Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Autism spectrum disorders (ASDs) are neuropsychiatric diseases characterized by impaired social interaction, communication deficits, and repetitive and stereotyped behaviors. ASD etiology is unknown, and both genetic and environmental causes have been proposed. Different brain structures are believed to play a role in ASD-related behaviors, including medial prefrontal cortex (mPFC), hippocampus, piriform cortex (Pir), basolateral amygdala (BLA) and Cerebellum. Compelling evidence suggests a link between white matter modifications and ASD symptoms in patients. Besides, an hypomyelination of the mPFC has been associated in rodents to social behavior impairment, one of the main symptoms of ASD. However, a comparative analysis of myelination as well as oligodendroglial (OL)-lineage cells in brain regions associated to social behaviors in animal models of ASD has not been performed so far. Here, we investigated whether OL-lineage cells and myelination are altered in a murine model of ASD induced by the prenatal exposure to valproic acid (VPA). We showed an hypomyelination in the BLA and Pir of adult VPA-exposed mice. These results were accompanied by a decrease in the number of OL-lineage cells and of mature OLs in the Pir, in addition to the mPFC, where myelination presented no alterations. In these regions the number of oligodendrocyte progenitors (OPCs) remained unaltered. Likewise, activation of histone deacetylases (HDACs) on OL-lineage cells in adulthood showed no differences. Overall, our results reveal OL-lineage cell alterations and hypomyelination as neuropathological hallmarks of ASD that have been overlooked so far. x00A9; 2019 Graciarena, Seiffe, Nait-Oumesmar and Depino.

Registro:

Documento: Artículo
Título:Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder
Autor:Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M.
Filiación:Brain and Spine Institute, Inserm U1127, Sorbonne Universités, Université Pierre & Marie Curie UMRS 1127, CNRS UMR 7225, Paris, France
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Autism spectrum disorder; Mouse; Myelin; Oligodendrocytes; Valproic acid; histone deacetylase; animal experiment; animal model; animal tissue; Article; autism; basolateral amygdala; behavior; cell communication; cerebellum; controlled study; dendrite; electron microscopy; environment; gene expression; heredity; hippocampus; histone acetylation; immunofluorescence; medial prefrontal cortex; mental disease; mouse; myelination; nerve cell plasticity; nervous system development; nonhuman; oligodendrocyte cell line; pyriform cortex; social behavior; social interaction
Año:2019
Volumen:12
DOI: http://dx.doi.org/10.3389/fncel.2018.00517
Título revista:Frontiers in Cellular Neuroscience
Título revista abreviado:Front. Cell. Neurosci.
ISSN:16625102
CAS:histone deacetylase, 9076-57-7
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_16625102_v12_n_p_Graciarena

Referencias:

  • Ameis, S.H., Lerch, J.P., Taylor, M.J., Lee, W., Viviano, J.D., Pipitone, J., A Diffusion tensor imaging study in children with adhd, autism spectrum disorder, ocd and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships (2016) Am. J. Psychiatry, 173, pp. 1213-1222
  • (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5), , 5th Edition. Arlington, VA: American Psychiatric Association
  • Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., Reiss, A.L., White matter structure in autism: Preliminary evidence from diffusion tensor imaging (2004) Biol. Psychiatry, 55, pp. 323-326
  • Bergles, D.E., Richardson, W.D., Oligodendrocyte development and plasticity (2015) Cold Spring Harb. Perspect. Biol., 8
  • Bergles, D.E., Roberts, J.D., Somogyi, P., Jahr, C.E., Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus (2000) Nature, 405, pp. 187-191
  • Betancur, C., Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting (2011) Brain Res, 1380, pp. 42-77
  • Borelli, K.G., Blanchard, D.C., Javier, L.K., Defensor, E.B., Brandao, M.L., Blanchard, R.J., Neural correlates of scent marking behavior in C57BL/6J mice: Detection and recognition of a social stimulus (2009) Neuroscience, 162, pp. 914-923
  • Campolongo, M., Kazlauskas, N., Falasco, G., Urrutia, L., Salgueiro, N., Höcht, C., Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment (2018) Mol. Autism, 9
  • Cartocci, V., Catallo, M., Tempestilli, M., Segatto, M., Pfrieger, F.W., Bronzuoli, M.R., Altered brain cholesterol/isoprenoid metabolism in a rat model of autism spectrum disorders (2018) Neuroscience, 372, pp. 27-37
  • Cheng, W., Rolls, E.T., Gu, H., Zhang, J., Feng, J., Autism: Reduced connectivity between cortical areas involved in face expression, theory of mind and the sense of self (2015) Brain, 138, pp. 1382-1393
  • Choe, H.K., Reed, M.D., Benavidez, N., Montgomery, D., Soares, N., Yim, Y.S., Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence (2015) Neuron, 87, pp. 152-163
  • Cunningham, M.O., Woodhall, G.L., Jones, R.S.G., Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro (2003) Neuropharmacology, 45, pp. 907-917
  • Depino, A.M., Lucchina, L., Pitossi, F., Early and adult hippocampal TGF-β1 overexpression have opposite effects on behavior (2011) Brain Behav. Immun., 25, pp. 1582-1591
  • Emery, B., Agalliu, D., Cahoy, J.D., Watkins, T.A., Dugas, J.C., Mulinyawe, S.B., Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination (2009) Cell, 138, pp. 172-185
  • Fatemi, S.H., Aldinger, K.A., Ashwood, P., Bauman, M.L., Blaha, C.D., Blatt, G.J., Consensus paper: Pathological role of the cerebellum in autism (2012) Cerebellum, 11, pp. 777-807
  • Fields, R.D., White matter in learning, cognition and psychiatric disorders (2008) Trends Neurosci, 31, pp. 361-370
  • Filley, C.M., Fields, R.D., White matter and cognition: Making the connection (2016) J. Neurophysiol., 116, pp. 2093-2104
  • Fröhlich, N., Nagy, B., Hovhannisyan, A., Kukley, M., Fate of neuron-glia synapses during proliferation and differentiation of NG2 cells (2011) J. Anat., 219, pp. 18-32
  • Gibson, E.M., Purger, D., Mount, C.W., Goldstein, A.K., Lin, G.L., Wood, L.S., Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain (2014) Science, 344
  • Göttlicher, M., Minucci, S., Zhu, P., Krämer, O.H., Schimpf, A., Giavara, S., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells (2001) EMBO J, 20, pp. 6969-6978
  • Howng, S.Y., Avila, R.L., Emery, B., Traka, M., Lin, W., Watkins, T., Zfp191 is required by oligodendrocytes for CNS myelination (2010) Genes. Dev., 24, pp. 301-311
  • Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P.E., Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination (2003) Nat. Genet., 33, pp. 366-374
  • Lin, H.C., Gean, P.W., Wang, C.C., Chan, Y.H., Chen, P.S., The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model (2013) Plos One, 8
  • Liu, J., Dietz, K., Deloyht, J.M., Pedre, X., Kelkar, D., Kaur, J., Impaired adult myelination in the prefrontal cortex of socially isolated mice (2012) Nat. Neurosci., 15, pp. 1621-1623
  • Lucchina, L., Depino, A.M., Altered peripheral and central inflammatory responses in a mouse model of autism (2014) Autism Res, 7, pp. 273-289
  • Makinodan, M., Rosen, K.M., Ito, S., Corfas, G.A., A critical period for social experience-dependent oligodendrocyte maturation and myelination (2012) Science, 337, pp. 1357-1360
