Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. © 2016 John Wiley & Sons Ltd

Registro:

Documento: Artículo
Título:Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses
Autor:Flombaum, P.; Yahdjian, L.; Sala, O.E.
Filiación:Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II piso 2, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, and Cátedra de Ecología, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires, C1417DSE, Argentina
School of Life Sciences and School of Sustainability, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
Palabras clave:biodiversity loss; climate change; ecosystem sensitivity; land-use change; nitrogen deposition; aboveground production; biodiversity; climate change; ecosystem function; ecosystem response; global change; land use change; net primary production; nitrogen cycle; Patagonia; nitrogen; biodiversity; climate; climate change; ecosystem; grassland; human; nitrogen cycle; South America; Biodiversity; Climate; Climate Change; Ecosystem; Grassland; Humans; Nitrogen; Nitrogen Cycle; South America
Año:2017
Volumen:23
Número:2
Página de inicio:503
Página de fin:511
DOI: http://dx.doi.org/10.1111/gcb.13441
Título revista:Global Change Biology
Título revista abreviado:Global Change Biol.
ISSN:13541013
CAS:nitrogen, 7727-37-9; Nitrogen
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13541013_v23_n2_p503_Flombaum

Referencias:

  • Aber, J.D., Nadelhoffer, K.J., Steudler, P., Melillo, J.M., Nitrogen saturation in northern forest ecosystems (1989) BioScience, 39, pp. 378-386
  • Adler, P.B., Milchunas, D.G., Sala, O.E., Burke, I.C., Lauenroth, W.K., Plant traits and ecosystem grazing effects: comparison of U.S. Sagebrush steppe and Patagonian steppe (2005) Ecological Applications, 15, pp. 774-792
  • Aguiar, M.R., Sala, O.E., Competition, facilitation, seed distribution and the origin of patches in a Patagonian steppe (1994) Oikos, 70, pp. 26-34
  • Aguiar, M.R., Sala, O.E., Patch structure, dynamics and implications for the functioning of arid ecosystems (1999) Trends in Ecology and Evolution, 14, pp. 273-277
  • Arnqvist, G., Wooster, D., Meta-analysis: synthesizing research findings in ecology and evolution (1995) Trends in Ecology and Evolution, 10, pp. 236-240
  • Boyero, L., Cardinale, B.J., Bastian, M., Pearson, R.G., Biotic vs. abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature (2014) PLoS ONE, 9
  • Briggs, J., Nellis, M., Turner, C., Henebry, G., Su, H., Grassland dynamics Long-term ecological research in Tallgrass Prairie (1998) A landscape perspective of patterns and processes in tallgrass prairie, pp. 265-279
  • Chesson, P., Gebauer, R.L., Schwinning, S., Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments (2004) Oecologia, 141, pp. 236-253
  • Chung, H., Zak, D.R., Reich, P.B., Ellsworth, D.S., Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function (2007) Global Change Biology, 13, pp. 980-989
  • Crain, C.M., Kroeker, K., Halpern, B.S., Interactive and cumulative effects of multiple human stressors in marine systems (2008) Ecology Letters, 11, pp. 1304-1315
  • Flombaum, P., Sala, O.E., A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments (2007) Journal of Arid Environments, 69, pp. 352-358
  • Flombaum, P., Sala, O.E., Higher effect of plant species diversity on productivity in natural than artificial ecosystems (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 6087-6090
  • Flombaum, P., Sala, O.E., Effects of plant species traits on ecosystem processes: experiments in the Patagonian steppe (2012) Ecology, 93, pp. 227-234
  • Fraser, L.H., Henry, H.A., Carlyle, C.N., Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science (2012) Frontiers in Ecology and the Environment, 11, pp. 147-155
