Artículo

Mozhzhukhina, N.; Marchini, F.; Torres, W.R.; Tesio, A.Y.; Mendez De Leo, L.P.; Williams, F.J.; Calvo, E.J. "Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution" (2017) Electrochemistry Communications. 80:16-19
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

DMSO has been widely investigated as a potential electrolyte for the Li-air battery systems, however its stability has been a topic of debate in the research community. In this communication we have identified the side reaction products during the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on Au in dimethyl sulfoxide-based electrolyte for Li-air battery by a combination of in-situ analytical tools: EQCM, SNIFTIRS, DEMS and XPS, in particular the evolution of CO2 from the solvent decomposition. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution
Autor:Mozhzhukhina, N.; Marchini, F.; Torres, W.R.; Tesio, A.Y.; Mendez De Leo, L.P.; Williams, F.J.; Calvo, E.J.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:Air; Battery; CO2; DMSO; Lithium; Oxygen; Air; Carbon; Carbon dioxide; Dimethyl sulfoxide; Electric batteries; Electrolytes; Electrolytic reduction; Lithium; Organic solvents; Oxygen; Battery; Carbon dioxide evolution; DMSO; Li-air batteries; Oxygen evolution reaction; Oxygen reduction reaction; Research communities; Solvent decompositions; Lithium batteries
Año:2017
Volumen:80
Página de inicio:16
Página de fin:19
DOI: http://dx.doi.org/10.1016/j.elecom.2017.05.004
Título revista:Electrochemistry Communications
Título revista abreviado:Electrochem. Commun.
ISSN:13882481
CODEN:ECCMF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13882481_v80_n_p16_Mozhzhukhina

Referencias:

  • Aurbach, D., McCloskey, B.D., Nazar, L.F., Bruce, P.G., Advances in understanding mechanisms underpinning lithium–air batteries (2016) Nat. Energy, 1, p. 16128
  • Amine, K., Kanno, R., Tzeng, Y., Rechargeable lithium batteries and beyond: progress, challenges, and future directions (2014) MRS Bull., 39 (5), pp. 395-401
  • Grande, L., Paillard, E., Hassoun, J., Park, J.B., Lee, Y.J., Sun, Y.K., Passerini, S., Scrosati, B., The lithium/air battery: still an emerging system or a practical reality? (2015) Adv. Mater., 27 (5), pp. 784-800
  • Luntz, A.C., McCloskey, B.D., Nonaqueous Li-air batteries: a status report (2014) Chem. Rev., 114 (23), pp. 11721-11750
  • McCloskey, B.D., Burke, C.M., Nichols, J.E., Renfrew, S.E., Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities (2015) Chem. Commun., 51 (64), pp. 12701-12715
  • Trahan, M.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte (2012) J. Electrochem. Soc., 160 (2), pp. A259-A267
  • Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., A reversible and higher-rate Li-O2 battery (2012) Science, 337 (6094), pp. 563-566
  • Xu, W., Hu, J., Engelhard, M.H., Towne, S.A., Hardy, J.S., Xiao, J., Feng, J., Zhang, J.-G., The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries (2012) J. Power Sources, 215, pp. 240-247
  • Schroeder, M.A., Kumar, N., Pearse, A.J., Liu, C., Lee, S.B., Rubloff, G.W., Leung, K., Noked, M., DMSO-Li2O2 interface in the rechargeable Li-O2 battery cathode: theoretical and experimental perspectives on stability (2015) ACS Appl. Mater. Interfaces, 7 (21), pp. 11402-11411
  • Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J., Calvo, E.J., Surface study of lithium-air battery oxygen cathodes in different solvent-electrolyte pairs (2015) Langmuir, 31 (33), pp. 9236-9245
  • Marchini, F., Herrera, S.E., Calvo, E.J., Williams, F.J., Surface studies of lithium–oxygen redox reactions over HOPG (2016) Surf. Sci., 646, pp. 154-159
  • Younesi, R., Norby, P., Vegge, T., A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O2 batteries (2014) ECS Electrochem. Lett., 3 (3), pp. A15-A18
  • Kwabi, D.G., Batcho, T.P., Amanchukwu, C.V., Ortiz-Vitoriano, N., Hammond, P., Thompson, C.V., Shao-Horn, Y., Chemical instability of dimethyl sulfoxide in lithium-air batteries (2014) J. Phys. Chem. Lett., 5 (16), pp. 2850-2856
  • Sharon, D., Afri, M., Noked, M., Garsuch, A., Frimer, A.A., Aurbach, D., Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen (2013) J. Phys. Chem. Lett., 4 (18), pp. 3115-3119
  • Mozhzhukhina, N., Méndez De Leo, L.P., Calvo, E.J., Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery (2013) J. Phys. Chem. C, 117 (36), pp. 18375-18380
  • Calvo, E.J., Mozhzhukhina, N., A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing non aqueous electrolyte (2013) Electrochem. Commun., 31, pp. 56-58
  • Torres, W., Mozhzhukhina, N., Tesio, A.Y., Calvo, E.J., A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing dimethyl sulfoxide electrolyte: role of superoxide (2014) J. Electrochem. Soc., 161 (14), pp. A2204-A2209
  • Mozhzhukhina, N., Tesio, A.Y., De Leo, L.P.M., Calvo, E.J., In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery (2017) J. Electrochem. Soc., 164 (2), pp. A518-A523
  • De Leo, L.P.M., De La Llave, E., Scherlis, D., Williams, F.J., Molecular and electronic structure of electroactive self-assembled monolayers (2013) J. Chem. Phys., 138 (11)

Citas:

---------- APA ----------
Mozhzhukhina, N., Marchini, F., Torres, W.R., Tesio, A.Y., Mendez De Leo, L.P., Williams, F.J. & Calvo, E.J. (2017) . Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution. Electrochemistry Communications, 80, 16-19.
http://dx.doi.org/10.1016/j.elecom.2017.05.004
---------- CHICAGO ----------
Mozhzhukhina, N., Marchini, F., Torres, W.R., Tesio, A.Y., Mendez De Leo, L.P., Williams, F.J., et al. "Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution" . Electrochemistry Communications 80 (2017) : 16-19.
http://dx.doi.org/10.1016/j.elecom.2017.05.004
---------- MLA ----------
Mozhzhukhina, N., Marchini, F., Torres, W.R., Tesio, A.Y., Mendez De Leo, L.P., Williams, F.J., et al. "Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution" . Electrochemistry Communications, vol. 80, 2017, pp. 16-19.
http://dx.doi.org/10.1016/j.elecom.2017.05.004
---------- VANCOUVER ----------
Mozhzhukhina, N., Marchini, F., Torres, W.R., Tesio, A.Y., Mendez De Leo, L.P., Williams, F.J., et al. Insights into dimethyl sulfoxide decomposition in Li-O2 battery: Understanding carbon dioxide evolution. Electrochem. Commun. 2017;80:16-19.
http://dx.doi.org/10.1016/j.elecom.2017.05.004