Artículo

Traffano-Schiffo, M.V.; Aguirre Calvo, T.R.; Castro-Giraldez, M.; Fito, P.J.; Santagapita, P.R. "Alginate Beads Containing Lactase: Stability and Microstructure" (2017) Biomacromolecules. 18(6):1785-1792
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

β-Galactosidase (lactase) is a widely used enzyme in the food industry; however, it has low stability against thermal and mechanical treatments. Due to this, the purpose of the present research was to analyze the encapsulation of lactase in alginate-Ca(II) beads in order to maintain its enzymatic activity toward freezing, freezing/thawing, and storage. Also, the effect of the addition of trehalose, and arabic and guar gums and their influence on the microstructure as well as on thermal properties and molecular mobility were studied. Lactase was successfully encapsulated in alginate-Ca(II) beads, and the inclusion of trehalose was critical for activity preservation toward treatments, being improved in guar gum-containing systems. The gums increased the Tm′ values, which represents a valuable technological improvement. Finally, the presence of secondary excipients affected the microstructure, showing rods with smaller outer diameter and with lower compactness than alginate-Ca(II) beads. Also, bead composition greatly affects the size, shape, and relaxation times. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Alginate Beads Containing Lactase: Stability and Microstructure
Autor:Traffano-Schiffo, M.V.; Aguirre Calvo, T.R.; Castro-Giraldez, M.; Fito, P.J.; Santagapita, P.R.
Filiación:Instituto Universitario de Ingeniería de Alimentos para El Desarrollo, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia, 46022, Spain
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica, Buenos Aires, C1428EGA, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, C1428EGA, Argentina
Palabras clave:Calcium; Freezing; Hybrid materials; Microstructure; Alginate beads; Enzymatic activities; Food industries; Freezing/thawing; Mechanical treatments; Molecular mobility; Outer diameters; Technological improvements; Alginate; alginic acid; alpha galactosidase; excipient; guar gum; gum arabic; lactase; trehalose; water; alginic acid; beta galactosidase; galactan; glucuronic acid; hexuronic acid; lactase; mannan; plant gum; Article; chemical composition; crystallization; enthalpy; enzyme activity; enzyme stability; enzyme structure; freeze thawing; freezing; glass transition temperature; melting point; moisture; particle size; preservation; priority journal; storage; chemistry; cold; drug formulation; drug stability; kinetics; procedures; ultrastructure; Alginates; beta-Galactosidase; Cold Temperature; Drug Compounding; Drug Stability; Galactans; Glucuronic Acid; Gum Arabic; Hexuronic Acids; Kinetics; Lactase; Mannans; Plant Gums; Trehalose
Año:2017
Volumen:18
Número:6
Página de inicio:1785
Página de fin:1792
DOI: http://dx.doi.org/10.1021/acs.biomac.7b00202
Título revista:Biomacromolecules
Título revista abreviado:Biomacromolecules
ISSN:15257797
CODEN:BOMAF
CAS:alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; alpha galactosidase, 9025-35-8; guar gum, 9000-30-0; gum arabic, 9000-01-5; lactase, 9031-11-2; trehalose, 99-20-7; water, 7732-18-5; beta galactosidase; galactan, 39300-87-3, 9037-55-2; glucuronic acid, 36116-79-7, 576-37-4, 6556-12-3; mannan, 51395-96-1, 9036-88-8; Alginates; alginic acid; beta-Galactosidase; Galactans; Glucuronic Acid; guar gum; Gum Arabic; Hexuronic Acids; Lactase; Mannans; Plant Gums; Trehalose
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_15257797_v18_n6_p1785_TraffanoSchiffo

Referencias:

