Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We explore the electromagnetic response of the pellicle of selected species of euglenoids. These microorganisms are bounded by a typical surface pellicle formed by S-shaped overlapping bands that resemble a corrugated film. We investigate the role played by this structure in the protection of the cell against UV radiation. By considering the pellicle as a periodically corrugated film of finite thickness, we applied the C-method to compute the reflectance spectra. The far-field results revealed reflectance peaks with a Q-factor larger than 103 in the UV region for all the illumination conditions investigated. The resonant behavior responsible for this enhancement has also been illustrated by near-field computations performed by a photonic simulation method. These results confirm that the corrugated pellicle of euglenoids shields the cell from harmful UV radiation and open up new possibilities for the design of highly UV-reflective surfaces. © 2017 Optical Society of America.

Registro:

Documento: Artículo
Título:Optical function of the finite-thickness corrugated pellicle of euglenoids
Autor:Inchaussandague, M.E.; Skigin, D.C.; Dolinko, A.E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Grupo de Electromagnetismo Aplicado, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Micología, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina
Palabras clave:Algae; Radiation protection; Reflection; Ultraviolet radiation; Corrugated films; Electromagnetic response; Illumination conditions; Overlapping bands; Reflectance peaks; Reflectance spectrum; Reflective surfaces; Resonant behavior; Protozoa; electromagnetic radiation; Euglena gracilis; Euglenida; radiation response; transmission electron microscopy; ultrastructure; Electromagnetic Radiation; Euglena gracilis; Euglenida; Microscopy, Electron, Transmission
Año:2017
Volumen:56
Número:18
Página de inicio:5112
Página de fin:5120
DOI: http://dx.doi.org/10.1364/AO.56.005112
Título revista:Applied Optics
Título revista abreviado:Appl. Opt.
ISSN:1559128X
CODEN:APOPA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1559128X_v56_n18_p5112_Inchaussandague

Referencias:

  • Parker, A., 515 million years of structural colour (2000) J. Opt. A, 2, pp. R15-R28
  • Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths (1999) Chem. Rev., 99, pp. 1935-1962
  • Vukusicand, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, pp. 852-855
  • Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , World Scientific
  • Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , Springer
  • Vigneron, J.-P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biro, L.P., Ertz, D., Lousse, V., Optical structure and function of the white filamentary hair covering the edelweiss bracts (2005) Phys. Rev. E, 71, p. 011906
  • Kertész, K., Bálint, Z., Vértesy, Z., Márk, G.I., Lousse, V., Vigneron, J.-P., Biro, L.P., Photonic crystal type structures of biological origin: Structural and spectral characterization (2006) Curr. Appl. Phys., 6, pp. 252-258
  • Land, M.F., Horwood, J., Lim, M.L.M., Li, D., Optics of the ultraviolet reflecting scales of a jumping spider (2007) Proc. R. Soc. B, 274, pp. 1583-1589
  • Craig, C.L., Bernard, G.D., Insect attraction to ultraviolet-reflecting spider webs and web decorations (1990) Ecology, 71, pp. 616-623
  • Jokiel, P.L., York, R.H., Jr., Importance of ultraviolet radiation in photoinhibition of microalgal growth (1984) Limnol. Oceanogr., 29, pp. 192-198
  • Franklin, L., Forster, R., The changing irradiance environment: Consequences for marine macrophyte physiology, productivity and ecology (1997) Eur. J. Phycol., 32, pp. 207-232
  • Ekelund, G.A., Interactions between photosynthesis and 'light-enhanced dark respiration' (LEDR) in the flagellate euglena gracilis after irradiation with ultraviolet radiation (2000) J. Photochem. Photobiol. B, 55, pp. 63-69
  • Karentz, D., McEuen, F.S., Land, M.C., Dunlap, W.C., Survey of mycosporine-like amino acid compounds in antarctic marine organisms: Potential protection from ultraviolet exposure (1991) Marine Biol., 108, pp. 157-166
  • Inchaussandague, M.E., Skigin, D.C., Tolivia, A., Fuertes Vila, I., Conforti, V., Electromagnetic response of the protective pellicle of different unicellular microalgae (2014) Proc. SPIE 9055, p. 905514
  • Inchaussandague, M.E., Gigli, M.L., Skigin, D.C., Tolivia, A., Conforti, V., Electromagnetic response of the protective pellicle of euglenoids: Influence of the surface profile (2015) Proc. SPIE 9429, p. 94290D
  • Dolinko, A., Valencia, C., Skigin, D.C., Inchaussandague, M.E., Tolivia, A., Conforti, V., UV protection of euglenoids: Computation of the electromagnetic response (2015) Proc. SPIE 9531, p. 953144
  • Bhowmik, A., Pilon, L., Can spherical Eukaryotic microalgae cells be treated as optically homogeneous? (2016) J. Opt. Soc. Am. A, 33, pp. 1495-1503
  • Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., Multicoated gratings: A differential formalism applicable in the entire optical region (1982) J. Opt. Soc. Am., 72, pp. 839-846
  • Li, L., Oblique-coordinate-system-based chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings (1999) J. Opt. Soc. Am. A, 16, pp. 2521-2531
  • Li, L., Chandezon, J., Granet, G., Plumey, J.P., Rigorous and efficient grating-analysis method made easy for optical engineers (1999) Appl. Opt., 38, pp. 304-313
  • Inchaussandague, M.E., Depine, R.A., Polarization conversion from diffraction gratings made of uniaxial crystals (1996) Phys. Rev. E, 54, pp. 2899-2911
  • Inchaussandague, M.E., Depine, R.A., Rigorous vector theory for diffraction gratings made of biaxial crystals (1997) J. Mod. Opt., 44, pp. 1-27
  • Dolinko, A.E., Skigin, D.C., Enhanced method for determining the optical response of highly complex biological photonic structures (2013) J. Opt. Soc. Am. A, 30, pp. 1746-1759
  • Nakano, Y., Urade, Y., Urade, R., Kitaoka, S., Isolation, purification, and characterization of the pellicle of euglena gracilis z (1987) J. Biochem., 102, pp. 1053-1063
  • Drezek, R., Dunn, A., Richards-Kortum, R., Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements (1999) Appl. Opt., 38, pp. 3651-3661
  • Quirantes, A., Bernard, S., Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers (2006) J. Quantum Spectrosc. Radiat. Transfer, 100, pp. 315-324
  • Svensen, O., Frette, O., Rune Erga, S., Scattering properties of microalgae: The effect of cell size and cell wall (2007) Appl. Opt., 46, pp. 5762-5769
  • Dauchet, J., Blanco, S., Cornet, J.-F., Fournier, R., Calculation of the radiative properties of photosynthetic microorganisms (2015) J. Quantum Spectrosc. Radiat. Transfer, 161, pp. 60-84
  • Kandilian, R., Pruvost, J., Artu, A., Lemasson, C., Legrand, J., Pilon, L., Comparison of experimentally and theoretically determined radiation characteristics of photosynthetic microorganisms (2016) J. Quantum Spectrosc. Radiat. Transfer, 175, pp. 30-45
  • Dolinko, A.E., From Newton's second law to huygens's principle: Visualizing waves in a large array of masses joined by springs (2009) Eur. J. Phys., 30, pp. 1217-1228
  • Hale, G.M., Querry, M.R., Optical constants of water in the 200-nm to 200-μm wavelength region (1973) Appl. Opt., 12, pp. 555-563
  • Fano, U., Effects of configuration interaction on intensities and phase shifts (1961) Phys. Rev., 124, pp. 1866-1878
  • Miroshnichenko, A.E., Flach, S., Kivshar, Y.S., Fano resonances in nanoscale structures (2010) Rev. Mod. Phys., 82, pp. 2257-2298
  • Hessel, A., Oliner, A.A., A new theory of wood's anomalies on optical gratings (1965) Appl. Opt., 4, pp. 1275-1297
  • Saito, A., Material design and structural color inspired by biomimetic approach (2011) Sci. Technol. Adv. Mater., 12, p. 064709
  • Riva, A., Algaba, I., Ultraviolet protection provided by woven fabrics made with cellulose fibres: Study of the influence of fibre type and structural characteristics of the fabric (2006) J. Text. Inst., 97, pp. 349-358

Citas:

---------- APA ----------
Inchaussandague, M.E., Skigin, D.C. & Dolinko, A.E. (2017) . Optical function of the finite-thickness corrugated pellicle of euglenoids. Applied Optics, 56(18), 5112-5120.
http://dx.doi.org/10.1364/AO.56.005112
---------- CHICAGO ----------
Inchaussandague, M.E., Skigin, D.C., Dolinko, A.E. "Optical function of the finite-thickness corrugated pellicle of euglenoids" . Applied Optics 56, no. 18 (2017) : 5112-5120.
http://dx.doi.org/10.1364/AO.56.005112
---------- MLA ----------
Inchaussandague, M.E., Skigin, D.C., Dolinko, A.E. "Optical function of the finite-thickness corrugated pellicle of euglenoids" . Applied Optics, vol. 56, no. 18, 2017, pp. 5112-5120.
http://dx.doi.org/10.1364/AO.56.005112
---------- VANCOUVER ----------
Inchaussandague, M.E., Skigin, D.C., Dolinko, A.E. Optical function of the finite-thickness corrugated pellicle of euglenoids. Appl. Opt. 2017;56(18):5112-5120.
http://dx.doi.org/10.1364/AO.56.005112