Artículo

Fuentes, K.M.; Betancourt, P.; Marrero, S.; García, S. "Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres" (2017) Reaction Kinetics, Mechanisms and Catalysis. 120(1):403-415
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The photocatalytic degradation of phenol in aqueous suspensions of co-doped TiO2supported on SiO2spheres was investigated. A novel photocatalyst was prepared combining iron doped TiO2–SiO2and reduced TiO2–SiO2by mechanical milling (MM/TiO2–SiO2). All the particles were characterized by BET. nitrogen adsorption, X-ray diffraction, scanning electron microscopy, UV–visible spectroscopy and elemental analysis. Trough XRD patterns it was calculated that 2 nm rutile crystallites were formed onto SiO2surface, ICP analysis confirmed Ti content near to nominal, while EDX analysis shows a surface content 10 lower, suggesting that the SiO2limiting the agglomeration of TiO2particles allowing a good dispersion. Phenol photodegradation was induced by illuminating the coated spheres in aqueous solution with a visible light source. The synthesized TiO2–SiO2particles appeared to be 1.3 times more efficient in the phenol conversion, as compared to pure rutile particles. According to characterization results, this improvement could be attributed mainly to three factors: an effective transference of charge carriers trough the grain boundaries present between contact points, a photonic behavior evidenced on an increment on UV–vis absorption intensity and the quantum size effect of rutile crystallites coated on SiO2. © 2016, Akadémiai Kiadó, Budapest, Hungary.

Registro:

Documento: Artículo
Título:Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres
Autor:Fuentes, K.M.; Betancourt, P.; Marrero, S.; García, S.
Filiación:Departamento de Química Aplicada, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, 40679, Venezuela
INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina
Laboratorio de Desarrollo de Procesos, Centro de Catálisis Petróleo y Petroquímica, Universidad Central de Venezuela, Caracas, Venezuela
Centro de Microscopía Electrónica, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, Venezuela
Palabras clave:Co-doped TiO2; Grain boundaries; Phenol degradation; Photonic SiO2spheres; Visible light; Crystallites; Doping (additives); Gas adsorption; Grain boundaries; Light; Light sources; Mechanical alloying; Milling (machining); Oxide minerals; Phenols; Scanning electron microscopy; Silica; Solutions; Suspensions (fluids); Titanium dioxide; X ray diffraction; Aqueous suspensions; Co-doped; Phenol degradation; Phenol photodegradation; Photo catalytic degradation; Quantum size effects; Visible light; Visible spectroscopy; Biodegradation
Año:2017
Volumen:120
Número:1
Página de inicio:403
Página de fin:415
DOI: http://dx.doi.org/10.1007/s11144-016-1097-3
Título revista:Reaction Kinetics, Mechanisms and Catalysis
Título revista abreviado:React. Kinet. Mech. Catal.
ISSN:18785190
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_18785190_v120_n1_p403_Fuentes

Referencias:

  • Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D., Understanding TiO2 photocatalysis: mechanisms and materials (2004) Chem Rev, 114, pp. 9919-9986
  • Nakata, K., Fujishima, A., TiO2 photocatalysis: design and applications (2012) J Photochem Photobiol C, 13, pp. 169-189. , COI: 1:CAS:528:DC%2BC38XovFWqt78%3D
  • Gaya, U., Abdullah, A., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems (2008) J Photochem Photobiol C, 9, pp. 1-12. , COI: 1:CAS:528:DC%2BD1cXlvVSgtLY%3D
  • Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J., Zhao, Y., Enhancement of p,p′-DDT photodegradation on soil surfaces using TiO2 induced by UV-light (2005) Chemosphere, 60, pp. 266-273. , COI: 1:CAS:528:DC%2BD2MXks1Cqsb8%3D
  • Lin, L., Chai, C., Zhao, B., Wei, W., He, D., He, B., Tang, Q., Photocatalytic oxidation for degradation of VOC’s (2013) OJIC, 3, pp. 14-25. , COI: 1:CAS:528:DC%2BC2cXntVWmu7o%3D
  • Yuan, Y., Zhang, J., Li, H., Li, Y., Zhao, Y., Zheng, C., Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis (2012) Chem Eng J, 192, pp. 21-28. , COI: 1:CAS:528:DC%2BC38Xos1Cms7k%3D
  • Xu, S., Pan, S., Xu, Y., Luo, Y., Zhang, Y., Li, G., Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO2 spherical shell (2015) J Hazard Mater, 11, pp. 7-13
  • Rappoport, Z., (2003) The chemistry of phenols, , Wiley, New Jersey
  • Schwarzenbach, R., Gschwend, P., Imboden, D., (1993) Environmental organic chemistry, , Wiley, New Jersey
  • Priya, S., Premalatha, M., Anantharaman, N., Solar photocatalytic treatment of phenolic wastewater-potential, challenges and opportunities (2008) ARPN-JEAS, 3, pp. 36-41
  • Green, J., Carter, E., Murphy, D., Interaction of molecular oxygen with oxygen vacancies on reduced TiO2: site specific blocking by probe molecules (2009) Chem Phys Lett, 477, pp. 340-344. , COI: 1:CAS:528:DC%2BD1MXptlagurk%3D
  • Castro, C., Centeno, A., Giraldo, S., Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants (2010) Catal Today, 157, pp. 119-124
  • Qamar, M., Merzougui, B., Anjum, D., Hakeem, A., Yamani, Z., Bahnemann, D., Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide (2014) Catal Today, 230, pp. 158-165. , COI: 1:CAS:528:DC%2BC3sXhslaru73I
  • Lee, T., Ryu, H., Lee, W., Photoelectrochemical properties of iron (III)-doped TiO2 (2015) Ceram Int, 41, pp. 7582-7589. , COI: 1:CAS:528:DC%2BC2MXjslClur0%3D
  • Wendt, S., Sprunger, P., Lira, E., Madsen, G., Li, Z., Hansen, J., Matthiesen, J., Besenbacher, F., The role of interstitial sites in the Ti3d defect state in the band gap of titania (2008) Science, 320, pp. 1755-1759. , COI: 1:CAS:528:DC%2BD1cXnsF2ru7Y%3D
  • Zhang, Z., Long, J., Xie, X., Zhuang, H., Zhou, Y., Lin, H., Yuan, H., Fu, X., A controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction (2012) Appl Catal A, 425, pp. 117-124
  • Kang, Q., Cao, J., Zhang, Y., Liu, L., Xu, H., Ye, J., Reduced TiO2 nanotube arrays for photoelectrochemical water splitting (2013) J Mater Chem, 1, pp. 5766-5774. , COI: 1:CAS:528:DC%2BC3sXmtF2itr8%3D
  • Motegh, M., Cen, J., Appel, P., Van Ommen, J., Kreutzer, M., Photocatalytic-reactor efficiencies and simplified expressions to assess their relevance in kinetic experiments (2012) Chem Eng J, 207, pp. 607-615
  • Joannopoulos, J., Meade, R., Winn, J., (1995) Photonic crystals: molding the flow of light, , Princeton University, New Jersey
  • Du, X., He, J., Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications (2013) Nanoscale, 3, pp. 3984-4002
  • Jiang, Q., Li, K., Wei, H., Yi, L., Tunable optical stop band of silica shell photonic crystals (2013) J Sol–Gel Sci Techn, 67, pp. 565-572. , COI: 1:CAS:528:DC%2BC3sXhtFWrsrvK
  • Meseguer, F., Blanco, A., Míguez, H., García-Santamaría, F., Ibisate, M., López, C., Synthesis of inverse opals (2002) Colloids Surf A, 202, pp. 281-290. , COI: 1:CAS:528:DC%2BD38Xhs1OmsLg%3D
  • Wang, Y., Chen, E., Lai, H., Lu, B., Hu, Z., Qin, X., Shi, W., Du, G., Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode (2013) Ceram Int, 39, pp. 5407-5413. , COI: 1:CAS:528:DC%2BC3sXjvVyitQ%3D%3D
  • Son, S., Hwang, S., Kim, C., Yun, J., Jang, J., Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells (2013) ACS Appl Mater Interfaces, 5, pp. 4815-4820. , COI: 1:CAS:528:DC%2BC3sXmvVymsrk%3D
  • Ullah, S., Ferreira-Neto, E., Pasa, A., Alcântara, C., Acuña, J., Bilmes, S.A., Ricci, M.M., Rodrigues-Filho, U., Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles (2015) Appl Catal B, 179, pp. 333-343. , COI: 1:CAS:528:DC%2BC2MXptFCgurw%3D
  • Guo, N., Liang, Y., Lan, S., Liu, L., Ji, G., Gan, S., Zou, H., Xu, X., Uniform TiO2–SiO2 hollow nanospheres: synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol (2014) Appl Surf Sci, 305, pp. 562-574. , COI: 1:CAS:528:DC%2BC2cXlvFertbo%3D