  • Gherardi, L.A., Sala, O.E., Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity (2015) Ecology Letters, 18, pp. 1293-1300
  • Gherardi, L.A., Sala, O.E., Enhanced precipitation variability decreases grass- and increases shrub-productivity (2015) Proceedings of the National Academy of Sciences of the United States of America, 112, pp. 12735-12740
  • Golluscio, R.A., Bottaro, H.S., Oesterheld, M., Controls of carrying capacity: degradation, primary production, and forage quality effects in a Patagonian steppe (2015) Rangeland Ecology and Management, 68, pp. 266-275
  • Hartmann, D., Klein, T.A., Rusticucci, M., Observations: atmosphere and surface (2013) Climate Change 2013: The Physical Science Basis, pp. 159-254. , In, (eds, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Cambridge University Press, Cambridge
  • Hautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T., Reich, P.B., Anthropogenic environmental changes affect ecosystem stability via biodiversity (2015) Science, 348, pp. 336-340
  • Hector, A., Schmid, B., Beierkuhnlein, C., Plant diversity and productivity experiments in European grasslands (1999) Science, 286, pp. 1123-1127
  • Hedges, L.V., Gurevitch, J., Curtis, P.S., The meta-analysis of response ratios in experimental ecology (1999) Ecology, 80, pp. 1150-1156
  • Heisler-White, J.L., Blair, J.M., Kelly, E.F., Harmoney, K., Knapp, A.K., Contingent productivity responses to more extreme rainfall regimes across a grassland biome (2009) Global Change Biology, 15, pp. 2894-2904
  • Henry, G., Molau, U., Tundra plants and climate change: the International Tundra Experiment (ITEX) (1997) Global Change Biology, 3, pp. 1-9
  • Hooper, D.U., Adair, E.C., Cardinale, B.J., A global synthesis reveals biodiversity loss as a major driver of ecosystem change (2012) Nature, 486, pp. 105-108
  • Huxman, T.E., Smith, M.D., Fay, P.A., Convergence across biomes to a common rain-use efficiency (2004) Nature, 429, pp. 651-654
  • Isbell, F., Craven, D., Connolly, J., Biodiversity increases the resistance of ecosystem productivity to climate extremes (2015) Nature, 526, pp. 574-577
  • Jobbágy, E.G., Sala, O.E., Control of grass and shrub aboveground production in the Patagonian steppe (2000) Ecological Applications, 10, pp. 541-549
  • Knapp, A.K., Hoover, D.L., Wilcox, K.R., Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments (2015) Global Change Biology, 21, pp. 2624-2633
  • Milchunas, D.G., Lauenroth, W.K., Quantitative effects of grazing on vegetation and soils over a global range of environments (1993) Ecological Monographs, 63, pp. 327-366
  • Reay, D.S., Dentener, F., Smith, P., Grace, J., Feely, R.A., Global nitrogen deposition and carbon sinks (2008) Nature Geoscience, 1, pp. 430-437
  • Reich, P.B., Knops, J., Tilman, D., Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition (2001) Nature, 410, pp. 809-812
  • Reichmann, L.G., Sala, O.E., Peters, D.P., Precipitation legacies in desert grassland primary production occur through previous-year tiller density (2013) Ecology, 94, pp. 435-443
  • Reynolds, J.F., Smith, D.M.S., Lambin, E.F., (2007) Global Desertification: Building a Science for Dryland Development Science, 11, pp. 847-851
  • Roset, P.A., (2000) Efectos de la temperatura y la disponibilidad de agua sobre la producción y la descomposición en la Estepa Patagónica, , Unpublished Master University of Buenos Aires, Buenos Aires, Argentina
  • Sage, R.F., Kubien, S., The temperature response of C3 and C4 photosynthesis (2007) Plant, Cell and Environment, 30, pp. 1086-1106
  • Sala, O.E., Austin, A.T., Methods of estimating aboveground net primary productivity (2000) Methods in Ecosystem Science, pp. 31-43. , In, (eds, Sala OE, Jackson RB, Mooney HA, Howarth RW, Springer-Verlag, New York, Berlin, Heidelberg
