Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Amaranth starchy fractions have recently awakened interest from the industry, mainly due to its potential functional characteristics. The encapsulating efficiencies of starch-enriched fraction (SEF) and native starch (NS) obtained, respectively, by dry and wet assisted ball milling were studied. The effects of high impact milling, gelatin addition, and storage temperature (5–45 °C, 45 days) on the retention of β-carotene were investigated. Significant effects of both milling and amaranth protein present in SEF matrix on emulsification and subsequent retention of β-carotene were found. Ball milled SEF matrix showed the best encapsulation performance, with up to three times of total β-carotene content in comparison with the NS-containing matrices. Degradation of surface and encapsulated β-carotene followed a first-order kinetic model and was strongly influenced by storage temperature. The activation energy of surface β-carotene degradation doubled that of encapsulated β-carotene (86 vs. 48 kJ/mol, respectively). This difference indicates that encapsulated β-carotene is more stable to temperature changes than surface β-carotene and revealed the protective capability of the SEF matrix even at high temperatures. The color coordinates a* and L* for samples stored at 25 and 45 °C positively correlated with the remaining β-carotene, revealing the potentiality of color measurement as an adequate index of β-carotene retention. The starch-enriched amaranth fraction modified by high impact milling showed a high technological potential as an encapsulating agent and its own protein content served as a good emulsifier-stabilizer. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling
Autor:Roa, D.F.; Buera, M.P.; Tolaba, M.P.; Santagapita, P.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA), Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Palabras clave:Amaranth flour; Amaranth starch; Encapsulating agent; Planetary ball milling; Thermal degradation; β-Carotene; Activation energy; Emulsification; Food storage; Milling (machining); Proteins; Pyrolysis; Skin; Starch; Amaranth flour; Amaranth starches; Color measurements; First-order kinetic models; Functional characteristics; Planetary ball milling; Storage temperatures; Temperature changes; Ball milling
Año:2017
Volumen:10
Número:3
Página de inicio:512
Página de fin:521
DOI: http://dx.doi.org/10.1007/s11947-016-1830-y
Título revista:Food and Bioprocess Technology
Título revista abreviado:Food. Bioprocess Technol.
ISSN:19355130
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v10_n3_p512_Roa

Referencias:

  • Agudelo-Laverde, L., Schebor, C., Buera, M.P., Water content effect on the chromatic attributes of dehydrated strawberries during storage, as evaluated by image analysis (2013) LWT-Food Science and Technology, 52, pp. 157-162. , COI: 1:CAS:528:DC%2BC3sXltFCqsbc%3D
  • Association of Official Analytical Chemists, AOAC 925.09. Solids (total) and moisture in flour (2000) Official methods of analysis, , Association of Official Analytical Chemists, Gaithersburg, MD
  • Avanza, M.V., Puppo, M.C., Añón, M.C., Rheological characterization of amaranth protein gels (2005) Food Hydrocolloids, 19 (5), pp. 889-898. , COI: 1:CAS:528:DC%2BD2MXjtl2qtrc%3D
  • Bechoff, A., Tomlins, K., Dhuique-Mayer, C., Dove, R., Westby, A., On-farm evaluation of the impact of drying and storage on the carotenoid content of orange-fleshed sweet potato (Ipomea batata Lam.) (2011) International Journal of Food Science & Technology, 46, pp. 52-60. , COI: 1:CAS:528:DC%2BC3MXotlyntA%3D%3D
  • Bejarano-Luján, D.L., Lopes da Cunha, R., Netto, F.M., Structural and rheological properties of amaranth protein concentrate gels obtained by different processes (2010) Food Hydrocolloids, 24, pp. 602-610
  • Breene, W.M., Food uses of grain Amaranth (1991) Cereal Foods World, 36, pp. 426-430. , COI: 1:CAS:528:DyaK3MXmtVKhtrs%3D
  • Briones, V., Aguilera, J.M., Image analysis of changes in surface color of chocolate (2005) Food Research International, 38 (1), pp. 87-94
  • Britton, G., UV/visible spectroscopy (1995) Carotenoids, pp. 13-62. , Britton G, Liaaen-Jensen S, Pfander H, (eds), Birkhäuser, Basel
  • Chattopadhyaya, S., Singhal, R.S., Kulkarni, P.R., Oxidised starch as gum Arabic substitute for encapsulation of flavours (1998) Carbohydrate Polymers, 37, pp. 143-144. , COI: 1:CAS:528:DyaK1cXntlemurc%3D
  • Chen, J., Lii, Y., Lu, S., Physicochemical and morphological analyses on damaged rice starches (2003) Journal of Food and Drug Analysis, 11, pp. 283-289
  • Choi, H., Kim, W., Shin, M., Properties of Korean amaranth starch compared to waxy millet and waxy sorghum starches (2004) Starch, 56, pp. 469-477. , COI: 1:CAS:528:DC%2BD2cXpslGqtbY%3D
  • Cisse, M., Vaillant, F., Acosta, O., Dhuique-Mayer, C., Dornier, M., Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, Eyring, and Ball models (2009) Journal of agricultural and food chemistry., 14, pp. 6285-6291
