, F., West, P.C., The E 11 origin of all maximal supergravities (2007) JHEP, 7, p. 063. , (,), [], [INSPIRE]
  • Riccioni, F., Steele, D., West, P., The E 11 origin of all maximal supergravities: The Hierarchy of field-strengths (2009) JHEP, 9, p. 095. , (,), [], [INSPIRE]
  • Greitz, J., Howe, P., Palmkvist, J., The tensor hierarchy simplified (2014) Class. Quant. Grav., 31. , (,), [], [INSPIRE]
  • Palmkvist, J., The tensor hierarchy algebra (2014) J. Math. Phys., 55. , (,), [], [INSPIRE]
  • Palmkvist, J., Tensor hierarchies, Borcherds algebras and E11 (2012) JHEP, 2, p. 066. , [] [INSPIRE]
  • Lavau, S., Tensor hierarchies and Lie n-extensions of Leibniz algebras arXiv:1708, 7068. , [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., The gauge structure of Exceptional Field Theories and the tensor hierarchy (2014) JHEP, 4, p. 049. , [] [INSPIRE]
  • Hohm, O., Wang, Y.-N., Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory (2015) JHEP, 4, p. 050. , (,), [], [INSPIRE]
  • Wang, Y.-N., Generalized Cartan Calculus in general dimension (2015) JHEP, 7, p. 114. , [] [INSPIRE]
  • Hohm, O., Samtleben, H., Gauge theory of Kaluza-Klein and winding modes (2013) Phys. Rev. D, 88. , (,), [], [INSPIRE]
  • O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7) , Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE]; Godazgar, H., Godazgar, M., Hohm, O., Nicolai, H., Samtleben, H., Supersymmetric E 7(7) Exceptional Field Theory (2014) JHEP, 9, p. 044. , (,), [], [INSPIRE]
  • Schon, J., Weidner, M., Gauged N = 4 supergravities (2006) JHEP, (5), p. 034. , (,), [hep-th/0602024] [INSPIRE]
  • de Wit, B., Samtleben, H., Trigiante, M., On Lagrangians and gaugings of maximal supergravities (2003) Nucl. Phys. B, 655, p. 93. , (,), [hep-th/0212239] [INSPIRE]
  • B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE]; Weidner, M., Gauged supergravities in various spacetime dimensions (2007) Fortsch. Phys., 55, p. 843. , [hep-th/0702084] [INSPIRE]
  • Aldazabal, G., Marques, D., Núñez, C., Double Field Theory: A Pedagogical Review (2013) Class. Quant. Grav., 30, p. 163001. , [] [INSPIRE]
  • Berman, D.S., Thompson, D.C., Duality Symmetric String and M-theory (2014) Phys. Rept., 566, p. 1. , [] [INSPIRE]
  • Hohm, O., Lüst, D., Zwiebach, B., The Spacetime of Double Field Theory: Review, Remarks and Outlook (2013) Fortsch. Phys., 61, p. 926. , [] [INSPIRE]
  • Samtleben, H., Lectures on Gauged Supergravity and Flux Compactifications (2008) Class. Quant. Grav., 25, p. 214002. , [] [INSPIRE]
  • Trigiante, M., Gauged Supergravities (2017) Phys. Rept., 680, p. 1. , [] [INSPIRE]
  • Bergshoeff, E.A., Hartong, J., Hohm, O., Huebscher, M., Ortín, T., Gauge Theories, Duality Relations and the Tensor Hierarchy (2009) JHEP, 4, p. 123. , [] [INSPIRE]
  • Hohm, O., Kupriyanov, V., Lüst, D., Traube, M., Constructions of L ∞ Algebras and Their Field Theory Realizations (2018) Adv. Math. Phys., 2018, p. 9282905. , (,), [], [INSPIRE]
  • Hohm, O., Hull, C., Zwiebach, B., Generalized metric formulation of double field theory (2010) JHEP, 8, p. 008. , [] [INSPIRE]
  • Hull, C.M., Generalised Geometry for M-theory (2007) JHEP, 7, p. 079. , [hep-th/0701203] [INSPIRE]
  • Pires Pacheco, P., Waldram, D., M-theory, exceptional generalised geometry and superpotentials (2008) JHEP, 9, p. 123. , [] [INSPIRE]
  • Hillmann, C., Generalized E 7(7) coset dynamics and D = 11 supergravity (2009) JHEP, 3, p. 135. , (,), [], [INSPIRE]