  • Sala, O.E., Golluscio, R.A., Lauenroth, W.K., Soriano, A., Resource partitioning between shrubs and grasses in the Patagonian steppe (1989) Oecologia, 81, pp. 501-505
  • Sala, O.E., Chapin, F.S., Armesto, J.J., Global biodiversity scenarios for the year 2100 (2000) Science, 287, pp. 1770-1774
  • Sala, O.E., Gherardi, L.A., Reichmann, L., Jobbágy, E., Peters, D., Legacies of precipitation fluctuations on primary production: theory and data synthesis (2012) Philosophical Transactions of the Royal Society B: Biological Sciences, 367, pp. 3135-3144
  • Sala, O.E., Gherardi, L., Peters, D.P.C., Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions (2015) Climatic Change, 131, pp. 213-227
  • Scheffer, M., Barrett, S., Carpenter, S., Creating a safe operating space for iconic ecosystems (2015) Science, 347, pp. 1317-1319
  • Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., Sensitivity of global terrestrial ecosystems to climate variability (2016) Nature, 531, pp. 229-232
  • Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A., Field, C.B., Grassland responses to global environmental changes suppressed by elevated CO2 (2002) Science, 298, pp. 1987-1990
  • Steffen, W., Richardson, K., Rockström, J., Planetary boundaries: guiding human development on a changing planet (2015) Science, 347, p. 1259855
  • Tilman, D., Wedin, D., Knops, J., Productivity and sustainability influenced by biodiversity in grassland ecosystems (1996) Nature, 379, pp. 718-720
  • Tilman, D., Lehman, C., Thomson, K., Plant diversity and ecosystem productivity: theoretical considerations (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 1857-1861
  • Tilman, D., Reich, P.B., Isbell, F., Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 10394-10397
  • Wilsey, B.J., Teaschner, T.B., Daneshgar, P.P., Isbell, F.I., Polley, H.W., Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities (2009) Ecology Letters, 12, pp. 432-442
  • Wu, Z., Dijkstra, P., Koch, G.W., Peñuelas, J., Hungate, B.A., Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation (2011) Global Change Biology, 17, pp. 927-942
  • Yahdjian, L., Sala, O.E., A rainout shelter design for intercepting different amounts of rainfall (2002) Oecologia, 133, pp. 95-101
  • Yahdjian, L., Sala, O.E., Vegetation structure constrains primary production response to water availability in the Patagonian steppe (2006) Ecology, 87, pp. 952-962
  • Yahdjian, L.M., Sala, O.E., Austin, A.T., Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe (2006) Ecosystems, 9, pp. 128-141
  • Yahdjian, L., Gherardi, L., Sala, O.E., Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies (2011) Journal of Arid Environments, 75, pp. 675-680
  • Yahdjian, L., Gherardi, L., Sala, O.E., Grasses have larger response than shrubs to increased nitrogen availability: a fertilization experiment in the Patagonian steppe (2014) Journal of Arid Environments, 102, pp. 17-20

Citas:

---------- APA ----------
Flombaum, P., Yahdjian, L. & Sala, O.E. (2017) . Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses. Global Change Biology, 23(2), 503-511.
http://dx.doi.org/10.1111/gcb.13441
---------- CHICAGO ----------
Flombaum, P., Yahdjian, L., Sala, O.E. "Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses" . Global Change Biology 23, no. 2 (2017) : 503-511.
http://dx.doi.org/10.1111/gcb.13441
---------- MLA ----------
Flombaum, P., Yahdjian, L., Sala, O.E. "Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses" . Global Change Biology, vol. 23, no. 2, 2017, pp. 503-511.
http://dx.doi.org/10.1111/gcb.13441
---------- VANCOUVER ----------
Flombaum, P., Yahdjian, L., Sala, O.E. Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses. Global Change Biol. 2017;23(2):503-511.
http://dx.doi.org/10.1111/gcb.13441