Artículo

Colonnella, M.A.; Lizarraga, L.; Rossi, L.; Díaz Peña, R.; Egoburo, D.; López, N.I.; Iustman, L.J.R. "Effect of copper on diesel degradation in Pseudomonas extremaustralis" (2019) Extremophiles. 23(1):91-99
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Environments co-contaminated with heavy metals and hydrocarbons have become an important problem worldwide, especially due to the effect of metals on hydrocarbon degrading microorganisms. Pseudomonas extremaustralis, a bacterium isolated from a pristine pond in Antarctica, showed high capabilities to cope with environmental stress and a very versatile metabolism that includes alkane degradation under microaerobic conditions. In this work, we analyzed P. extremaustralis’ capability to resist high copper concentrations and the effect of copper presence in diesel biodegradation. We observed that P. extremaustralis resisted up to 4 mM CuSO 4 in a rich medium such as LB. This copper resistance is sustained by the presence of the cus and cop operons together with other efflux systems and porins located in a single region in P. extremaustralis genome. When copper was present, diesel degradation was negatively affected, even though copper enhanced bacterial attachment to hydrocarbons. However, when a small amount of glucose (0.05% w/v) was added, the presence of CuSO 4 enhanced alkane degradation. In addition, atomic force microscopy analysis showed that the presence of glucose decreased the negative effects produced by copper and diesel on the cell envelopes. © 2018, Springer Japan KK, part of Springer Nature.

Registro:

Documento: Artículo
Título:Effect of copper on diesel degradation in Pseudomonas extremaustralis
Autor:Colonnella, M.A.; Lizarraga, L.; Rossi, L.; Díaz Peña, R.; Egoburo, D.; López, N.I.; Iustman, L.J.R.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Buenos Aires, C1428EGA, Argentina
IQUIBICEN, CONICET, Buenos Aires, Argentina
CIBION, CONICET, Buenos Aires, Argentina
Palabras clave:AFM; Copper resistance; Diesel degradation; P. extremaustralis
Año:2019
Volumen:23
Número:1
Página de inicio:91
Página de fin:99
DOI: http://dx.doi.org/10.1007/s00792-018-1063-2
Título revista:Extremophiles
Título revista abreviado:Extremophiles
ISSN:14310651
CODEN:EXTRF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14310651_v23_n1_p91_Colonnella

Referencias:

