Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. © 2017, Springer International Publishing.


Documento: Artículo
Título:Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
Autor:Del Pezzo, L.M.; Quaas, A.
Filiación:CONICET and Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria (1428), Buenos Aires, Argentina
Departamento de Matemática, Universidad Técnica Federico Santa María Casilla V-110, Avda. España, Valparaiso, 1680, Chile
Palabras clave:anti-maximum principle; existence results; Fractional p-Laplacian; non-resonant
Página de inicio:939
Página de fin:958
Título revista:Journal of Fixed Point Theory and Applications
Título revista abreviado:J. Fixed Point Theory Appl.


  • Adams, R.A., (1975) Sobolev Spaces, Pure and Applied Mathematics, , 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York
  • Amghibech, S., On the discrete version of Picone’s identity (2008) Discrete Appl. Math., 156 (1), pp. 1-10
  • Anane, A., Simplicité et isolation de la première valeur propre du p -laplacien avec poids (1987) C. R. Acad. Sci. Paris Sér. I Math., 305 (16), pp. 725-728
  • Anane, A., Gossez, J., Strongly nonlinear elliptic problems near resonance: a variational approach (1990) Commun. Partial Differ. Equ., 15 (8), pp. 1141-1159
  • Anane, A., Tsouli, N., On a nonresonance condition between the first and the second eigenvalues for the p -Laplacian (2001) Int. J. Math. Math. Sci., 26 (10), pp. 625-634
  • Anane, A., Tsouli, N., On a nonresonance condition between the first and the second eigenvalue for the p -Laplacian (2004) Math. Rech. Appl., 6, pp. 101-114
  • Arcoya, D., Colorado, E., Leonori, T., Asymptotically linear problems and antimaximum principle for the square root of the Laplacian (2012) Adv. Nonlinear Stud., 12 (4), pp. 683-701
  • Arcoya, D., Gámez, J.L., Bifurcation theory and related problems: anti-maximum principle and resonance (2001) Commun. Partial Differ. Equ., 26 (9-10), pp. 1879-1911
  • Arcoya, D., Orsina, L., Landesman-Lazer conditions and quasilinear elliptic equations (1997) Nonlinear Anal., 28 (10), pp. 1623-1632
  • Arias, M., Campos, J., Gossez, J.-P., On the antimaximum principle and the Fučik spectrum for the Neumann p -Laplacian (2000) Differ. Integral Equ., 13 (1-3), pp. 217-226
  • Armstrong, S.N., Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations (2009) J. Differ. Equ., 246 (7), pp. 2958-2987
  • Birindelli, I., Hopf’s lemma and anti-maximum principle in general domains (1995) J. Differ. Equ., 119 (2), pp. 450-472
  • Boccardo, L., Drábek, P., Giachetti, D., Kučera, M., Generalization of Fredholm alternative for nonlinear differential operators (1986) Nonlinear Anal., 10, pp. 1083-1103
  • Bourgain, J., Brezis, H., Mironescu, P., Another look at sobolev spaces (2001) Menaldi, J.L., Rofman, E., Sulem, A. (Eds.) Optimal Control and Partial Differential Equations, A Volume in Honour of A. Bensoussan’s 60th Birthday, pp. 439–455. IOS Press
  • Brasco, L., Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities (2014) Kodai Math. J., 37 (3), pp. 769-799
  • Brasco, L., Parini, E., The second eigenvalue of the fractional p -Laplacian (2016) Adv. Calc. Var., 9 (4), pp. 323-355
  • Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p -Laplacian (2016) Discrete Contin. Dyn. Syst., 36 (4), pp. 1813-1845
  • Clément, P., Peletier, L.A., An anti-maximum principle for second-order elliptic operators (1979) J. Differ. Equ., 34 (2), pp. 218-229
  • Cuesta, M., de Figueiredo, D., Gossez, J.-P., The beginning of the Fučik spectrum for the p -Laplacian (1999) J. Differ. Equ., 159 (1), pp. 212-238
  • Del Pezzo, L.M., Fernández Bonder, J., (1601) López Ros, L.: An optimization problem for the first eigenvalue of the p-fractional Laplacian. arXiv, p. 03019. , arXiv:1601.03019
  • Del Pezzo, L.M., Quaas, A., Global bifurcation for fractional p -Laplacian and application (2016) Z. Anal. Anwend., 35 (4), pp. 411-447
  • A Hopf’s lemma and a strong minimum principle for the fractional p -Laplacian, , Del Pezzo, L.M., Quaas, A.:
  • del Pino, M., Drábek, P., Manásevich, R., The Fredholm alternative at the first eigenvalue for the one-dimensional p -Laplacian (1999) J. Differ. Equ., 151 (2), pp. 386-419
  • Deimling, K., (1985) Nonlinear Functional Analysis, , Springer, Berlin
  • Demengel, F., Demengel, G., (2007) Functional spaces for the theory of elliptic partial differential equations. Universitext, Springer, London (2012), , Translated from the, French original by Reinie Erné
