Artículo

Agazzi, M.L.; Herrera, S.E.; Cortez, M.L.; Marmisollé, W.A.; Von Bilderling, C.; Pietrasanta, L.I.; Azzaroni, O. "Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms" (2019) Soft Matter. 15(7):1640-1650
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Supramolecular self-assembly of molecular building blocks represents a powerful "nanoarchitectonic" tool to create new functional materials with molecular-level feature control. Here, we propose a simple method to create tunable phosphate/polyamine-based films on surfaces by successive assembly of poly(allylamine hydrochloride) (PAH)/phosphate anions (Pi) supramolecular networks. The growth of the films showed a great linearity and regularity with the number of steps. The coating thickness can be easily modulated by the bulk concentration of PAH and the deposition cycles. The PAH/Pi networks showed chemical stability between pH 4 and 10. The transport properties of the surface assemblies formed from different deposition cycles were evaluated electrochemically by using different redox probes in aqueous solution. The results revealed that either highly permeable films or efficient anion transport selectivity can be created by simply varying the concentration of PAH. This experimental evidence indicates that this new strategy of supramolecular self-assembly can be useful for the rational construction of single polyelectrolyte nanoarchitectures with multiple functionalities. © 2019 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms
Autor:Agazzi, M.L.; Herrera, S.E.; Cortez, M.L.; Marmisollé, W.A.; Von Bilderling, C.; Pietrasanta, L.I.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Sucursal 4, Casilla de Correo 16, La Plata, 1900, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Insituto de Física de Buenos Aires (IFIBA), (UBA, CONICET), Buenos Aires, C1428EHA, Argentina
Palabras clave:Chemical stability; Deposition; Functional materials; Negative ions; Polyelectrolytes; Self assembly; Supramolecular chemistry; Thickness measurement; Experimental evidence; Molecular building blocks; Permeability properties; Phosphate networks; Poly(allylamine hydrochloride); Rational construction; Supramolecular networks; Supramolecular self-assemblies; Polycyclic aromatic hydrocarbons
Año:2019
Volumen:15
Número:7
Página de inicio:1640
Página de fin:1650
DOI: http://dx.doi.org/10.1039/c8sm02387e
Título revista:Soft Matter
Título revista abreviado:Soft Matter
ISSN:1744683X
CODEN:SMOAB
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_1744683X_v15_n7_p1640_Agazzi

Referencias:

  • Ariga, K., Lee, M.V., Mori, T., Yu, X.-Y., Hill, J.P., (2010) Adv. Colloid Interface Sci., 154, pp. 20-29
  • Aono, M., Bando, Y., Ariga, K., (2012) Adv. Mater., 24, pp. 150-151
  • Ramanathan, M., Shrestha, L.K., Mori, T., Ji, Q., Hill, J.P., Ariga, K., (2013) Phys. Chem. Chem. Phys., 15, pp. 10580-10611
  • Ariga, K., Malgras, V., Ji, Q., Zakaria, M.B., Yamauchi, Y., (2016) Coord. Chem. Rev., 320-321, pp. 139-152
  • Ariga, K., Nishikawa, M., Mori, T., Takeya, J., Shrestha, L.K., Hill, J.P., (2018) Sci. Technol. Adv. Mater.
