Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates-Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship. © 2017 by the authors; licensee MDPI, Basel, Switzerland.

Registro:

Documento: Artículo
Título:Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites
Autor:Galaka, T.; Casal, M.F.; Storey, M.; Li, C.; Chao, M.N.; Szajnman, S.H.; Docampo, R.; Moreno, S.N.J.; Rodriguez, J.B.
Filiación:Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, United States
Palabras clave:Antiparasitic agents; Bisphosphonates; Chagas disease; Farnesyl diphosphate synthase; Toxoplasma gondii; Toxoplasmosis; Trypanosoma cruzi; antiprotozoal agent; bisphosphonic acid derivative; enzyme inhibitor; geranyltransferase; protozoal protein; animal; antagonists and inhibitors; Chlorocebus aethiops; drug effects; drug sensitivity; enzyme assay; enzymology; gene expression; genetics; growth, development and aging; halogenation; human; metabolism; structure activity relation; synthesis; Toxoplasma; Trypanosoma cruzi; Vero cell line; Animals; Antiprotozoal Agents; Cercopithecus aethiops; Diphosphonates; Enzyme Assays; Enzyme Inhibitors; Gene Expression; Geranyltranstransferase; Halogenation; Humans; Parasitic Sensitivity Tests; Protozoan Proteins; Structure-Activity Relationship; Toxoplasma; Trypanosoma cruzi; Vero Cells
Año:2017
Volumen:22
Número:1
DOI: http://dx.doi.org/10.3390/molecules22010082
Título revista:Molecules
Título revista abreviado:Molecules
ISSN:14203049
CODEN:MOLEF
CAS:geranyltransferase, 37277-79-5, 50812-36-7; Antiprotozoal Agents; Diphosphonates; Enzyme Inhibitors; Geranyltranstransferase; Protozoan Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14203049_v22_n1_p_Galaka

Referencias:

  • Urbina, J.A., Specific chemotherapy of chagas disease: Relevance, current limitations and new approaches (2010) Acta Trop., 115, pp. 55-68. , [CrossRef] [PubMed]
  • Urbina, J.A., New insights in chagas disease treatment (2010) Drugs Future, 35, pp. 409-420. , [CrossRef]
  • Docampo, R., Moreno, S., Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites (2001) Curr. Drug Targets Infect. Disord., 1, pp. 51-61. , [CrossRef] [PubMed]
  • Eberl, M., Hintz, M., Reichenberg, A., Kollas, A.-K., Wiesner, J., Jomaa, H., Microbial isoprenoid biosynthesis and human γδ T cell activation (2003) FEBS Lett., 544, pp. 4-10. , [CrossRef]
  • Moreno, S.N.J., Li, Z., Targeting the isoprenoid pathway of toxoplasma gondii (2008) Expert Opin. Ther. Targets, 12, pp. 253-264. , [CrossRef] [PubMed]
  • Nair, S.C., Brooks, C.F., Goodman, C.D., Strurm, A., McFadden, G.I., Sundriyal, S., Anglin, J.L., Striepen, B., Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in toxoplasma gondii (2011) J. Exp. Med., 208, pp. 1547-1559. , [CrossRef] [PubMed]
  • Ling, Y., Li, Z.H., Miranda, K., Oldfield, E., Moreno, S.N.J., The farnesyl-diphosphate/ geranylgeranyl-diphosphate synthase of toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates (2007) J. Biol. Chem., 282, pp. 30804-30816. , [CrossRef] [PubMed]
  • Li, Z.H., Cintrón, R., Koon, N.A., Moreno, S.N.J., The n-terminus and the chain-length determination domain play a role in the length of the isoprenoid product of the bifunctional toxoplasma gondii farnesyl diphosphate synthase (2012) Biochemistry, 51, pp. 7533-7540. , [CrossRef] [PubMed]
  • Li, Z.H., Ramakrishnan, S., Striepen, B., Moreno, S.N.J., Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin (2013) PLoS Pathog., 9. , [CrossRef] [PubMed]
  • Rodriguez, J.B., Szajnman, S.H., New antibacterials for the treatment of toxoplasmosis; A patent review (2012) Expert Opin. Ther. Pat., 22, pp. 311-333. , [CrossRef] [PubMed]
