Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We show how the gauge and field structure of the tensor hierarchies in Double and E 7(7) Exceptional Field Theory fits into L ∞ algebras. Special attention is paid to redefinitions, the role of covariantly constrained fields and intertwiners. The results are connected to Gauged Supergravities through generalized Scherk-Schwarz reductions. We find that certain gauging-dependent parameters generate trivial gauge transformations, giving rise to novel symmetries for symmetries that are absent in their ungauged counterparts. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity
Autor:Cagnacci, Y.; Codina, T.; Marques, D.
Filiación:Instituto de Astronomía y Física del Espacio (CONICET-UBA), Buenos Aires, Argentina
Palabras clave:Extended Supersymmetry; String Duality
Año:2019
Volumen:2019
Número:1
DOI: http://dx.doi.org/10.1007/JHEP01(2019)117
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.
ISSN:11266708
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_11266708_v2019_n1_p_Cagnacci

Referencias:

  • Stasheff, J., Homotopy associativity of H-spaces. II (1963) Trans. Am. Math. Soc., 108, p. 293
  • Stasheff, J., (1970) H-spaces from a hotompy point of view, Lecture Notes in Mathematics, 161. , Springer Verlag
  • Zwiebach, B., Closed string field theory: Quantum action and the B-V master equation (1993) Nucl. Phys. B, 390, p. 33. , (,), [hep-th/9206084] [INSPIRE]
  • Lada, T., Stasheff, J., Introduction to SH Lie algebras for physicists (1993) Int. J. Theor. Phys., 32, p. 1087. , [hep-th/9209099] [INSPIRE]
  • Barnich, G., Fulp, R., Lada, T., Stasheff, J., The sh Lie structure of Poisson brackets in field theory (1998) Commun. Math. Phys., 191, p. 585. , [hep-th/9702176] [INSPIRE]
  • Sen, A., Wilsonian Effective Action of Superstring Theory (2017) JHEP, 1, p. 108. , [] [INSPIRE]
  • Berends, F.A., Burgers, G.J.H., van Dam, H., On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles (1985) Nucl. Phys. B, 260, p. 295. , (,), [INSPIRE]
  • Fulp, R., Lada, T., Stasheff, J., sh-Lie algebras induced by gauge transformations (2002) Commun. Math. Phys., 231, p. 25. , (,), [INSPIRE]
  • Zeitlin, A.M., Homotopy Lie Superalgebra in Yang-Mills Theory (2007) JHEP, 9, p. 068. , [] [INSPIRE]
  • Zeitlin, A.M., String field theory-inspired algebraic structures in gauge theories (2009) J. Math. Phys., 50. , (,), [], [INSPIRE]
  • Zeitlin, A.M., Conformal Field Theory and Algebraic Structure of Gauge Theory (2010) JHEP, 3, p. 056. , [] [INSPIRE]
  • Hohm, O., Zwiebach, B., L ∞ Algebras and Field Theory (2017) Fortsch. Phys., 65, p. 1700014. , (,), [], [INSPIRE]
  • Blumenhagen, R., Fuchs, M., Traube, M., W algebras are L ∞ algebras (2017) JHEP, 7, p. 060. , (,), [], [INSPIRE]
  • Blumenhagen, R., Fuchs, M., Traube, M., On the Structure of Quantum L ∞ algebras (2017) JHEP, 10, p. 163. , (,), [], [INSPIRE]
  • Blumenhagen, R., Brunner, I., Kupriyanov, V., Lüst, D., Bootstrapping non-commutative gauge theories from L ∞ algebras (2018) JHEP, 5, p. 097. , (,), [], [INSPIRE]
  • Blumenhagen, R., Brinkmann, M., Kupriyanov, V., Traube, M., On the Uniqueness of L ∞ bootstrap: Quasi-isomorphisms are Seiberg-Witten Maps (2018) J. Math. Phys., 59, p. 123505. , (,), [], [INSPIRE]
  • Siegel, W., Superspace duality in low-energy superstrings (1993) Phys. Rev. D, 48, p. 2826. , (,), [hep-th/9305073] [INSPIRE]
  • Siegel, W., Two vierbein formalism for string inspired axionic gravity (1993) Phys. Rev. D, 47, p. 5453. , (,), [hep-th/9302036] [INSPIRE]
  • Hull, C., Zwiebach, B., Double Field Theory (2009) JHEP, 9, p. 099. , [] [INSPIRE]
  • Roytenberg, D., Weinstein, A., Courant Algebroids and Strongly Homotopy Lie Algebras, math/9802118
  • Hull, C., Zwiebach, B., The Gauge algebra of double field theory and Courant brackets (2009) JHEP, 9, p. 090. , [] [INSPIRE]