  • Khan, A.H., Ghosh, S., Pradhan, B., Dalui, A., Shrestha, L.K., Acharya, S., Ariga, K., (2017) Bull. Chem. Soc. Jpn., 90, pp. 627-648
  • Komiyama, M., Mori, T., Ariga, K., (2018) Bull. Chem. Soc. Jpn., 91, pp. 1075-1111
  • Ariga, K., Yamauchi, Y., Rydzek, G., Ji, Q., Yonamine, Y., Wu, K.C.-W., Hill, J.P., (2014) Chem. Lett., 43, pp. 36-68
  • Komiyama, M., Yoshimoto, K., Sisido, M., Ariga, K., (2017) Bull. Chem. Soc. Jpn., 90, pp. 967-1004
  • Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., Hill, J.P., (2012) Bull. Chem. Soc. Jpn., 85, pp. 1-32
  • Decher, G., Hong, J.-D., Bunsenges, B., (1991) Phys. Chem., 95, pp. 1430-1434
  • Decher, G., (1997) Science, 277, pp. 1232-1237
  • Cortez, M.L., De Matteis, N., Ceolín, M., Knoll, W., Battaglini, F., Azzaroni, O., (2014) Phys. Chem. Chem. Phys., 16, pp. 20844-20855
  • Azzaroni, O., Lau, K.H.A., (2011) Soft Matter, 7, pp. 8709-8724
  • Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., (2010) J. Am. Chem. Soc., 132, pp. 8338-8348
  • Irigoyen, J., Moya, S.E., Iturri, J.J., Llarena, I., Azzaroni, O., Donath, E., (2009) Langmuir, 25, pp. 3374-3380
  • Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B., (2007) Science, 318, pp. 426-430
  • Lee, H., Lee, Y., Statz, A.R., Rho, J., Park, T.G., Messersmith, P.B., (2008) Adv. Mater., 20, pp. 1619-1623
  • Kang, S.M., Hwang, N.S., Yeom, J., Park, S.Y., Messersmith, P.B., Choi, I.S., Langer, R., Lee, H., (2012) Adv. Funct. Mater., 22, pp. 2949-2955
  • Marmisollé, W.A., Irigoyen, J., Gregurec, D., Moya, S., Azzaroni, O., (2015) Adv. Funct. Mater., 25, pp. 4144-4152
  • Muzzio, N.E., Pasquale, M.A., Marmisollé, W.A., Von Bilderling, C., Cortez, M.L., Pietrasanta, L.I., Azzaroni, O., (2018) Biomater. Sci., 6, pp. 2230-2247
  • D'Agostino, L., Di Luccia, A., (2002) Eur. J. Biochem., 269, pp. 4317-4325
  • Kroger, N., Deutzman, R., Bergsdorfm, C., Sumper, M., (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 14133-14138
  • Di Luccia, A., Picariello, G., Iacomino, G., Formisano, A., Paduano, L., D'Agostino, L., (2009) FEBS J., 276, pp. 2324-2335
  • Sumper, M., (2004) Angew. Chem., Int. Ed., 43, pp. 2251-2254
  • Sumper, M., Kroger, N., (2004) J. Mater. Chem., 14, pp. 2059-2065
  • Iacomino, G., Picariello, G., Sbrana, F., Di Luccia, A., Raiteri, R., D'Agostino, L., (2011) Biomacromolecules, 12, pp. 1178-1186
  • Brunner, E., Lutz, K., Sumper, M., (2004) Phys. Chem. Chem. Phys., 6, pp. 854-857
  • Sumper, M., Lorenz, S., Brunner, E., (2003) Angew. Chem., Int. Ed., 42, pp. 5192-5195
  • Mouslmani, M., Rosenholm, J.M., Prabhakar, N., Peurla, M., Baydoun, E., Patra, D., (2015) RSC Adv., 5, pp. 18740-18750
  • D'Agostino, L., Di Pietro, M., Luccia, A.D., (2005) FEBS J., 272, pp. 3777-3787
  • Lutz, K., Groger, C., Sumper, M., Brunner, E., (2005) Phys. Chem. Chem. Phys., 7, pp. 2812-2815
  • Hubsch, E., Ball, V., Senger, B., Decher, G., Voegel, J.C., Schaaf, P., (2004) Langmuir, 20, pp. 1980-1985
  • Kozlovskaya, V., Kharlampieva, E., Mansfield, M.L., Sukhishvili, S.A., (2006) Chem. Mater., 18, pp. 328-336
  • Richardson, J.J., Tardy, B.L., Ejima, H., Guo, J., Cui, J., Liang, K., Choi, G.H., Caruso, F., (2016) ACS Appl. Mater. Interfaces, 8, pp. 7449-7455