  • Rodan, G.A., Machanisms of action of bisphosphonates (1998) Annu. Rev. Pharmacol. Toxicol., 38, pp. 375-388. , [CrossRef] [PubMed]
  • Russell, R.G.G., Bisphosphonates: The first 40 years (2011) Bone, 49, pp. 2-19. , [CrossRef] [PubMed]
  • Reddy, R., Dietrich, E., Lafontaine, Y., Houghton, T.J., Belanger, O., Dubois, A., Arhin, F.F., Laquerre, K., Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis (2008) ChemMedChem, 3, pp. 1863-1868. , [CrossRef] [PubMed]
  • Miller, K., Erez, R., Segal, E., Shabat, D., Satchi-Fainaro, R., Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate (2009) Angew. Chem. Int. Ed., 48, pp. 2949-2954. , [CrossRef] [PubMed]
  • Zhang, Y., Cao, R., Yin, F., Hudock, M.P., Guo, R.T., Krysiak, K., Mukherjee, S., Song, Y., Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: An x-ray and nmr investigation (2009) J. Am. Chem. Soc., 131, pp. 5153-5162. , [CrossRef] [PubMed]
  • Roth, A.G., Drescher, D., Yang, Y., Redmer, S., Uhlig, S., Arenz, C., Potent and selective inhibition of acid sphingomyelinase by bisphosphonates (2009) Angew. Chem. Int. Ed., 48, pp. 7560-7563. , [CrossRef] [PubMed]
  • Sanders, J.M., Ghosh, S., Chan, J.M.W., Meints, G., Wang, H., Raker, A.M., Song, Y., Kafarski, P., Quantitative structure-activity relationships for γδ T cell activation by bisphosphonates (2004) J. Med. Chem., 47, pp. 375-384. , [CrossRef] [PubMed]
  • Liñares, G.E.G., Ravaschino, E.L., Rodriguez, J.B., Progresses in the field of drug design to combat tropical protozoan parasitic diseases (2006) Curr. Med. Chem., 13, pp. 335-360. , [CrossRef] [PubMed]
  • Urbina, J.A., Moreno, B., Vierkotter, S., Oldfield, E., Payares, G., Sanoja, C., Bailey, B.N., Moreno, S.N.J., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) J. Biol. Chem., 274, pp. 33609-33615. , [CrossRef] [PubMed]
  • Martin, M.B., Grimley, J.S., Lewis, J.C., Heath, H.T., Bailey, B.N., Kendrick, H., Yardley, V., Urbina, J.A., Bisphosphonates inhibit the growth of trypanosoma brucei, trypanosoma cruzi, leishmania donovani, toxoplasma gondii, and plasmodium falciparum: A potential route to chemotherapy (2001) J. Med. Chem., 44, pp. 909-916. , [CrossRef] [PubMed]
  • Martin, M.B., Sanders, J.M., Kendrick, H., De Luca-Fradley, K., Lewis, J.C., Grimley, J.S., Van Brussel, E.M., Burzynska, A., Activity of bisphosphonates against trypanosoma brucei rhodesiense (2002) J. Med. Chem., 45, pp. 2904-2914. , [CrossRef] [PubMed]
  • Yardley, V., Khan, A.A., Martin, M.B., Slifer, T.R., Araujo, F.G., Moreno, S.N.J., Docampo, R., Oldfield, E., In vivo activities of farnesyl pyrophosphate synthase inhibitors against leishmania donovani and toxoplasma gondii (2002) Antimicrob. Agents Chemother., 46, pp. 929-931. , [CrossRef] [PubMed]
  • Garzoni, L.R., Waghabi, M.C., Baptista, M.M., De Castro, S.L., Meirelles, M.D.N.L., Britto, C.C., Docampo, R., Urbina, J.A., Antiparasitic activity of risedronate in a murine model of acute chagas' disease (2004) Int. J. Antimicrob. Agents, 23, pp. 286-290. , [CrossRef] [PubMed]
  • Bouzahzah, B., Jelicks, L.A., Morris, S.A., Weiss, L.M., Tanowitz, H.B., Risedronate in the treatment of murine chagas' disease (2005) Parasitol. Res., 96, pp. 184-187. , [CrossRef] [PubMed]
  • Luckman, S.P., Hughes, D.E., Coxon, F.P., Graham, R., Russell, G., Rogers, M.J., Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of gtp-binding proteins, including ras (1998) J. Bone Miner. Res., 13, pp. 581-589. , [CrossRef] [PubMed]
  • Sun, S.T., McKenna, C.E., Farnesyl pyrophosphate synthase modulators: A patent review (2006-2010) (2011) Expert Opin. Ther. Pat., 21, pp. 1433-1451. , [CrossRef] [PubMed]
  • Docampo, R., Moreno, S.N.J., Acidocalcisomes (2011) Cell Calcium, 50, pp. 113-119. , [CrossRef] [PubMed]