  • A. Deser and C. Sämann, Extended Riemannian Geometry I: Local Double Field Theory, arXiv:1611.02772 [INSPIRE]; Deser, A., Heller, M.A., Sämann, C., Extended Riemannian Geometry II: Local Heterotic Double Field Theory (2018) JHEP, 4, p. 106. , [] [INSPIRE]
  • de Wit, B., Nicolai, H., Samtleben, H., Gauged Supergravities, Tensor Hierarchies and M-theory (2008) JHEP, 2, p. 044. , [] [INSPIRE]
  • Baraglia, D., Leibniz algebroids, twistings and exceptional generalized geometry (2012) J. Geom. Phys., 62, p. 903. , [] [INSPIRE]
  • M. Cederwall and J. Palmkvist, L ∞ algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE]; M. Cederwall, Algebraic structures in exceptional geometry, 2017, arXiv:1712.06995, DOI [INSPIRE]; A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L ∞ -algebroid, arXiv:1804.07303 [INSPIRE]; O. Hohm and H. Samtleben, Leibniz-Chern-Simons Theory and Phases of Exceptional Field Theory, arXiv:1805.03220 [INSPIRE]; Riccioni, F., West, P.C., The E 11 origin of all maximal supergravities (2007) JHEP, 7, p. 063. , (,), [], [INSPIRE]
  • Riccioni, F., Steele, D., West, P., The E 11 origin of all maximal supergravities: The Hierarchy of field-strengths (2009) JHEP, 9, p. 095. , (,), [], [INSPIRE]
  • Greitz, J., Howe, P., Palmkvist, J., The tensor hierarchy simplified (2014) Class. Quant. Grav., 31. , (,), [], [INSPIRE]
  • Palmkvist, J., The tensor hierarchy algebra (2014) J. Math. Phys., 55. , (,), [], [INSPIRE]
  • Palmkvist, J., Tensor hierarchies, Borcherds algebras and E11 (2012) JHEP, 2, p. 066. , [] [INSPIRE]
  • Lavau, S., Tensor hierarchies and Lie n-extensions of Leibniz algebras arXiv:1708, 7068. , [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., The gauge structure of Exceptional Field Theories and the tensor hierarchy (2014) JHEP, 4, p. 049. , [] [INSPIRE]
  • Hohm, O., Wang, Y.-N., Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory (2015) JHEP, 4, p. 050. , (,), [], [INSPIRE]
  • Wang, Y.-N., Generalized Cartan Calculus in general dimension (2015) JHEP, 7, p. 114. , [] [INSPIRE]
  • Hohm, O., Samtleben, H., Gauge theory of Kaluza-Klein and winding modes (2013) Phys. Rev. D, 88. , (,), [], [INSPIRE]
  • O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7) , Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE]; Godazgar, H., Godazgar, M., Hohm, O., Nicolai, H., Samtleben, H., Supersymmetric E 7(7) Exceptional Field Theory (2014) JHEP, 9, p. 044. , (,), [], [INSPIRE]
  • Schon, J., Weidner, M., Gauged N = 4 supergravities (2006) JHEP, (5), p. 034. , (,), [hep-th/0602024] [INSPIRE]
  • de Wit, B., Samtleben, H., Trigiante, M., On Lagrangians and gaugings of maximal supergravities (2003) Nucl. Phys. B, 655, p. 93. , (,), [hep-th/0212239] [INSPIRE]
  • B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE]; Weidner, M., Gauged supergravities in various spacetime dimensions (2007) Fortsch. Phys., 55, p. 843. , [hep-th/0702084] [INSPIRE]
  • Aldazabal, G., Marques, D., Núñez, C., Double Field Theory: A Pedagogical Review (2013) Class. Quant. Grav., 30, p. 163001. , [] [INSPIRE]
  • Berman, D.S., Thompson, D.C., Duality Symmetric String and M-theory (2014) Phys. Rept., 566, p. 1. , [] [INSPIRE]
  • Hohm, O., Lüst, D., Zwiebach, B., The Spacetime of Double Field Theory: Review, Remarks and Outlook (2013) Fortsch. Phys., 61, p. 926. , [] [INSPIRE]
  • Samtleben, H., Lectures on Gauged Supergravity and Flux Compactifications (2008) Class. Quant. Grav., 25, p. 214002. , [] [INSPIRE]
  • Trigiante, M., Gauged Supergravities (2017) Phys. Rept., 680, p. 1. , [] [INSPIRE]
  • Bergshoeff, E.A., Hartong, J., Hohm, O., Huebscher, M., Ortín, T., Gauge Theories, Duality Relations and the Tensor Hierarchy (2009) JHEP, 4, p. 123. , [] [INSPIRE]
