Artículo

Foglia, N.O.; Morzan, U.N.; Estrin, D.A.; Scherlis, D.A.; Lebrero, M.C.G. "Role of core electrons in quantum dynamics using TDDFT" (2017) Journal of Chemical Theory and Computation. 13(1):77-85
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The explicit simulation of time dependent electronic processes requires computationally onerous routes involving the temporal integration of motion equations for the charge density. Efficiency optimization of these methods typically relies on increasing the integration time-step and on the reduction of the computational cost per step. The implicit representation of inner electrons by effective core potentials-or pseudopotentials-is a standard practice in localized-basis quantum-chemistry implementations to improve the efficiency of ground-state calculations, still preserving the quality of the output. This article presents an investigation on the impact that effective core potentials have on the overall efficiency of real time electron dynamics with TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this kind of simulation are on average much more significant than in ground-state calculations, reaching in some cases a factor as large as 600×. This boost in performance originates from two contributions: on the one hand, the size of the density matrix, which is considerably reduced, and, on the other, the elimination of high-frequency electronic modes, responsible for limiting the maximum time-step, which vanish when the core electrons are not propagated explicitly. The latter circumstance allows for significant increases in time-step, that in certain cases may reach up to 3 orders of magnitude, without losing any relevant chemical or spectroscopic information. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Role of core electrons in quantum dynamics using TDDFT
Autor:Foglia, N.O.; Morzan, U.N.; Estrin, D.A.; Scherlis, D.A.; Lebrero, M.C.G.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina
Año:2017
Volumen:13
Número:1
Página de inicio:77
Página de fin:85
DOI: http://dx.doi.org/10.1021/acs.jctc.6b00771
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_15499618_v13_n1_p77_Foglia

Referencias:

  • Beratan, D., Onuchic, J., Winkler, J., Gray, H., Electron-tunneling pathways in proteins (1992) Science, 258, pp. 1740-1741
  • Nitzan, A., Ratner, M.A., Electron transport in molecular wire junctions (2003) Science, 300, pp. 1384-1389
  • Shah, A., Adhikari, B., Martic, S., Munir, A., Shahzad, S., Ahmad, K., Kraatz, H.-B., Electron transfer in peptides (2015) Chem. Soc. Rev, 44, pp. 1015-1027
  • Wang, L., Long, R., Prezhdo, O.V., Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces (2015) Annu. Rev. Phys. Chem, 66, pp. 549-579
  • Kilina, S., Kilin, D., Tretiak, S., Light-driven and phonon-assisted dynamics in organic and semiconductor nanostructures (2015) Chem. Rev, 115, pp. 5929-5978
  • Runge, E., Gross, E.K.U., Density-functional theory for time-dependent systems (1984) Phys. Rev. Lett, 52, pp. 997-1000
  • Lopata, K., Govind, N., Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores (2011) J. Chem. Theory Comput, 7, pp. 1344-1355
  • Wang, F., Yam, C.Y., Hu, L., Chen, G., Time-dependent density functional theory based Ehrenfest dynamics (2011) J. Chem. Phys, 135, p. 044126
  • Liang, W., Chapman, C.T., Li, X., Efficient first-principles electronic dynamics (2011) J. Chem. Phys, 134, p. 184102
  • Tavernelli, I., Rohrig, U.F., Rothlisberger, U., Molecular dynamics in electronically excited states using time-dependent density functional theory (2005) Mol. Phys, 103, pp. 963-981
  • Theilhaber, J., Ab initio simulations of sodium using timedependent density-functional theory (1992) Phys. Rev. B: Condens. Matter Mater. Phys, 46, pp. 12990-13003
  • Yabana, K., Bertsch, G.F., Time-dependent local-density approximation in real time (1996) Phys. Rev. B: Condens. Matter Mater. Phys, 54, pp. 4484-4487
  • Krauss, M., Stevens, W.J., Effective potentials in molecular quantum chemistry (1984) Annu. Rev. Phys. Chem, 35, pp. 357-385
  • Dolg, M., Cao, X., Relativistic pseudopotentials: Their development and scope of applications (2012) Chem. Rev, 112, pp. 403-480
  • Kahn, L.R., Baybutt, P., Truhlar, D.G., Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons (1976) J. Chem. Phys, 65, pp. 3826-3853
  • Tavernelli, I., Electronic density response of liquid water using time-dependent density functional theory (2006) Phys. Rev. B: Condens. Matter Mater. Phys, 73, p. 094204
  • Cheng, C.-L., Evans, J.S., Van Voorhis, T., Simulating molecular conductance using real-time density functional theory (2006) Phys. Rev. B: Condens. Matter Mater. Phys, 74, p. 155112
  • Meng, S., Kaxiras, E., Real-time local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations (2008) J. Chem. Phys, 129, p. 054110
  • Kolesov, G., Grånäs, O., Hoyt, R., Vinichenko, D., Kaxiras, E., Real-time TD-DFT with classical ion dynamics: Methodology and applications (2016) J. Chem. Theory Comput, 12, pp. 466-476. , PMID: 26680129
  • Ojanperä, A., Havu, V., Lehtovaara, L., Puska, M., Nonadiabatic Ehrenfest molecular dynamics within the projector augmented-wave method (2012) J. Chem. Phys, 136, p. 144103
  • Andrade, X., Strubbe, D., De Giovannini, U., Larsen, A.H., Oliveira, M.J.T., Alberdi-Rodriguez, J., Varas, A., Rubio, A., Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems (2015) Phys. Chem. Chem. Phys, 17, pp. 31371-31396
  • Nitsche, M.A., Ferreria, M., Mocskos, E.E., González Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theory Comput, 10, pp. 959-967
  • Morzan, U.N., Ramírez, F.F., Oviedo, M.B., Sánchez, C.G., Scherlis, D.A., Lebrero, M.C.G., Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework (2014) J. Chem. Phys, 140, p. 164105
  • Castro, A., Marques, M.A.L., Rubio, A., Propagators for the time-dependent Kohn-Sham equations (2004) J. Chem. Phys, 121, p. 3425
  • Sugino, O., Miyamoto, Y., Density-functional approach to electron dynamics: Stable simulation under a self-consistent field (1999) Phys. Rev. B: Condens. Matter Mater. Phys, 59, p. 2579
  • Shin, D., Lee, G., Miyamoto, Y., Park, N., Real-Time Propagation via Time-Dependent Density Functional Theory Plus the Hubbard U Potential for Electron-Atom Coupled Dynamics Involving Charge Transfer J. Chem. Theory Comput, 2016 (12), pp. 201-208
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple Phys Rev. Lett. 77, 3865 (1996) (1997) Phys. Rev. Lett, 78, p. 1396