  • Docampo, R., De Souza, W., Miranda, K., Rohloff, P., Moreno, S.N.J., Acidocalcisomes - Conserved from bacteria to man (2005) Nat. Rev. Microbiol., 3, pp. 251-261. , [CrossRef] [PubMed]
  • Szajnman, S.H., Bailey, B.N., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent growth inhibitors of trypanosoma cruzi (2001) Bioorg. Med. Chem. Lett., 11, pp. 789-792. , [CrossRef]
  • Szajnman, S.H., Montalvetti, A., Wang, Y., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent inhibitors of trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg. Med. Chem. Lett., 13, pp. 3231-3235. , [CrossRef]
  • Szajnman, S.H., Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorg. Med. Chem. Lett., 15, pp. 4685-4690. , [CrossRef] [PubMed]
  • Ling, Y., Sahota, G., Odeh, S., Chan, J.M.W., Araujo, F.G., Moreno, S.N.J., Oldfield, E., Bisphosphonate inhibitors of toxoplasma gondii growth: In vitro, qsar, and in vivo investigations (2005) J. Med. Chem., 48, pp. 3130-3140. , [CrossRef] [PubMed]
  • Szajnman, S.H., Rosso, V.S., Malayil, L., Smith, A., Moreno, S.N.J., Docampo, R., Rodriguez, J.B., 1-(fluoroalkylidene)-1,1-bisphosphonic acids are potent and selective inhibitors of the enzymatic activity of toxoplasma gondii farnesyl pyrophosphate synthase (2012) Org. Biomol. Chem., 10, pp. 1424-1433. , [CrossRef] [PubMed]
  • Szajnman, S.H., García Liñares, G.E., Li, Z.H., Jiang, C., Galizzi, M., Bontempi, E.J., Ferella, M., Rodriguez, J.B., Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against trypanosoma cruzi and toxoplasma gondii targeting farnesyl diphosphate synthase (2008) Bioorg. Med. Chem., 16, pp. 3283-3290. , [CrossRef] [PubMed]
  • Rosso, V.S., Szajnman, S.H., Malayil, L., Galizzi, M., Moreno, S.N.J., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against trypanosoma cruzi and toxoplasma gondii targeting farnesyl diphosphate synthase (2011) Bioorg. Med. Chem., 19, pp. 2211-2217. , [CrossRef] [PubMed]
  • Cinque, G.M., Szajnman, S.H., Zhong, L., Docampo, R., Schvartzapel, A.J., Rodriguez, J.B., Gros, E.G., Structure-activity relationship of new growth inhibitors of trypanosoma cruzi (1998) J. Med. Chem., 41, pp. 1540-1554. , [CrossRef] [PubMed]
  • Ferrer-Casal, M., Li, C., Galizzi, M., Stortz, C.A., Szajnman, S.H., Docampo, R., Moreno, S.N.J., Rodriguez, J.B., New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase (2014) Bioorg. Med. Chem., 22, pp. 398-405. , [CrossRef] [PubMed]
  • Recher, M., Barboza, A.P., Li, Z.-H., Galizzi, M., Ferrer-Casal, M., Szajnman, S.H., Docampo, R., Rodriguez, J.B., Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents (2013) Eur. J. Med. Chem., 60, pp. 431-440. , [CrossRef] [PubMed]
  • Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B., Amzel, L.M., Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase (2012) J. Med. Chem., 55, pp. 6445-6454. , [CrossRef] [PubMed]
  • Hosfield, D.J., Zhang, Y., Dougan, D.R., Broun, A., Tari, L.W., Swanson, R.V., Finn, J., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis (2004) J. Biol. Chem., 279, pp. 8526-8529. , [CrossRef] [PubMed]
  • Huang, C.-H., Gabelli, S.B., Oldfield, E., Amzel, L.M., Binding of nitrogen-containing bisphosphonates (n-bps) to the trypanosoma cruzi farnesyl diphosphate synthase homodimer (2010) Proteins, 78, pp. 888-899. , [CrossRef] [PubMed]
  • Cao, R., Chen, C.K.M., Guo, R.T., Wang, A.H.J., Oldfield, E., Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases (2008) Proteins Struct. Funct. Genet., 73, pp. 431-439. , [CrossRef] [PubMed]
  • Rodriguez, J.B., Tetraethyl vinylidenebisphosphonate: A versatile synthon for the preparation of bisphosphonates (2014) Synthesis, 46, pp. 1129-1142. , [CrossRef]