  • Hohm, O., Kupriyanov, V., Lüst, D., Traube, M., Constructions of L ∞ Algebras and Their Field Theory Realizations (2018) Adv. Math. Phys., 2018, p. 9282905. , (,), [], [INSPIRE]
  • Hohm, O., Hull, C., Zwiebach, B., Generalized metric formulation of double field theory (2010) JHEP, 8, p. 008. , [] [INSPIRE]
  • Hull, C.M., Generalised Geometry for M-theory (2007) JHEP, 7, p. 079. , [hep-th/0701203] [INSPIRE]
  • Pires Pacheco, P., Waldram, D., M-theory, exceptional generalised geometry and superpotentials (2008) JHEP, 9, p. 123. , [] [INSPIRE]
  • Hillmann, C., Generalized E 7(7) coset dynamics and D = 11 supergravity (2009) JHEP, 3, p. 135. , (,), [], [INSPIRE]
  • Berman, D.S., Perry, M.J., Generalized Geometry and M-theory (2011) JHEP, 6, p. 074. , [] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., Supergravity as Generalised Geometry II: E d(d) × ℝ + and M-theory (2014) JHEP, 3, p. 019. , (,), [], [INSPIRE]
  • Berman, D.S., Godazgar, H., Perry, M.J., West, P., Duality Invariant Actions and Generalised Geometry (2012) JHEP, 2, p. 108. , [] [INSPIRE]
  • Cederwall, M., Edlund, J., Karlsson, A., Exceptional geometry and tensor fields (2013) JHEP, 7, p. 028. , [] [INSPIRE]
  • Rosabal, J.A., On the exceptional generalised Lie derivative for d ≥ 7 (2015) JHEP, 9, p. 153. , (,), [], [INSPIRE]
  • Cederwall, M., Rosabal, J.A., E 8 geometry (2015) JHEP, 7, p. 007. , (,), [], [INSPIRE]
  • Cederwall, M., Palmkvist, J., Extended geometries (2018) JHEP, 2, p. 071. , [] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., E d(d) × ℝ + generalised geometry, connections and M-theory (2014) JHEP, 2, p. 054. , (,), [], [INSPIRE]
  • Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C., The gauge structure of generalised diffeomorphisms (2013) JHEP, 1, p. 064. , [] [INSPIRE]
  • Tumanov, A.G., West, P., E11 and exceptional field theory (2016) Int. J. Mod. Phys. A, 31, p. 1650066. , (,), [], [INSPIRE]
  • Hohm, O., Samtleben, H., Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB (2014) Phys. Rev. D, 89. , (,), [], [INSPIRE]
  • Musaev, E., Samtleben, H., Fermions and supersymmetry in E 6(6) exceptional field theory (2015) JHEP, 3, p. 027. , (,), [], [INSPIRE]
  • O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8) , Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE]; Baguet, A., Samtleben, H., E 8(8) Exceptional Field Theory: Geometry, Fermions and Supersymmetry (2016) JHEP, 9, p. 168. , (,), [], [INSPIRE]
  • Blair, C.D.A., Malek, E., Geometry and fluxes of SL(5) exceptional field theory (2015) JHEP, 3, p. 144. , (,), [], [INSPIRE]
  • Abzalov, A., Bakhmatov, I., Musaev, E.T., Exceptional field theory: SO(5, 5) (2015) JHEP, 6, p. 088. , (,), [], [INSPIRE]
  • Musaev, E.T., Exceptional field theory: SL(5) (2016) JHEP, 2, p. 012. , (,), [], [INSPIRE]
  • Berman, D.S., Blair, C.D.A., Malek, E., Rudolph, F.J., An action for F-theory: SL(2)ℝ + exceptional field theory (2016) Class. Quant. Grav., 33, p. 195009. , (,), [], [INSPIRE]
  • Ciceri, F., Guarino, A., Inverso, G., The exceptional story of massive IIA supergravity (2016) JHEP, 8, p. 154. , (,), [], [INSPIRE]
  • Cassani, D., de Felice, O., Petrini, M., Strickland-Constable, C., Waldram, D., Exceptional generalised geometry for massive IIA and consistent reductions (2016) JHEP, 8, p. 074. , [] [INSPIRE]
  • Baguet, A., Magro, M., Samtleben, H., Generalized IIB supergravity from exceptional field theory (2017) JHEP, 3, p. 100. , [] [INSPIRE]
  • Aldazabal, G., Baron, W., Marques, D., Núñez, C., The effective action of Double Field Theory (2011) JHEP, 11, p. 052. , (,), [], [INSPIRE]
  • Aldazabal, G., Baron, W., Marques, D., Núñez, C., The effective action of Double Field Theory (2011) JHEP, (11), p. 109
  • Geissbuhler, D., Double Field Theory and N = 4 Gauged Supergravity (2011) JHEP, 11, p. 116. , (,), [], [INSPIRE]
  • Graña, M., Marques, D., Gauged Double Field Theory (2012) JHEP, 4, p. 020. , [] [INSPIRE]