  • Berman, D.S., Perry, M.J., Generalized Geometry and M-theory (2011) JHEP, 6, p. 074. , [] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., Supergravity as Generalised Geometry II: E d(d) × ℝ + and M-theory (2014) JHEP, 3, p. 019. , (,), [], [INSPIRE]
  • Berman, D.S., Godazgar, H., Perry, M.J., West, P., Duality Invariant Actions and Generalised Geometry (2012) JHEP, 2, p. 108. , [] [INSPIRE]
  • Cederwall, M., Edlund, J., Karlsson, A., Exceptional geometry and tensor fields (2013) JHEP, 7, p. 028. , [] [INSPIRE]
  • Rosabal, J.A., On the exceptional generalised Lie derivative for d ≥ 7 (2015) JHEP, 9, p. 153. , (,), [], [INSPIRE]
  • Cederwall, M., Rosabal, J.A., E 8 geometry (2015) JHEP, 7, p. 007. , (,), [], [INSPIRE]
  • Cederwall, M., Palmkvist, J., Extended geometries (2018) JHEP, 2, p. 071. , [] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., E d(d) × ℝ + generalised geometry, connections and M-theory (2014) JHEP, 2, p. 054. , (,), [], [INSPIRE]
  • Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C., The gauge structure of generalised diffeomorphisms (2013) JHEP, 1, p. 064. , [] [INSPIRE]
  • Tumanov, A.G., West, P., E11 and exceptional field theory (2016) Int. J. Mod. Phys. A, 31, p. 1650066. , (,), [], [INSPIRE]
  • Hohm, O., Samtleben, H., Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB (2014) Phys. Rev. D, 89. , (,), [], [INSPIRE]
  • Musaev, E., Samtleben, H., Fermions and supersymmetry in E 6(6) exceptional field theory (2015) JHEP, 3, p. 027. , (,), [], [INSPIRE]
  • O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8) , Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE]; Baguet, A., Samtleben, H., E 8(8) Exceptional Field Theory: Geometry, Fermions and Supersymmetry (2016) JHEP, 9, p. 168. , (,), [], [INSPIRE]
  • Blair, C.D.A., Malek, E., Geometry and fluxes of SL(5) exceptional field theory (2015) JHEP, 3, p. 144. , (,), [], [INSPIRE]
  • Abzalov, A., Bakhmatov, I., Musaev, E.T., Exceptional field theory: SO(5, 5) (2015) JHEP, 6, p. 088. , (,), [], [INSPIRE]
  • Musaev, E.T., Exceptional field theory: SL(5) (2016) JHEP, 2, p. 012. , (,), [], [INSPIRE]
  • Berman, D.S., Blair, C.D.A., Malek, E., Rudolph, F.J., An action for F-theory: SL(2)ℝ + exceptional field theory (2016) Class. Quant. Grav., 33, p. 195009. , (,), [], [INSPIRE]
  • Ciceri, F., Guarino, A., Inverso, G., The exceptional story of massive IIA supergravity (2016) JHEP, 8, p. 154. , (,), [], [INSPIRE]
  • Cassani, D., de Felice, O., Petrini, M., Strickland-Constable, C., Waldram, D., Exceptional generalised geometry for massive IIA and consistent reductions (2016) JHEP, 8, p. 074. , [] [INSPIRE]
  • Baguet, A., Magro, M., Samtleben, H., Generalized IIB supergravity from exceptional field theory (2017) JHEP, 3, p. 100. , [] [INSPIRE]
  • Aldazabal, G., Baron, W., Marques, D., Núñez, C., The effective action of Double Field Theory (2011) JHEP, 11, p. 052. , (,), [], [INSPIRE]
  • Aldazabal, G., Baron, W., Marques, D., Núñez, C., The effective action of Double Field Theory (2011) JHEP, (11), p. 109
  • Geissbuhler, D., Double Field Theory and N = 4 Gauged Supergravity (2011) JHEP, 11, p. 116. , (,), [], [INSPIRE]
  • Graña, M., Marques, D., Gauged Double Field Theory (2012) JHEP, 4, p. 020. , [] [INSPIRE]
  • Dibitetto, G., Fernandez-Melgarejo, J.J., Marques, D., Roest, D., Duality orbits of non-geometric fluxes (2012) Fortsch. Phys., 60, p. 1123. , [] [INSPIRE]
  • Geissbuhler, D., Marques, D., Núñez, C., Penas, V., Exploring Double Field Theory (2013) JHEP, 6, p. 101. , [] [INSPIRE]