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573
  • Dolph, C.L., Nonlinear integral equations of the Hammerstein type (1949) Trans. Am. Math. Soc., 66, pp. 289-307
  • Drábek, P., The p -Laplacian–Mascot of nonlinear analysis (2007) Acta Math. Univ. Comenian. (N.S.), 76 (1), pp. 85-98
  • Drábek, P., Girg, P., Takáč, P., Ulm, M., The Fredholm alternative for the p -Laplacian: bifurcation from infinity, existence and multiplicity (2004) Indiana Univ. Math. J., 53 (2), pp. 433-482
  • Drábek, P., Girg, P., Manásevich, R., Generic Fredholm alternative-type results for the one dimensional p -Laplacian (2001) NoDEA Nonlinear Differ. Equ. Appl., 8 (3), pp. 285-298
  • Drábek, P., Takáč, P., A counterexample to the Fredholm alternative for the p -Laplacian (1999) Proc. Am. Math. Soc., 127 (4), pp. 1079-1087
  • Fleckinger, J., Gossez, J.-P., Takáč, P., François de Thélin, existence, nonexistence et principe de l’antimaximum pour le p -Laplacien (1995) C. R. Acad. Sci. Paris Sér. I Math., 321 (6), pp. 731-734
  • Franzina, G., Palatucci, G., Fractional p -eigenvalues (2014) Riv. Math. Univ. Parma (N.S.), 5 (2), pp. 373-386
  • García-Melián, J., Rossi, J.D., Maximum and antimaximum principles for some nonlocal diffusion operators (2009) Nonlinear Anal., 71 (12), pp. 6116-6121
  • Godoy, T., Gossez, J.-P., Paczka, S., On the antimaximum principle for the p -Laplacian with indefinite weight (2002) Nonlinear Anal., 51 (3), pp. 449-467
  • Sur le principe de l’antimaximum (1994) Cahiers Centre Études Rech. Opér, , Gossez, J.-P.. 36, 183–187 (Hommage à Simone Huyberechts)
  • Greco, A., Servadei, R., Hopf’s lemma and constrained radial symmetry for the fractional Laplacian. (English summary) (2016) Math. Res. Lett., 23 (3), pp. 863-885
  • Grisvard, P., (1985) Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, , 24, Pitman (Advanced Publishing Program), Boston
  • Global Hölder regularity for the fractional p -Laplacian (2014) Revista Matemática Iberoamericana, , Iannizzotto, A., Mosconi, S., Squassina, M.(To appear)
  • Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differ. Equ., 49 (1-2), pp. 795-826
  • Lindqvist, P., On the equation div(|∇u|p-2∇u)+λ|u|p-2u=0 (1990) Proc. Am. Math. Soc., 109 (1), pp. 157-164
  • Lindqvist, P., Addendum: “On the equation div (| ∇ u| p - 2∇ u) + λ| u| p - 2u= 0 (1992) Proc. Am. Math. Soc., 116 (2), pp. 583-584
  • Manásevich, R., Takáč, P., On the Fredholm alternative for the p -Laplacian in one dimension (2002) Proc. Lond. Math. Soc. (3), 84 (2), pp. 324-342
  • Parini, E., Continuity of the variational eigenvalues of the p -Laplacian with respect to p (2011) Bull. Aust. Math. Soc., 83 (3), pp. 376-381
  • Ros-Oton, X., Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary (2014) J. Math. Pures et Appl. (9), 101 (3), pp. 275-302
  • Servadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type (2013) Discrete Contin. Dyn. Syst., 33 (5), pp. 2105-2137
  • Servadei, R., Valdinoci, E., A Brezis–Nirenberg result for non-local critical equations in low dimension (2013) Commun. Pure Appl. Anal., 12 (6), pp. 2445-2464
  • Servadei, R., Valdinoci, E., On the spectrum of two different fractional operators (2014) Proc. R. Soc. Edinb. Sect. A, 144 (4), pp. 831-855
  • Servadei, R., Valdinoci, E., Weak and viscosity solutions of the fractional Laplace equation (2014) Publ. Mat., 58 (1), pp. 133-154
  • Takáč, P., On the Fredholm alternative for the p -Laplacian at the first eigenvalue (2002) Indiana Univ. Math. J., 51 (1), pp. 187-237
  • Takáč, P., A variational approach to the Fredholm alternative for the p -Laplacian near the first eigenvalue (2006) J. Dyn. Differ. Equ., 18 (3), pp. 693-765


---------- APA ----------
Del Pezzo, L.M. & Quaas, A. (2017) . Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian. Journal of Fixed Point Theory and Applications, 19(1), 939-958.
---------- CHICAGO ----------
Del Pezzo, L.M., Quaas, A. "Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian" . Journal of Fixed Point Theory and Applications 19, no. 1 (2017) : 939-958.
---------- MLA ----------
Del Pezzo, L.M., Quaas, A. "Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian" . Journal of Fixed Point Theory and Applications, vol. 19, no. 1, 2017, pp. 939-958.
---------- VANCOUVER ----------
Del Pezzo, L.M., Quaas, A. Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian. J. Fixed Point Theory Appl. 2017;19(1):939-958.