  • Stöber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range (1968) J Colloid Interface Sci, 26, pp. 62-69
  • American Society for Testing and Materials, (1995) Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water, , D1252-95, ASTM Annual Book of Standards. American Society of Testing and Materials, Philadelphia
  • Martínez, J., Palomares, S., Ortega-Zarzosa, G., Ruiz, F., Chumakov, Y., Rietveld refinement of amorphous SiO2 prepared via sol–gel method (2006) Mater Lett, 60, pp. 3526-3529
  • Zhang, G., Xu, Y., Xu, D., Wang, D., Xue, Y., Su, W., Pressure-induced crystallization of amorphous SiO2 with silicon–hydroxy group and the quick synthesis of coesite under lower temperature (2008) High Press Res, 28, pp. 641-650. , COI: 1:CAS:528:DC%2BD1cXhsV2ltLjJ
  • Shen, X., Zhai, Y., Sun, Y., Gu, H., Preparation of monodisperse spherical SiO2 by microwave hydrothermal method and kinetics of dehydrated hydroxyl (2010) J Mater Technol, 26, pp. 711-714. , COI: 1:CAS:528:DC%2BC3cXht1agt7nJ
  • Cheng, H., Ma, J., Zhao, Z., Qi, L., Hydrothermal preparation of uniform nanosize rutile and anatase particles (1995) Chem Mater, 7, pp. 663-671. , COI: 1:CAS:528:DyaK2MXkvVWlurc%3D
  • Kamalasanan, M., Chandra, S., Sol–gel synthesis of ZnO thin films (1996) Thin Solid Films, 288, pp. 112-118. , COI: 1:CAS:528:DyaK2sXkt1Oqtw%3D%3D
  • Brus, L., Electronic wave functions in semiconductor clusters: experiment and theory (1986) J Phys Chem, 90, pp. 2555-2560. , COI: 1:CAS:528:DyaL28XktFagtr0%3D
  • Zribi, M., Kanzari, M., Rezig, B., Structural, morphological and optical properties of thermal annealed TiO thin films (2008) Thin Solid Films, 516, pp. 1476-1482. , COI: 1:CAS:528:DC%2BD1cXhsFGjt7g%3D
  • Stroyuk, A.L., Kryukov, A.I., Kumchii, A., Pokhodenko, V.D., Quantum size effects in semiconductor photocatalysis (2005) Theor Exp Chem, 41, pp. 207-228. , COI: 1:CAS:528:DC%2BD2MXhtVGrurzN
  • Anderson, C., Bard, A., An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis (1995) J Phys Chem, 99, pp. 9882-9885. , COI: 1:CAS:528:DyaK2MXlvFWksbY%3D
  • Mahyar, A., Behnajady, M., Modirshahla, N., Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method (2010) Indian J Chem A, 49, pp. 1593-1600
  • Milchi, A., Janitabar, S., Rasouli, S., Sol–gel preparation of nanoscale TiO2/SiO2 composite for eliminating of con red azo dye (2011) Mater Sci Appl, 2, pp. 476-480
  • Tallarida, M., Das, C., Schmeisser, D., Quantum size effects in TiO2 thin films grown by atomic layer deposition (2014) Beilstein J Nanotechnol, 5, pp. 77-82
  • Bo Yoo, J., Yoo, H.J., Lim, B.W., Lee, K.H., Kim, M.H., Kang, D., Kang, D., Hur, N.H., Controlled synthesis of monodisperse SiO2–TiO2 microspheres with a yolk-shell structure as effective photocatalysts (2012) ChemSusChem, 5, pp. 2334-2340
  • Park, Y., Kim, W., Monllor-Satoca, D., Tachikawa, T., Majima, T., Choi, W., Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2 (2013) J Phys Chem Lett, 4, pp. 189-194. , COI: 1:CAS:528:DC%2BC38XhvVGrurjP
  • Nowotny, J., Bak, T., Burg, T., Nowotny, N.K., Sheppard, L.R., Effect of grain boundaries on semiconducting properties of TiO2 at elevated temperatures (2007) J Phys Chem C, 111, pp. 9769-9778. , COI: 1:CAS:528:DC%2BD2sXmtlWrs7Y%3D
  • Bak, T., Nowotny, J., Nowotny, M.K., Sheppard, L.R., Defect chemistry of titanium dioxide effect of interfaces (2007) J Aust Ceram Soc, 43, pp. 49-55. , COI: 1:CAS:528:DC%2BD1cXnvVWmur8%3D
  • Nakade, S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., Yanagida, S., Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells (2003) J Phys Chem B, 107, pp. 8607-8611. , COI: 1:CAS:528:DC%2BD3sXltlaqu7c%3D
  • Wang, C., Pagel, R., Dohrmann, J., Bahnemann, D., Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis (2006) C R Chem, 9, pp. 761-773. , COI: 1:CAS:528:DC%2BD28Xkt1yhs7k%3D

Citas:

---------- APA ----------
Fuentes, K.M., Betancourt, P., Marrero, S. & García, S. (2017) . Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres. Reaction Kinetics, Mechanisms and Catalysis, 120(1), 403-415.
http://dx.doi.org/10.1007/s11144-016-1097-3
---------- CHICAGO ----------
Fuentes, K.M., Betancourt, P., Marrero, S., García, S. "Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres" . Reaction Kinetics, Mechanisms and Catalysis 120, no. 1 (2017) : 403-415.
http://dx.doi.org/10.1007/s11144-016-1097-3
---------- MLA ----------
Fuentes, K.M., Betancourt, P., Marrero, S., García, S. "Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres" . Reaction Kinetics, Mechanisms and Catalysis, vol. 120, no. 1, 2017, pp. 403-415.
http://dx.doi.org/10.1007/s11144-016-1097-3
---------- VANCOUVER ----------
Fuentes, K.M., Betancourt, P., Marrero, S., García, S. Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres. React. Kinet. Mech. Catal. 2017;120(1):403-415.
http://dx.doi.org/10.1007/s11144-016-1097-3