  • Agnello, A.C., Bagard, M., van Hullebusch, E.D., Esposito, G., Huguenot, D., Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation (2016) Sci Total Environ, 563, pp. 693-703
  • Arnoldi, M., Fritz, M., Bäuerlein, E., Radmacher, M., Sackmann, E., Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy (2000) Phys Rev E, 62, pp. 1034-1044
  • Ayub, N.D., Pettinari, M.J., Ruiz, J.A., López, N.I., A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance (2004) Curr Microbiol, 49, pp. 170-174
  • Bai, W., Zhao, K., Asami, K., Effects of copper on dielectric properties of E. coli cells (2007) Coll Surf B Biointerfaces, 58, pp. 105-115
  • Basu, A., Apte, S.K., Phale, P.S., Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86 (2006) Appl Environ Microbiol, 72 (3), pp. 2226-2230
  • Basu, A., Das, D., Bapat, P., Wangikar, P.P., Phale, P.S., Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements (2009) Microbiol Res, 164, pp. 429-437
  • Bender, C., Cooksey, D., Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance (1986) J Bacteriol, 165, pp. 534-541
  • Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I., Tribelli, P.M., Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis (2018) PLoS One, 13 (2)
  • Bondarczuk, K., Piotrowska-Seget, Z., Molecular basis of active copper resistance mechanisms in Gram-negative bacteria (2013) Cell Biol Toxicol, 29, pp. 397-405
  • Chayabutra, C., Ju, L.K., Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions (2000) Appl Environ Microbiol, 66, pp. 493-498
  • Considine, R.F., Drummond, C.J., Dixon, D.R., Force of interaction between a biocolloid and an inorganic oxide: complexity of surface deformation, roughness and brushlike behavior (2001) Langmuir, 17, pp. 6325-6335
  • Cooksey, D.A., Copper uptake and resistance in bacteria (1993) Mol Microbiol, 7, pp. 1-5
  • Dong, Z.Y., Huang, W.H., Xing, D.F., Zhang, H.F., Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation (2013) J Hazard Mater, 260, pp. 399-408
  • Flemming, C.A., Trevors, J.T., Copper toxicity and chemistry in the environment: a review (1989) Water Air Soil Pollut, 44, pp. 143-158
  • Francius, G., Polyakov, P., Merlin, J., Abe, Y., Ghigo, J.M., Merlin, C., Beloin, C., Duval, J.F.L., Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress (2011) PLoS One
  • Gaboriaud, F., Gee, M.L., Strugnell, R., Duval, F.L., Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media (2008) Langmuir, 24, pp. 10988-10995
  • Kaczorek, E., Sałek, K., Guzik, U., Jesionowski, T., Cybulski, Z., Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri (2013) Chemosphere, 90, pp. 471-478
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B., Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932
  • Lee, S.M., Grass, G., Rensing, C., Barrett, S.R., Yates, C.J.D., Stoyanov, J.V., Brown, N.L., The Pco proteins are involved in periplasmic copper handling in Escherichia coli (2002) Biochem Biophys Res Commun, 295, pp. 616-620
  • Li, X., Wang, X., Wan, L., Zhang, Y., Li, N., Li, D., Zhou, Q., Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells (2016) J Chem Technol Biotechnol, 91, pp. 267-275
  • Lim, C.K., Cooksey, D.A., Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae (1993) J Bacteriol, 175, pp. 4492-4498
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel, A., Méndez, B.S., Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519
  • Luo, H., Liu, G., Zhang, R., Jin, S., Phenol degradation in microbial fuel cells (2009) Chem Eng J, 147, pp. 259-264
  • Montenegro, I.P.F.M., Mucha, A.P., Reis, I., Rodrigues, P., Almeida, C.M.R., Copper effect in petroleum hydrocarbons biodegradation by microorganisms associated to Juncus maritimus: role of autochthonous bioaugmentation (2017) Int J Environ Sci Technol, 14, pp. 943-955
  • Mykytczuk, N.C.S., Trevors, J.T., Ferroni, G.D., Leduc, L.G., Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans (2011) Microbiol Res, 166, pp. 186-206
  • Nakajima, M., Goto, M., Hibi, T., Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato (2002) J Gen Plant Pathol, 68, pp. 68-74
  • Nečas, D., Klapetek, P., Gwyddion: an open-source software for SPM data analysis (2012) Cent Eur J Phys, 10, pp. 181-188
  • Norman, R.S., Frontera-suau, R., Pamela, J., Morris, P.J., Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation (2002) Appl Environ Microbiol, 68, pp. 5096-5103
  • Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P.E., Johansen, A., Brandt, K.K., Priemé, A., Sørensen, S.J., Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure (2016) FEMS Microbiol Ecol, 92, p. fiw175
  • Obuekwe, C.O., Al-Jadi, Z.K., Al-Saleh, E.S., Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment (2009) Int Biodeterior Biodegrad, 63, pp. 273-279
  • Ohki, S., Arnold, K., Surface dielectric constant, surface hydrophobicity and membrane fusion (1990) J Membr Biol, 114, pp. 195-203
  • Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crécy-Lagard, V., Vonstein, V., The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes (2005) Nucleic Acids Res, 33, pp. 5691-5702
  • Radmacher, M., Fritz, M., Hansma, P.K., Imaging soft samples with the atomic force microscope: gelatin in water and propanol (1995) Biophys J, 69, pp. 264-270
  • Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I., Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance (2015) Extremophiles, 19, pp. 207-220
  • Ramadass, K., Megharaj, M., Venkateswarlu, K., Naidu, R., Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes (2016) Int J Environ Sci Technol, 13, pp. 2863-2874
  • Rojo, F., Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment (2010) FEMS Microbiol Rev, 34, pp. 658-684
  • Rosenberg, M., Gutnick, D., Rosenberg, E., Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity (1980) FEMS Microbiol Lett, 9, pp. 29-33
  • Sandrin, T.R., Hoffman, D.R., Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation (2007) Environmental bioremediation technologies, pp. 1-34. , Singh SN, Tripathi RD, (eds), Springer, Heidelberg
  • Sani, R.K., Peyton, B.M., Brown, L.T., Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead (2001) Appl Environ Microbiol, 67, pp. 4765-4772
  • Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651
  • Tribelli, P.M., Raiger Iustman, L.J., Catone, M.V., Di Martino, C., Revale, S., Méndez, B.S., López, N.I., Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant antarctic bacterium (2012) J Bacteriol, 194, pp. 2381-2382
  • Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Raiger Iustman, L.J., Molin, S., López, N.I., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis (2015) PLoS One
  • Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J., López, N.I., Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach (2017) J Ind Microbiol Biotechnol
  • Van Liedekerke, M., Prokop, G., Rabl-berger, S., Kibblewhite, M., Progress in the management of contaminated sites in Europe (2014) JRC Ref Rep
  • Vullo, D.L., Ceretti, H.M., Daniel, M.A., Ramírez, S.A.M., Zalts, A., Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E (2008) Bioresour Technol, 99, pp. 5574-5581
  • Wang, H., Wilksch, J.J., Lithgow, T., Strugnell, R.A., Gee, M.L., Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress (2013) Soft Matter, 9, pp. 7560-7567
  • Wang, H., Wilksch, J.J., Strugnell, R.A., Gee, M.L., Role of capsular polysaccharides in biofilm formation: an AFM nanomechanics study (2015) ACS Appl Mater Interfaces, 7, pp. 13007-13013

Citas:

---------- APA ----------
Colonnella, M.A., Lizarraga, L., Rossi, L., Díaz Peña, R., Egoburo, D., López, N.I. & Iustman, L.J.R. (2019) . Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles, 23(1), 91-99.
http://dx.doi.org/10.1007/s00792-018-1063-2
---------- CHICAGO ----------
Colonnella, M.A., Lizarraga, L., Rossi, L., Díaz Peña, R., Egoburo, D., López, N.I., et al. "Effect of copper on diesel degradation in Pseudomonas extremaustralis" . Extremophiles 23, no. 1 (2019) : 91-99.
http://dx.doi.org/10.1007/s00792-018-1063-2
---------- MLA ----------
Colonnella, M.A., Lizarraga, L., Rossi, L., Díaz Peña, R., Egoburo, D., López, N.I., et al. "Effect of copper on diesel degradation in Pseudomonas extremaustralis" . Extremophiles, vol. 23, no. 1, 2019, pp. 91-99.
http://dx.doi.org/10.1007/s00792-018-1063-2
---------- VANCOUVER ----------
Colonnella, M.A., Lizarraga, L., Rossi, L., Díaz Peña, R., Egoburo, D., López, N.I., et al. Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles. 2019;23(1):91-99.
http://dx.doi.org/10.1007/s00792-018-1063-2