  • Geiger, B., Nguyen, H.M., Wenig, S., Nguyen, H.A., Lorenz, C., Kittl, R., Mathiesen, G., Nguyen, T.H., (2016) Biochem. Eng. J., 116, pp. 45-53
  • Pereira-Rodríguez, Á., Fernández-Leiro, R., González-Siso, M.I., Cerdán, M.E., Becerra, M., Sanz-Aparicio, J., (2012) J. Struct. Biol., 177, pp. 392-401
  • Banaszewska, A., Cruijssen, F., Claassen, G.D.H., Van Der Vorst, J.G.A.J., (2014) J. Dairy Sci., 97, pp. 1893-1908
  • Mlichová, Z., Rosenberg, M., (2006) J. Food Nutr. Res., 45, pp. 47-54
  • Erich, S., Kuschel, B., Schwarz, T., Ewert, J., Böhmer, N., Niehaus, F., Eck, J., Fischer, L., (2015) J. Biotechnol., 210, pp. 27-37
  • Harju, M., Kallioinen, H., Tossavainen, O., (2012) Int. Dairy J., 22, pp. 104-109
  • Husain, Q., (2010) Crit. Rev. Biotechnol., 30, pp. 41-62
  • Zhang, Z., Zhang, R., McClements, D.J., (2017) Food Hydrocolloids, 67, pp. 85-93
  • Sen, P., Nath, A., Bhattacharjee, C., Chowdhury, R., Bhattacharya, P., (2014) Biochem. Eng. J., 90, pp. 59-72
  • Josef, E., Zilberman, M., Bianco-Peled, H., (2010) Acta Biomater., 6, pp. 4642-4649
  • Khattak, S.F., Chin, K.S., Bhatia, S.R., Roberts, S.C., (2007) Biotechnol. Bioeng., 96, pp. 156-166
  • Rehman, H.U., Aman, A., Silipo, A., Qader, S.A.U., Molinaro, A., Ansari, A., (2013) Food Chem., 139, pp. 1081-1086
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., (2012) Food Res. Int., 47, pp. 321-330
  • Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L., Ribeiro, E.J., (2012) Braz. J. Chem. Eng., 29, pp. 15-24
  • Córdoba, A.L., Deladino, L., Martino, M., (2013) Carbohydr. Polym., 95, pp. 315-323
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., (2011) Biomacromolecules, 12, pp. 3147-3155
  • Estevinho, B.N., Damas, A.M., Martins, P., Rocha, F., (2014) Food Res. Int., 64, pp. 134-140
  • Li, X.Y., Chen, X.G., Liu, C.S., Peng, H.N., Cha, D.S., (2008) Drying Technol., 26, pp. 895-901
  • Santagapita, P.R., Buera, M.P., (2008) J. Non-Cryst. Solids, 354, pp. 1760-1767
  • Busch, V.M., Pereyra-Gonzalez, A., Šegatin, N., Santagapita, P.R., Ulrih, N.P., Buera, M.P., (2017) LWT-Food Sci. Technol., 75, pp. 227-235
  • George, M., Abraham, T.E., (2007) Int. J. Pharm., 335, pp. 123-129
  • Waters, D.J., Engberg, K., Parke-Houben, R., Hartmann, L., Ta, C.N., Toney, M.F., Frank, C.W., (2010) Macromolecules, 43, pp. 6861-6870
  • Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M., (2016) Dalton Trans., 45, pp. 10050-10057
  • Agulhon, P., Robitzer, M., David, L., Quignard, F., (2012) Biomacromolecules, 13, pp. 215-220
  • Dashevsky, A., (1998) Int. J. Pharm., 161, pp. 1-5
  • Elvers, B., (1995) Ullmann's Encyclopaedia of Industrial Chemistry, , 5 th ed. VCH
  • Austin, L., Bower, J.J., Muldoon, C., (1996) P. Int. Sym. Contr. Release Bioact. Mater., 23, pp. 739-740
  • Aguirre Calvo, T., Santagapita, P., (2016) J. Qual. Reliab. Eng., 2016, pp. 1-7