  • Bhatia, S.R., Khattak, S.F., Roberts, S.C., (2005) Curr. Opin. Colloid Interface Sci., 10, pp. 45-51
  • Kharlampieva, E., Kozlovskaya, V., Sukhishvili, S.A., (2009) Adv. Mater., 21, pp. 3053-3065
  • Kharlampieva, E., Erel-Unal, I., Sukhishvili, A.S., (2007) Langmuir, 23, pp. 175-181
  • Fu, Y., Bai, S., Cui, S., Qiu, D., Wang, Z., Zhang, X., (2002) Macromolecules, 35, pp. 9451-9458
  • Kozlovskaya, V.A., Kharlampiev, E.P., Erel-Unal, I., Sukhishvili, S.A., (2009) Polym. Sci., Ser. A, 51, pp. 719-729
  • Dragan, E.S., Bucatariu, F., (2010) Macromol. Rapid Commun., 31, pp. 317-322
  • Kozlovskayaa, V.A., Kharlampievaa, E.P., Erel-Unal, I., Sukhishvili, S.A., (2009) Polym. Sci., Ser. A, 51, pp. 719-729
  • Zhang, Y., Guan, Y., Zhou, S., (2005) Biomacromolecules, 6, pp. 2365-2369
  • Wang, Z., Zhu, H., Li, D., Yang, X., (2008) Colloids Surf., A, 329, pp. 58-66
  • Bucatariu, F., Fundueanu, G., Hitruc, G., Dragan, E.S., (2011) Colloids Surf., A, 380, pp. 111-118
  • Manna, U., Dhar, J., Nayak, R., Patil, S., (2010) Chem. Commun., 46, pp. 2250-2252
  • Such, G.K., Quinn, J.F., Quinn, A., Tjipto, E., Caruso, F., (2006) J. Am. Chem. Soc., 128, pp. 9318-9319
  • Tong, W., Gao, C., Möhwald, H., (2006) Macromol. Rapid Commun., 27, pp. 2078-2083
  • D'Agostino, L., Di Pietro, M., Luccia, A.D., (2005) FEBS J., 272, pp. 3777-3787
  • Kooijman, E.E., Tieleman, D.P., Testerink, C., Munnik, T., Rijkers, D.T.S., Burger, K.N.J., De Kruijff, B., (2007) J. Biol. Chem., 282, pp. 11356-11364
  • Kooijman, E.E., Burger, K.N.J., (2009) Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 1791, pp. 881-888
  • Capdevila, D.A., Marmisollé, W.A., Williams, F.J., Murgida, D.H., (2013) Phys. Chem. Chem. Phys., 15, pp. 5386-5394
  • Marmisolle, W.A., Capdevila, D.A., De Llave, E., Williams, F.J., Murgida, D.H., (2013) Langmuir, 29, pp. 5351-5359
  • Marmisollé, W.A., Irigoyen, J., Gregurec, D., Moya, S., Azzaroni, O., (2015) Adv. Funct. Mater., 25, pp. 4144-4152
  • Lutz, K., Gröger, C., Sumper, M., Brunner, E., (2005) Phys. Chem. Chem. Phys., 7, pp. 2812-2815
  • Dressick, W.J., Wahl, K.J., Bassim, N.D., Stroud, R.M., Petrovykh, D.Y., (2012) Langmuir, 28, pp. 15831-15843
  • Laucirica, G., Marmisollé, W.A., Azzaroni, O., (2017) Phys. Chem. Chem. Phys., 19, pp. 8612-8620
  • Sun, C., Xue, D., (2014) J. Mol. Struct., 1059, pp. 338-342
  • Sun, C., Xue, D., (2014) J. Phys. Chem. C, 118, pp. 16043-16050
  • Eriksson, M., Notley, S.M., Wågberg, L., (2005) J. Colloid Interface Sci., 292, pp. 38-45
  • Andreozzi, P., Diamanti, E., Py-Daniel, K.R., Cáceres-Vélez, P.R., Martinelli, C., Politakos, N., Escobar, A., Moya, S.E., (2017) ACS Appl. Mater. Interfaces, 9, pp. 38242-38254
  • Murthy, V.S., Rana, R.K., Wong, M.S., (2006) J. Phys. Chem. B, 110, pp. 25619-25627
  • Xia, Y., Nguyen, T.D., Yang, M., Lee, B., Santos, A., Podsiadlo, P., Tang, Z., Kotov, N., (2011) Nat. Nanotechnol., 6, pp. 580-587
  • Pavlukhina, S., Sukhishvili, S., (2012) Adv. Drug Delivery Rev., 63, pp. 822-836
  • Bhatia, S.R., Khattak, S.F., Roberts, S.C., (2005) Curr. Opin. Colloid Interface Sci., 10, pp. 45-51
  • Shu, X.Z., Zhu, K.J., (2002) Eur. J. Pharm. Biopharm., 54, pp. 235-243
