Artículo

Sanz, B.; Von Bilderling, C.; Tuninetti, J.S.; Pietrasanta, L.; Mijangos, C.; Longo, G.S.; Azzaroni, O.; Giussi, J.M. "Thermally-induced softening of PNIPAm-based nanopillar arrays" (2017) Soft Matter. 13(13):2453-2464
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST. © The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Thermally-induced softening of PNIPAm-based nanopillar arrays
Autor:Sanz, B.; Von Bilderling, C.; Tuninetti, J.S.; Pietrasanta, L.; Mijangos, C.; Longo, G.S.; Azzaroni, O.; Giussi, J.M.
Filiación:Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
Instituto de Fisica de Buenos Aires (IFIBA-CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, 1900, Argentina
Centro de Microscopias Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Palabras clave:Acrylic monomers; Amides; Atom transfer radical polymerization; Atomic force microscopy; Contact angle; Free radical reactions; Hydrogels; Hydrophilicity; Mechanical properties; Molecular dynamics; Monomers; Nanosystems; Stiffness; Topology; Anodized aluminum oxide; Hydrophilic/hydrophobic; Lower critical solution temperature; Molecular dynamics simulations; Nanostructured hydrogels; Poly(N-isopropyl acrylamide) (pNIPAM); Thermo-responsive hydrogels; Topological characteristics; Nanostructures
Año:2017
Volumen:13
Número:13
Página de inicio:2453
Página de fin:2464
DOI: http://dx.doi.org/10.1039/c7sm00206h
Título revista:Soft Matter
Título revista abreviado:Soft Matter
ISSN:1744683X
CODEN:SMOAB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1744683X_v13_n13_p2453_Sanz

Referencias:

  • Xia, L.-W., Xie, R., Ju, X.-J., Wang, W., Chen, Q., Chu, L.-Y., (2013) Nat. Commun., 4, p. 2226
  • Kahn, J.S., Trifonov, A., Cecconello, A., Guo, W., Fan, C., Willner, I., (2015) Nano Lett., 15 (11), pp. 7773-7778
  • Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J., (2007) Science, 315 (5811), pp. 487-490
  • Sigolaeva, L.V., Gladyr, S.Y., Gelissen, A.P.H., Mergel, O., Pergushov, D.V., Kurochkin, I.N., Plamper, F.A., Richtering, W., (2014) Biomacromolecules, 15 (10), pp. 3735-3745
  • LeMieux, M.C., Peleshanko, S., Anderson, K.D., Tsukruk, V.V., (2007) Langmuir, 23 (1), pp. 265-273
  • Best, J.P., Neubauer, M.P., Javed, S., Dam, H.H., Fery, A., Caruso, F., (2013) Langmuir, 29 (31), pp. 9814-9823
  • Georges, P.C., Janmey, P.A., (2005) J. Appl. Physiol., 98 (4), pp. 1547-1553
  • Best, J.P., Javed, S., Richardson, J.J., Cho, K.L., Kamphuis, M.M.J., Caruso, F., (2013) Soft Matter, 9 (18), p. 4580
  • Kaholek, M., Lee, W.K., Feng, J., Lamattina, B., Dyer, D.J., Zauscher, S., (2006) Chem. Mater., 18 (16), pp. 3660-3664
  • Peng, J., Qi, T., Liao, J., Fan, M., Luo, F., Li, H., Qian, Z., (2012) Nanoscale, 4 (8), p. 2694
  • Yang, J.A., Yeom, J., Hwang, B.W., Hoffman, A.S., Hahn, S.K., (2014) Prog. Polym. Sci., pp. 1-14
  • Ionov, L., (2014) Mater. Today, 17 (10), pp. 494-503
  • Wang, D., Cheng, D., Guan, Y., Zhang, Y., (2011) Biomacromolecules, 12 (3), pp. 578-584
  • Shen, J., Ye, T., Chang, A., Wu, W., Zhou, S., (2012) Soft Matter, pp. 12034-12042
  • Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., Calderon, M., (2015) Chem. Soc. Rev., 44, pp. 6161-6186
  • Fernandes, P.A.L., Schmidt, S., Zeiser, M., Fery, A., Hellweg, T., (2010) Soft Matter, 6 (15), pp. 3455-3458
  • Forney, B.S., Baguenard, C., Guymon, C.A., (2013) Soft Matter, 9 (31), pp. 7458-7467
  • Kaneko, Y., Nakamura, S., Sakai, K., Kikuchi, A., Aoyagi, T., Sakurai, Y., Okano, T., (1999) J. Biomater. Sci., Polym. Ed., 10 (11), pp. 1079-1091
  • Schmaljohann, D., Oswald, J., Jørgensen, B., Nitschke, M., Beyerlein, D., Werner, C., (2003) Biomacromolecules, 4 (6), pp. 1733-1739
  • Cheng, X., Canavan, H.E., Stein, M.J., Hull, J.R., Kweskin, S.J., Wagner, M.S., Somorjai, G.A., Ratner, B.D., (2005) Langmuir, 21 (17), pp. 7833-7841
  • Schmidt, S., Zeiser, M., Hellweg, T., Duschl, C., Fery, A., Möhwald, H., (2010) Adv. Funct. Mater., 20 (19), pp. 3235-3243
  • Hashmi, S.M., Dufresne, E.R., (2009) Soft Matter, 5 (19), pp. 3682-3688
  • Na, K., Park, J.H., Kim, S.W., Sun, B.K., Woo, D.G., Chung, H.-M., Park, K.-H., (2006) Biomaterials, 27 (35), pp. 5951-5957
  • Bae, Y.H., Vernon, B., Han, C.K., Kim, S.W., (1998) J. Controlled Release, 53 (1-3), pp. 249-258
  • Virtanen, J., Tenhu, H., (2000) Macromolecules, 33 (16), pp. 5970-5975
  • Yoshioka, H., Mikami, M., Mori, Y., Eishun, T., (1994) J. Macromol. Sci., Part A: Pure Appl.Chem., 31 (1), pp. 113-120
  • Berlinova, I.V., Dimitrov, I.V., Vladimirov, N.G., Samichkov, V., Ivanov, Y., (2001) Polymer, 42 (14), pp. 5963-5971
  • Singh, D., Kuckling, D., Koul, V., Choudhary, V., Adler, H.J., Dinda, A.K., (2008) Eur. Polym. J., 44 (9), pp. 2962-2970
  • Liu, W., Zhang, B., Lu, W.W., Li, X., Zhu, D., De Yao, K., Wang, Q., Wang, C., (2004) Biomaterials, 25 (15), pp. 3005-3012
  • Zhang, X.Z., Chu, C.C., (2007) J. Mater. Sci.: Mater. Med., 18 (9), pp. 1771-1779
  • Pollock, J.F., Healy, K.E., (2010) Acta Biomater., 6 (4), pp. 1307-1318
  • Janovák, L., Varga, J., Kemény, L., Dékány, I., (2008) Colloid Polym. Sci., 286 (14-15), pp. 1575-1585
  • Martin, J., Maiz, J., Sacristan, J., Mijangos, C., (2012) Polymer, 53 (6), pp. 1149-1166
  • Noirez, L., Stillings, C., Bardeau, J.-F., Steinhart, M., Schlitt, S., Wendorff, J.H., Pépy, G., (2013) Macromolecules, 46 (12), pp. 4932-4936
  • Knoll, W., Caminade, A.-M., Char, K., Duran, H., Feng, C.L., Gitsas, A., Kim, D.H., Zhong, X.H., (2011) Small, 7 (10), pp. 1384-1391
  • Pulamagatta, B., Yau, M.Y.E., Gunkel, I., Thurn-Albrecht, T., Schröter, K., Pfefferkorn, D., Kressler, J., Binder, W.H., (2011) Adv. Mater., 23 (6), pp. 781-786
  • Perry, J.L., Guo, P., Johnson, S.K., Mukaibo, H., Stewart, J.D., Martin, C.R., (2010) Nanomedicine, 5 (8), pp. 1151-1160
  • Giussi, J.M., Blaszczyk-Lezak, I., Sanz, B., Allegretti, P.E., Mijangos, C., Cortizo, M.S., (2014) Eur. Polym. J., 59, pp. 84-93
  • Sheng, X., Zhang, J., (2009) Langmuir, 25 (12), pp. 6916-6922
  • Duran, H., Steinhart, M., Butt, H.-J., Floudas, G., (2011) Nano Lett., 11 (4), pp. 1671-1675
  • Michell, R.M., Lorenzo, A.T., Müller, A.J., Lin, M.-C., Chen, H.-L., Blaszczyk-Lezak, I., Martin, J., Mijangos, C., (2012) Macromolecules, 45 (3), pp. 1517-1528
  • Blaszczyk-Lezak, I., Maiz, J., Sacristán, J., Mijangos, C., (2011) Ind. Eng. Chem. Res., 50 (18), pp. 10883-10888
  • Giussi, J.M., Blaszczyk-Lezak, I., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54 (26), pp. 6886-6893
  • Salsamendi, M., Ballard, N., Sanz, B., Asua, J.M., Mijangos, C., (2015) RSC Adv., 5 (25), pp. 19220-19228
  • Sapp, B.S.A., Lakshmi, B.B., (1999) Adv. Mater., 11 (5), pp. 402-404
  • Chang, C.-W., Chi, M.-H., Chu, C.-W., Ko, H.-W., Tu, Y.-H., Tsai, C.-C., Chen, J.-T., (2015) RSC Adv., 5 (35), pp. 27443-27448
  • Wang, H.J., Zhou, W.H., Yin, X.F., Zhuang, Z.X., Yang, H.H., Wang, X.R., (2006) J. Am. Chem. Soc., 128 (50), pp. 15954-15955
  • Wang, W.-C., Wang, J., Liao, Y., Zhang, L., Cao, B., Song, G., She, X., (2010) J. Appl. Polym. Sci., 117 (1), pp. 534-541
  • Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., Klok, H.-A., (2009) Chem. Rev., 109 (11), pp. 5437-5527
  • Li, Q., Tang, L., (2014) J. Polym. Sci., Part A: Polym. Chem., 52 (13), pp. 1862-1868
  • Li, Q., Tang, L.-M., Jiao, Y., (2014) Acta Polym. Sin., (8), pp. 1135-1142
  • Li, Q., Tang, L.-M., Liang, Y., (2013) Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ., 34 (6), pp. 1542-1546
  • Li, Q., Tang, L., Xia, Y., Li, B., (2013) Macromol. Rapid Commun., 34 (2), pp. 185-189
  • Md Jani, A.M., Losic, D., Voelcker, N.H., (2013) Prog. Mater. Sci., 58 (5), pp. 636-704
  • Seto, H., Takara, M., Yamashita, C., Murakami, T., Hasegawa, T., Hoshino, Y., Miura, Y., (2012) ACS Appl. Mater. Interfaces, 4 (10), pp. 5125-5133
  • Wang, J., Dai, J., Meng, M., Song, Z., Pan, J., Yan, Y., Li, C., (2014) J. Appl. Polym. Sci., 131, p. 40310
  • Cui, Y., Tao, C., Zheng, S., He, Q., Ai, S., Li, J., (2005) Macromol. Rapid Commun., 26 (19), pp. 1552-1556
  • Li, P.F., Xie, R., Jiang, J.C., Meng, T., Yang, M., Ju, X.J., Yang, L., Chu, L.Y., (2009) J. Membr. Sci., 337 (1-2), pp. 310-317
  • Wei, M., Gao, Y., Serpe, M.J., (2015) J. Mater. Chem. B, 3, pp. 744-747
  • Hutter, J.L., Bechhoefer, J., (1998) Rev. Sci. Instrum., 64, p. 1868
  • Lin, D.C., Dimitriadis, E.K., Horkay, F., (2007) J. Biomech. Eng., 129 (6), pp. 904-912
  • Oliver, W.C., Pharr, G.M., (1992) J. Mater. Res., 7 (6), pp. 1564-1580
  • Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Schoenenberger, C.-A., (2012) Nat. Nanotechnol., 7 (11), pp. 757-765
  • Hamner, K.L., Maye, M.M., (2013) Langmuir, 29, pp. 15217-15223
  • Hamner, K.L., Alexander, C.M., Coopersmith, K., Reishofer, D., Provenza, C., Maye, M.M., (2013) ACS Nano, 7 (8), pp. 7011-7020
  • Giussi, J.M., Blaszczyk-Lezak, I., Allegretti, P.E., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54 (18), pp. 5050-5057
  • Yamauchi, H., Maeda, Y., (2007) J. Phys. Chem. B, 111 (45), pp. 12964-12968
  • Burmistrova, A., Richter, M., Eisele, M., Üzüm, C., Von Klitzing, R., (2011) Polymers, 3 (4), pp. 1575-1590
  • Sousaa, R.G., Freitas, R.F.S., Welington, M.F., (1998) Polymer, 39 (16), pp. 3815-3819
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., (2008) J. Chem. Theory Comput., 4 (3), pp. 435-447
  • Quesada-Pérez, M., Ramos, J., Forcada, J., Martin-Molina, A., (2012) J. Chem. Phys., 136, p. 244903
  • Kremer, K., Grest, G.S., (1990) J. Chem. Phys., 92 (8), p. 5057
  • Longo, G.S., Olvera, M., Cruz, D., Szleifer, I., (2013) ACS Nano, 7, pp. 2693-2704
  • Ko, H., Zhang, Z., Chueh, Y.L., Saiz, E., Javey, A., (2010) Angew. Chem., Int. Ed., 49 (3), pp. 616-619
  • Yang, J., Hida, M., Mao, S., Zeng, H., Nakajima, H., Uchiyama, K., (2014) Chem. Commun., 50, pp. 10265-10268