  • Park, Y.K., Santi, M.S.S., Pastore, G.M., (1979) J. Food Sci., 44, pp. 100-103
  • Tylewicz, U., Panarese, V., Laghi, L., Rocculi, P., Nowacka, M., Placucci, G., Dalla Rosa, M., (2011) Food Biophys., 6, pp. 327-333
  • Belotti, M., Martinelli, A., Gianferri, R., Brosio, E., (2010) Phys. Chem. Chem. Phys., 12, pp. 516-522
  • Carr, H.Y., Purcell, E.M., (1954) Phys. Rev., 94, p. 630
  • Meiboom, S., Gill, D., (1958) Rev. Sci. Instrum., 29, pp. 688-691
  • Aguirre Calvo, T.R., Busch, V.M., Santagapita, P.R., (2017) LWT-Food Sci. Technol., 77, pp. 406-412
  • Busch, V.M., Kolender, A.A., Santagapita, P.R., Buera, M.P., (2015) Food Hydrocolloids, 51, pp. 495-502
  • Vasile, F.E., Martinez, M.J., Ruiz-Henestrosa, V.M.P., Judis, M.A., Mazzobre, M.F., (2016) Food Hydrocolloids, 56, pp. 245-253
  • Fang, Y., Al-Assaf, S., Phillips, G.O., Nishinari, K., Funami, T., Williams, P.A., Li, L., (2007) J. Phys. Chem. B, 111, pp. 2456-2462
  • Katayama, D.S., Carpenter, J.F., Manning, M.C., Randolph, T.W., Setlow, P., Menard, K.P., (2008) J. Pharm. Sci., 97, pp. 1013-1024
  • Roos, Y.H., Pehkonen, K.S., (2010) Water Properties in Food, Health, Pharmaceutical and Biological Systems: ISOPOW 10, pp. 285-290. , In; Reid, D. S. Sajjaanantakul, T. Lillford, P. J. Charoenrein, S. Wiley-Blackwell, John Wiley & Sons, Inc. Ames, Iowa, USA
  • Schebor, C., Mazzobre, M.F., Buera, M.P., (2010) Carbohydr. Res., 345, pp. 303-308
  • Bloembergen, N., Purcell, E.M., Pound, R.V., (1948) Phys. Rev., 73, p. 679
  • Rayment, P., Wright, P., Hoad, C., Ciampi, E., Haydock, D., Gowland, P., Butler, M.F., (2009) Food Hydrocolloids, 23, pp. 816-822
  • Ablett, S., Lillford, P.J., Baghdadi, S.M.A., Derbyshire, W., (1976) Am. Chem. Soc. Symp. Series, 34, pp. 344-359
  • Hills, B.P., Cano, C., Belton, P.S., (1991) Macromolecules, 24, pp. 2944-2950
  • Kimberlee, P., Adrian, C.T., Laurence, H., (1993) Carbohydr. Res., 246, pp. 43-49

Citas:

---------- APA ----------
Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J. & Santagapita, P.R. (2017) . Alginate Beads Containing Lactase: Stability and Microstructure. Biomacromolecules, 18(6), 1785-1792.
http://dx.doi.org/10.1021/acs.biomac.7b00202
---------- CHICAGO ----------
Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. "Alginate Beads Containing Lactase: Stability and Microstructure" . Biomacromolecules 18, no. 6 (2017) : 1785-1792.
http://dx.doi.org/10.1021/acs.biomac.7b00202
---------- MLA ----------
Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. "Alginate Beads Containing Lactase: Stability and Microstructure" . Biomacromolecules, vol. 18, no. 6, 2017, pp. 1785-1792.
http://dx.doi.org/10.1021/acs.biomac.7b00202
---------- VANCOUVER ----------
Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. Alginate Beads Containing Lactase: Stability and Microstructure. Biomacromolecules. 2017;18(6):1785-1792.
http://dx.doi.org/10.1021/acs.biomac.7b00202