  • Huang, Y., Lawrence, P.G., Lapitsky, Y., (2014) Langmuir, 26, pp. 7771-7777
  • Lawrence, P.G., Lapitsky, Y., (2015) Langmuir, 31, pp. 1564-1574
  • Keating, J.J., Imbrogno, J., Belfort, G., (2016) ACS Appl. Mater. Interfaces, 8, pp. 28383-28399
  • Liu, X., Bruening, M.L., (2004) Chem. Mater., 16, pp. 351-357
  • Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., (2014) Chem.-Eur. J., 20, pp. 13366-13374
  • Flessner, R.M., Yu, Y., Lynn, D.M., (2011) Chem. Commun., 47, pp. 550-552
  • Vazquez, E., Dewitt, D.M., Hammond, P.T., Lynn, D.M., (2002) J. Am. Chem. Soc., 124, pp. 13992-13993
  • Han, L., Lu, X., Liu, K., Wang, K., Fang, L., Weng, L.-T., Zhang, H., Li, Z., (2017) ACS Nano, 11, pp. 2561-2574
  • Krasemann, L., Toutianoush, A., Tieke, B., (2001) J. Membr. Sci., 181, pp. 221-228
  • Balachandra, A.M., Dai, J.H., Bruening, M.L., (2002) Macromolecules, 35, pp. 3171-3178
  • Takita, R., Okamura, Y., Endo, Y., Anzai, J.I., (2006) Electroanalysis, 18, pp. 1627-1630
  • Noguchi, T., Anzai, J.I., (2006) Langmuir, 22, pp. 2870-2875
  • Burke, S.E., Barrett, C.J., (2004) Macromolecules, 37, pp. 5375-5384
  • Park, M.K., Deng, S., Advincula, R.C., (2004) J. Am. Chem. Soc., 126, pp. 13723-13731
  • Dai, J., Balachandra, A.M., Lee, J.I., Bruening, M.L., (2002) Macromolecules, 35, pp. 3164-3178
  • Li, Q., Quinn, J.F., Caruso, F., (2005) Adv. Mater., 17, pp. 2058-2062
  • Zhang, J.L., Williams, M.E., Keefe, M.H., Morris, G.A., Nguyen, S.T., Hupp, J.T., (2002) Electrochem. Solid-State Lett., 5, pp. 25-28
  • Schlenoff, J.B., Ly, H., Li, M., (1998) J. Am. Chem. Soc., 120, pp. 7626-7634
  • Krasemann, L., Tieke, B., (2000) Langmuir, 16, pp. 287-290
  • Farhat, T.R., Schlenoff, J.B., (2001) Langmuir, 17, pp. 1184-1192
  • Farhat, T.R., Schlenoff, J.B., (2003) J. Am. Chem. Soc., 125, pp. 4627-4636
  • Villalba, M., Méndez De Leo, L.P., Calvo, E.J., (2014) ChemElectroChem, 1, pp. 195-199
  • Takita, R., Yoshida, K., Anzai, J.I., (2007) Sens. Actuators, B, 121, pp. 54-60

Citas:

---------- APA ----------
Agazzi, M.L., Herrera, S.E., Cortez, M.L., Marmisollé, W.A., Von Bilderling, C., Pietrasanta, L.I. & Azzaroni, O. (2019) . Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms. Soft Matter, 15(7), 1640-1650.
http://dx.doi.org/10.1039/c8sm02387e
---------- CHICAGO ----------
Agazzi, M.L., Herrera, S.E., Cortez, M.L., Marmisollé, W.A., Von Bilderling, C., Pietrasanta, L.I., et al. "Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms" . Soft Matter 15, no. 7 (2019) : 1640-1650.
http://dx.doi.org/10.1039/c8sm02387e
---------- MLA ----------
Agazzi, M.L., Herrera, S.E., Cortez, M.L., Marmisollé, W.A., Von Bilderling, C., Pietrasanta, L.I., et al. "Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms" . Soft Matter, vol. 15, no. 7, 2019, pp. 1640-1650.
http://dx.doi.org/10.1039/c8sm02387e
---------- VANCOUVER ----------
Agazzi, M.L., Herrera, S.E., Cortez, M.L., Marmisollé, W.A., Von Bilderling, C., Pietrasanta, L.I., et al. Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: Preparation and permeability properties of nanofilms. Soft Matter. 2019;15(7):1640-1650.
http://dx.doi.org/10.1039/c8sm02387e