  • Dibitetto, G., Fernandez-Melgarejo, J.J., Marques, D., Roest, D., Duality orbits of non-geometric fluxes (2012) Fortsch. Phys., 60, p. 1123. , [] [INSPIRE]
  • Geissbuhler, D., Marques, D., Núñez, C., Penas, V., Exploring Double Field Theory (2013) JHEP, 6, p. 101. , [] [INSPIRE]
  • Berman, D.S., Lee, K., Supersymmetry for Gauged Double Field Theory and Generalised Scherk-Schwarz Reductions (2014) Nucl. Phys. B, 881, p. 369. , (,), [], [INSPIRE]
  • Cho, W., Fernández-Melgarejo, J.J., Jeon, I., Park, J.-H., Supersymmetric gauged double field theory: systematic derivation by virtue of twist (2015) JHEP, 8, p. 084. , [] [INSPIRE]
  • Hassler, F., Lüst, D., Consistent Compactification of Double Field Theory on Non-geometric Flux Backgrounds (2014) JHEP, 5, p. 085. , [] [INSPIRE]
  • Blumenhagen, R., Hassler, F., Lüst, D., Double Field Theory on Group Manifolds (2015) JHEP, 2, p. 001. , [] [INSPIRE]
  • Ciceri, F., Dibitetto, G., Fernandez-Melgarejo, J.J., Guarino, A., Inverso, G., Double Field Theory at SL(2) angles (2017) JHEP, 5, p. 028. , (,), [], [INSPIRE]
  • Catal-Ozer, A., Duality Twisted Reductions of Double Field Theory of Type II Strings (2017) JHEP, 9, p. 044. , [] [INSPIRE]
  • Berman, D.S., Musaev, E.T., Thompson, D.C., Thompson, D.C., Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions (2012) JHEP, 10, p. 174. , [] [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., Extended geometry and gauged maximal supergravity (2013) JHEP, 6, p. 046. , [] [INSPIRE]
  • Musaev, E.T., Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions (2013) JHEP, 5, p. 161. , [] [INSPIRE]
  • Lee, K., Strickland-Constable, C., Waldram, D., Spheres, generalised parallelisability and consistent truncations (2017) Fortsch. Phys., 65, p. 1700048. , [] [INSPIRE]
  • Baron, W.H., Dall’Agata, G., Uplifting non-compact gauged supergravities (2015) JHEP, 2, p. 003. , [] [INSPIRE]
  • Hohm, O., Samtleben, H., Consistent Kaluza-Klein Truncations via Exceptional Field Theory (2015) JHEP, 1, p. 131. , [] [INSPIRE]
  • Lee, K., Strickland-Constable, C., Waldram, D., New Gaugings and Non-Geometry (2017) Fortsch. Phys., 65, p. 1700049. , [] [INSPIRE]
  • Malek, E., Samtleben, H., Dualising consistent IIA/ IIB truncations (2015) JHEP, 12, p. 029. , [] [INSPIRE]
  • Malek, E., Half-Maximal Supersymmetry from Exceptional Field Theory (2017) Fortsch. Phys., 65, p. 1700061. , [] [INSPIRE]
  • Inverso, G., Generalised Scherk-Schwarz reductions from gauged supergravity (2017) JHEP, 12, p. 124. , [] [INSPIRE]
  • Aldazabal, G., Mayo, M., Nuñez, C., Probing the String Winding Sector (2017) JHEP, 3, p. 096. , [] [INSPIRE]
  • Aldazabal, G., Marques, D., Núñez, C., Rosabal, J.A., On Type IIB moduli stabilization and N = 4, 8 supergravities (2011) Nucl. Phys. B, 849, p. 80. , (,), [], [INSPIRE]
  • Dibitetto, G., Guarino, A., Roest, D., How to halve maximal supergravity (2011) JHEP, 6, p. 030. , [] [INSPIRE]

Citas:

---------- APA ----------
Cagnacci, Y., Codina, T. & Marques, D. (2019) . L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity. Journal of High Energy Physics, 2019(1).
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- CHICAGO ----------
Cagnacci, Y., Codina, T., Marques, D. "L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity" . Journal of High Energy Physics 2019, no. 1 (2019).
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- MLA ----------
Cagnacci, Y., Codina, T., Marques, D. "L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity" . Journal of High Energy Physics, vol. 2019, no. 1, 2019.
http://dx.doi.org/10.1007/JHEP01(2019)117
---------- VANCOUVER ----------
Cagnacci, Y., Codina, T., Marques, D. L ∞ algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity. J. High Energy Phys. 2019;2019(1).
http://dx.doi.org/10.1007/JHEP01(2019)117