  • Berman, D.S., Lee, K., Supersymmetry for Gauged Double Field Theory and Generalised Scherk-Schwarz Reductions (2014) Nucl. Phys. B, 881, p. 369. , (,), [], [INSPIRE]
  • Cho, W., Fernández-Melgarejo, J.J., Jeon, I., Park, J.-H., Supersymmetric gauged double field theory: systematic derivation by virtue of twist (2015) JHEP, 8, p. 084. , [] [INSPIRE]
  • Hassler, F., Lüst, D., Consistent Compactification of Double Field Theory on Non-geometric Flux Backgrounds (2014) JHEP, 5, p. 085. , [] [INSPIRE]
  • Blumenhagen, R., Hassler, F., Lüst, D., Double Field Theory on Group Manifolds (2015) JHEP, 2, p. 001. , [] [INSPIRE]
  • Ciceri, F., Dibitetto, G., Fernandez-Melgarejo, J.J., Guarino, A., Inverso, G., Double Field Theory at SL(2) angles (2017) JHEP, 5, p. 028. , (,), [], [INSPIRE]
  • Catal-Ozer, A., Duality Twisted Reductions of Double Field Theory of Type II Strings (2017) JHEP, 9, p. 044. , [] [INSPIRE]
  • Berman, D.S., Musaev, E.T., Thompson, D.C., Thompson, D.C., Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions (2012) JHEP, 10, p. 174. , [] [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., Extended geometry and gauged maximal supergravity (2013) JHEP, 6, p. 046. , [] [INSPIRE]
  • Musaev, E.T., Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions (2013) JHEP, 5, p. 161. , [] [INSPIRE]
  • Lee, K., Strickland-Constable, C., Waldram, D., Spheres, generalised parallelisability and consistent truncations (2017) Fortsch. Phys., 65, p. 1700048. , [] [INSPIRE]
  • Baron, W.H., Dall’Agata, G., Uplifting non-compact gauged supergravities (2015) JHEP, 2, p. 003. , [] [INSPIRE]
  • Hohm, O., Samtleben, H., Consistent Kaluza-Klein Truncations via Exceptional Field Theory (2015) JHEP, 1, p. 131. , [] [INSPIRE]
  • Lee, K., Strickland-Constable, C., Waldram, D., New Gaugings and Non-Geometry (2017) Fortsch. Phys., 65, p. 1700049. , [] [INSPIRE]
  • Malek, E., Samtleben, H., Dualising consistent IIA/ IIB truncations (2015) JHEP, 12, p. 029. , [] [INSPIRE]
  • Malek, E., Half-Maximal Supersymmetry from Exceptional Field Theory (2017) Fortsch. Phys., 65, p. 1700061. , [] [INSPIRE]
  • Inverso, G., Generalised Scherk-Schwarz reductions from gauged supergravity (2017) JHEP, 12, p. 124. , [] [INSPIRE]
  • Aldazabal, G., Mayo, M., Nuñez, C., Probing the String Winding Sector (2017) JHEP, 3, p. 096. , [] [INSPIRE]
  • Aldazabal, G., Marques, D., Núñez, C., Rosabal, J.A., On Type IIB moduli stabilization and N = 4, 8 supergravities (2011) Nucl. Phys. B, 849, p. 80. , (,), [], [INSPIRE]
  • Dibitetto, G., Guarino, A., Roest, D., How to halve maximal supergravity (2011) JHEP, 6, p. 030. , [] [INSPIRE]

Citas:

---------- APA ----------
Cagnacci, Y., Codina, T. & Marques, D. (2019) . L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity. Journal of High Energy Physics, 2019(1).
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- CHICAGO ----------
Cagnacci, Y., Codina, T., Marques, D. "L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity" . Journal of High Energy Physics 2019, no. 1 (2019).
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- MLA ----------
Cagnacci, Y., Codina, T., Marques, D. "L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity" . Journal of High Energy Physics, vol. 2019, no. 1, 2019.
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- VANCOUVER ----------
Cagnacci, Y., Codina, T., Marques, D. L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity. J. High Energy Phys. 2019;2019(1).
http://dx.doi.org/10.1007/JHEP01(2019)117