  • Cuevasanta, E., Zeida, A., Carballal, S., Wedmann, R., Morzan, U.N., Trujillo, M., Radi, R., Alvarez, B., Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite (2015) Free Radical Biol. Med, 80, pp. 93-100
  • Stevens, W.J., Basch, H., Krauss, M., Compact effective potentials and efficient shared-exponent basis sets for the first-and second-row atoms (1984) J. Chem. Phys, 81, pp. 6026-6033
  • Stevens, W.J., Krauss, M., Basch, H., Jasien, P.G., Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-and fifth-row atoms (1992) Can. J. Chem, 70, pp. 612-630
  • Cundari, T.R., Stevens, W.J., Effective core potential methods for the lanthanides (1993) J. Chem. Phys, 98, pp. 5555-5565
  • Fernandez Pacios, L., Christiansen, P.A., Abinitio relativistic effective potentials with spin-orbit operators. I. Li through Ar (1985) J. Chem. Phys, (82), pp. 2664-2671
  • Hurley, M.M., Pacios, L.F., Christiansen, P.A., Ross, R.B., Ermler, W.C., Abinitio relativistic effective potentials with spin-orbit operators. II. K through Kr (1986) J. Chem. Phys, 84, pp. 6840-6853
  • LaJohn, L.A., Christiansen, P.A., Ross, R.B., Atashroo, T., Ermler, W.C., Abinitio relativistic effective potentials with spin-orbit operators. III. Rb through Xe (1987) J. Chem. Phys, 87, pp. 2812-2824
  • Ross, R.B., Powers, J.M., Atashroo, T., Ermler, W.C., LaJohn, L.A., Christiansen, P.A., Abinitio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn (1990) J. Chem. Phys, 93, pp. 6654-6670
  • Hay, P.J., Wadt, W.R., Abinitio effective core potentials for molecular calculations Potentials for the transition metal atoms Sc to Hg (1985) J. Chem. Phys, 82, pp. 270-283
  • Wadt, W.R., Hay, P.J., Abinitio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi (1985) J. Chem. Phys, 82, pp. 284-298
  • Hay, P.J., Wadt, W.R., Abinitio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals (1985) J. Chem. Phys, 82, pp. 299-310
  • Dolg, M., Wedig, U., Stoll, H., Preuss, H., Energy-adjusted ab initio pseudopotentials for the first row transition elements (1987) J. Chem. Phys, 86, pp. 866-872
  • Bode, B.M., Gordon, M.S., Fast computation of analytical second derivatives with effective core potentials: Application to Si8C12,Ge8C12, and Sn8C12 (1999) J. Chem. Phys, 111, pp. 8778-8784
  • Myer, J.A., Samson, J.A.R., Vacuum-ultraviolet absorption cross sections of CO, HCl, and ICN between 1050 and 2100 (1970) J. Chem. Phys, 52, pp. 266-271
  • Nee, J.B., Suto, M., Lee, L.C., Quantitative photoabsorption and fluorescence study of HCl in vacuum ultraviolet (1986) J. Chem. Phys, 85, pp. 719-724
  • Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., Selfconsistent molecular orbital methods. XX. A basis set for correlated wave functions (1980) J. Chem. Phys, 72, pp. 650-654
  • McLean, A.D., Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18 (1980) J. Chem. Phys, 72, pp. 5639-5648
  • Labello, N.P., Ferreira, A.M., Correlated, A.K.H., Relativistic, and basis set limit molecular polarizability calculations to evaluate an augmented effective core potential basis set (2006) Int. J. Quantum Chem, 106, pp. 3140-3148
  • EMSL Basis Set Exchange, , https://bse.pnl.gov, accessed 01-30-2016
  • Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation (1992) Can. J. Chem, 70, pp. 560-571

Citas:

---------- APA ----------
Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A. & Lebrero, M.C.G. (2017) . Role of core electrons in quantum dynamics using TDDFT. Journal of Chemical Theory and Computation, 13(1), 77-85.
http://dx.doi.org/10.1021/acs.jctc.6b00771
---------- CHICAGO ----------
Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Lebrero, M.C.G. "Role of core electrons in quantum dynamics using TDDFT" . Journal of Chemical Theory and Computation 13, no. 1 (2017) : 77-85.
http://dx.doi.org/10.1021/acs.jctc.6b00771
---------- MLA ----------
Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Lebrero, M.C.G. "Role of core electrons in quantum dynamics using TDDFT" . Journal of Chemical Theory and Computation, vol. 13, no. 1, 2017, pp. 77-85.
http://dx.doi.org/10.1021/acs.jctc.6b00771
---------- VANCOUVER ----------
Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Lebrero, M.C.G. Role of core electrons in quantum dynamics using TDDFT. J. Chem. Theory Comput. 2017;13(1):77-85.
http://dx.doi.org/10.1021/acs.jctc.6b00771