  • Mckenna, C.E., Higa, M.T., Cheung, N.H., Mckenna, M., The facile dealkylation of phosphonic acid dialkyl esters by bromotrimethylsilane (1977) Tetrahedron Lett., 18, pp. 155-158. , [CrossRef]
  • McKenna, C.E., Schmidhuser, J., Functional selectivity in phosphonate ester dealkylation with bromotrimethylsilane (1979) J. Chem. Soc. Chem. Commun., , [CrossRef]
  • Mori, K., Ueda, H., Synthesis of the optically active forms of 2,6-dimethyl-1,5-heptadien-3-ol acetate, the pheromone of the comstock mealybug (1981) Tetrahedron, 37, pp. 2581-2583. , [CrossRef]
  • Wicek, M., Kottke, T., Ligneau, X., Schunack, W., Seifert, R., Stark, H., Handzlik, J., Kiéc-Kononowicz, K., N-Alkenyl and cycloalkyl carbamates as dual acting histamine H3 and H4 receptor ligands (2011) Bioorg. Med. Chem., 19, pp. 2850-2858. , [CrossRef] [PubMed]
  • Wiemer, A.J., Yu, J.S., Lamb, K.M., Hohl, R.J., Wiemer, D.F., Mono-and dialkyl isoprenoid bisphosphonates as geranylgeranyl diphosphate synthase inhibitors (2008) Bioorg. Med. Chem., 16, pp. 390-399. , [CrossRef] [PubMed]
  • Duncan, G.D., Li, Z., Khare, A.B., Mckenna, C.E., Oxiranylidene-2,2-bis(phosphonate): Unambiguous Synthesis, Hydrolysis to 1,2-Dihydroxyethylidene-1,1-bis(phosphonate), and Identification as the Primary Product from Mild Na2WO4/H2O2 Oxidation of Ethenylidene-1,1-bis(phosphonate) (1995) J. Org. Chem., 60, pp. 7080-7081. , [CrossRef]
  • Shevchuk, M.V., Sotiropoulos, J.M., Miqueu, K., Romanenko, V.D., Kukhar, V.P., Tetrakis(trimethylsilyl) Ethenylidene-1,1-bisphosphonate: A Mild and Convenient Michael Acceptor for the Synthesis of 2-Aminoethylidene-1,1-bisphosphonic Acids and Their Potassium Salts (2011) Synlett, 2, pp. 1370-1374
  • Uehara, K., Tomooka, K., Planar chiral organosulfur cycles (2009) Chem. Lett., 38, pp. 1028-1029. , [CrossRef]
  • Lal, G.S., Pez, G.P., Syvret, R.G., Electrophilic NF fluorinating agents (1996) Chem. Rev., 96, pp. 1737-1756. , [CrossRef] [PubMed]
  • Xu, Y., Qian, L., Prestwich, G.D., Synthesis of alpha-fluorinated phosphonates from alpha-fluorovinylphosphonates: A new route to analogues of lysophosphatidic acid (2003) Org. Lett., 5, pp. 2267-2270. , [CrossRef] [PubMed]
  • Beier, P., Opekar, S., Zibinsky, M., Bychinskaya, I., Prakash, G.K.S., A new route to α-alkyl-α-fluoromethylenebisphosphonates (2011) Org. Biomol. Chem., 9, pp. 4035-4038. , [CrossRef] [PubMed]
  • Marma, M.S., Xia, Z., Stewart, C., Coxon, F., Dunford, J.E., Baron, R., Kashemirov, B.A., Russell, R.G.G., Synthesis and biological evaluation of alpha-halogenated bisphosphonate and phosphonocarboxylate analogues of risedronate (2007) J. Med. Chem., 50, pp. 5967-5975. , [CrossRef] [PubMed]

Citas:

---------- APA ----------
Galaka, T., Casal, M.F., Storey, M., Li, C., Chao, M.N., Szajnman, S.H., Docampo, R.,..., Rodriguez, J.B. (2017) . Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites. Molecules, 22(1).
http://dx.doi.org/10.3390/molecules22010082
---------- CHICAGO ----------
Galaka, T., Casal, M.F., Storey, M., Li, C., Chao, M.N., Szajnman, S.H., et al. "Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites" . Molecules 22, no. 1 (2017).
http://dx.doi.org/10.3390/molecules22010082
---------- MLA ----------
Galaka, T., Casal, M.F., Storey, M., Li, C., Chao, M.N., Szajnman, S.H., et al. "Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites" . Molecules, vol. 22, no. 1, 2017.
http://dx.doi.org/10.3390/molecules22010082
---------- VANCOUVER ----------
Galaka, T., Casal, M.F., Storey, M., Li, C., Chao, M.N., Szajnman, S.H., et al. Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites. Molecules. 2017;22(1).
http://dx.doi.org/10.3390/molecules22010082