  • Makinodan, M., Yamauchi, T., Tatsumi, K., Okuda, H., Takeda, T., Kiuchi, K., Demyelination in the juvenile period, but not in adulthood, leads to long-lasting cognitive impairment and deficient social interaction in mice (2009) Prog. Neuropsychopharmacol. Biol. Psychiatry, 33, pp. 978-985
  • Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L., Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system (2016) Science, 352, pp. 1326-1329
  • Mensch, S., Baraban, M., Almeida, R., Czopka, T., Ausborn, J., El Manira, A., Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo (2015) Nat. Neurosci., 18, pp. 628-630
  • Pacey, L.K., Xuan, I.C., Guan, S., Sussman, D., Henkelman, R.M., Chen, Y., Delayed myelination in a mouse model of fragile X syndrome (2013) Hum. Mol. Genet., 22, pp. 3920-3930
  • Pajevic, S., Basser, P.J., Fields, R.D., Role of myelin plasticity in oscillations and synchrony of neuronal activity (2014) Neuroscience, 276, pp. 135-147
  • Richter, K., Wolf, G., Engelmann, M., Social recognition memory requires two stages of protein synthesis in mice (2005) Learn Mem, 12, pp. 407-413
  • Sakurai, T., Ramoz, N., Barreto, M., Gazdoiu, M., Takahashi, N., Gertner, M., Slc25a12 disruption alters myelination and neurofilaments: A model for a hypomyelination syndrome and childhood neurodevelopmental disorders (2010) Biol. Psychiatry, 67, pp. 887-894
  • Sánchez, M.M., Hearn, E.F., Do, D., Rilling, J.K., Herndon, J.G., Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys (1998) Brain Res, 812, pp. 38-49
  • Shen, S., Li, J., Casaccia-Bonnefil, P., Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain (2005) J. Cell Biol., 169, pp. 577-589
  • Shen, S., Sandoval, J., Swiss, V.A., Li, J., Dupree, J., Franklin, R.J., Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency (2008) Nat. Neurosci., 11, pp. 1024-1034
  • Sirevaag, A.M., Greenough, W.T., Differential rearing effects on rat visual cortex synapses (1987) Brain Res, 424, pp. 320-332
  • Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., Gow, A., CNS myelin paranodes require Nkx6–2 homeoprotein transcriptional activity for normal structure (2004) J. Neurosci., 24, pp. 11215-11225
  • Sussman, D., Leung, R.C., Vogan, V.M., Lee, W., Trelle, S., Lin, S., The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD (2015) Neuroimage Clin, 8, pp. 170-179
  • Travers, B.G., Adluru, N., Ennis, C., Tromp Do, P.M., Destiche, D., Doran, S., Diffusion tensor imaging in autism spectrum disorder: A review (2012) Autism Res, 5, pp. 289-313
  • Wake, H., Lee, P.R., Fields, R.D., Control of local protein synthesis and initial events in myelination by action potentials (2011) Science, 333, pp. 1647-1651
  • Wegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S.Y., Imaki, H., Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum (2014) Acta Neuropathol. Commun., 2
  • Ye, F., Chen, Y., Hoang, T., Montgomery, R.L., Zhao, X.H., Bu, H., HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction (2009) Nat. Neurosci., 12, pp. 829-838
  • Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O’Keeffe, S., An RNA-sequencing transcriptome and splicing database of glia, neurons and vascular cells of the cerebral cortex (2014) J. Neurosci., 34, pp. 11929-11947
  • Zikopoulos, B., Barbas, H., Changes in prefrontal axons may disrupt the network in autism (2010) J. Neurosci., 30, pp. 14595-14609

Citas:

---------- APA ----------
Graciarena, M., Seiffe, A., Nait-Oumesmar, B. & Depino, A.M. (2019) . Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Frontiers in Cellular Neuroscience, 12.
http://dx.doi.org/10.3389/fncel.2018.00517
---------- CHICAGO ----------
Graciarena, M., Seiffe, A., Nait-Oumesmar, B., Depino, A.M. "Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder" . Frontiers in Cellular Neuroscience 12 (2019).
http://dx.doi.org/10.3389/fncel.2018.00517
---------- MLA ----------
Graciarena, M., Seiffe, A., Nait-Oumesmar, B., Depino, A.M. "Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder" . Frontiers in Cellular Neuroscience, vol. 12, 2019.
http://dx.doi.org/10.3389/fncel.2018.00517
---------- VANCOUVER ----------
Graciarena, M., Seiffe, A., Nait-Oumesmar, B., Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci. 2019;12.
http://dx.doi.org/10.3389/fncel.2018.00517