Citas:

---------- APA ----------
Sanz, B., Von Bilderling, C., Tuninetti, J.S., Pietrasanta, L., Mijangos, C., Longo, G.S., Azzaroni, O.,..., Giussi, J.M. (2017) . Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter, 13(13), 2453-2464.
http://dx.doi.org/10.1039/c7sm00206h
---------- CHICAGO ----------
Sanz, B., Von Bilderling, C., Tuninetti, J.S., Pietrasanta, L., Mijangos, C., Longo, G.S., et al. "Thermally-induced softening of PNIPAm-based nanopillar arrays" . Soft Matter 13, no. 13 (2017) : 2453-2464.
http://dx.doi.org/10.1039/c7sm00206h
---------- MLA ----------
Sanz, B., Von Bilderling, C., Tuninetti, J.S., Pietrasanta, L., Mijangos, C., Longo, G.S., et al. "Thermally-induced softening of PNIPAm-based nanopillar arrays" . Soft Matter, vol. 13, no. 13, 2017, pp. 2453-2464.
http://dx.doi.org/10.1039/c7sm00206h
---------- VANCOUVER ----------
Sanz, B., Von Bilderling, C., Tuninetti, J.S., Pietrasanta, L., Mijangos, C., Longo, G.S., et al. Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter. 2017;13(13):2453-2464.
http://dx.doi.org/10.1039/c7sm00206h