  • Condes, M., Scilingo, A., Añon, M., Characterization of amaranth proteins modified by trypsin proteolysis. Structural and functional changes (2008) LWT-Food Science and Technology, 42, pp. 963-970
  • Desobry, S.A., Netto, F.M., Labuza, T.P., Comparison of spray-drying, drum drying and freeze-drying for β-carotene encapsulation and preservation (1997) Journal Food Science, 62, pp. 1158-1162. , COI: 1:CAS:528:DyaK1cXjsVOhsg%3D%3D
  • Devi, F., Fibrianto, K., Torley, J., Bhandari, B., Physical properties of cryomilled rice starch (2009) Journal of Cereal Science, 49, pp. 278-284. , COI: 1:CAS:528:DC%2BD1MXivVWlu7o%3D
  • Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., Amiot, M., Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds (2007) Journal of Agricultural and Food Chemistry, 55, pp. 4209-4216. , COI: 1:CAS:528:DC%2BD2sXksFSgtbc%3D
  • Fennema, O., (1996) Food chemistry, , Fennema O, (ed), Marcel Dekker, Inc., New York
  • Hidalgo, A., Brandolini, A., Kinetics of carotenoids degradation during the storage of einkorn (Triticum monococcum L. ssp. monococcum) and bread wheat (Triticum aestivum L. ssp. aestivum) flours (2008) Journal of Agricultural and Food Chemistry, 56, pp. 11300-11305
  • Huang, Z., Lu, J., Li, X., Tong, Z., Effect of mechanical activation on physico-chemical properties and structure of cassava starch (2007) Carbohydrate Polymer, 68, pp. 128-135. , COI: 1:CAS:528:DC%2BD2sXhsF2itr0%3D
  • Jane, J., Shen, L., Wang, L., Maningat, C.C., Preparation and properties of small-particle corn starch (1992) Cereal Chemistry, 69, pp. 280-283. , COI: 1:CAS:528:DyaK38XlvFeqsr0%3D
  • Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K., Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with b-cyclodextrin (2007) Food Chemistry, 101, pp. 652-658. , COI: 1:CAS:528:DC%2BD28Xpt1ygtrw%3D
  • Kimura, M., Rodríguez-Amaya, D.B., A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids (2001) Food Chemistry, 78, pp. 389-398
  • Kong, X., Kasapis, S., Bao, J., Corke, H., Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch (2008) Radiation Physics and Chemistry, 78, pp. 954-960
  • Krishnan, S., Bhosale, R., Singhal, R., Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials (2005) Carbohydrate Polymers, 61, pp. 95-102
  • Lavelli, V., Zanoni, B., Zaniboni, A., Effect of water activity on carotenoid degradation in dehydrated carrots (2007) Food Chemistry, 104, pp. 1705-1711. , COI: 1:CAS:528:DC%2BD2sXlslWlu7w%3D
  • Loksuwan, J., Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin (2007) Food Hydrocolloids, 21, pp. 928-935. , COI: 1:CAS:528:DC%2BD2sXjtVaqu7k%3D
  • Madene, A., Jacquot, M., Scher, J., Desobry, S., Flavour encapsulation and controlled release (2006) International Journal of Food Science and Technology, 41, pp. 1-21. , COI: 1:CAS:528:DC%2BD28XhtVCju7g%3D
  • Marcone, M.F., Starch properties of Amaranthus pumilus (seabeach amaranth): a threatened plant species with potential benefits for the breeding/amelioration of present amaranth cultivars (2001) Food Chemistry, 71, pp. 61-66
  • Matioli, G., Rodriguez-Amaya, D., Licopeno encapsulado em goma arábica e maltodextrina: estudo da estabilidade (2002) Brazilian Journal of Food Technology, 5, pp. 197-203
  • Morrison, W.R., Tester, R.F., Snape, C.E., Law, R., Gidley, M.J., Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches (1993) Cereal Chemistry, 70, pp. 385-391. , COI: 1:CAS:528:DyaK2cXhvFSisb4%3D
  • Morrison, W.R., Tester, R.F., Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration (1994) Journal of Cereal Science, 20, pp. 69-77. , COI: 1:CAS:528:DyaK2MXmtFWktw%3D%3D
  • Murúa-Pagola, B., Beristain-Guevara, C.I., Martínez-Bustos, F., Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying (2009) Journal of Food Engineering, 91, pp. 380-386
  • Papadakis, S.E., Abdul-Malek, S., Kamdem, R.E., Yam, K.L., A versatile and inexpensive technique for measuring color of foods (2000) Food Technology, 54, pp. 48-51
  • Puncha-arnon, S., Uttapap, D., Rice starch vs. rice flour: differences in their properties when modified by heat–moisture treatment (2013) Carbohydrate Polymer, 91, pp. 85-91. , COI: 1:CAS:528:DC%2BC38XhsVyku73E
  • Radosavljevic, M., Jane, J., Johnson, J., Isolation of amaranth starch by diluted alkaline protease treatment (1998) Cereal Chemistry, 75, pp. 212-216. , COI: 1:CAS:528:DyaK1cXitVels7g%3D
  • Roa, D.F., Baeza, R.I., Tolaba, M.P., Effect of ball milling energy on rheological and thermal properties of amaranth flour (2015) Journal of Food Science and Technology, 52, pp. 8389-8394
  • Roa, D.F., Santagapita, P.R., Buera, M.P., Tolaba, M.P., Amaranth milling strategies and fraction characterization by FT-IR (2013) Food and Bioprocess Technology, 7, pp. 711-718
  • Roa, D.F., Santagapita, P.R., Buera, M.P., Tolaba, M.P., Ball milling of Amaranth starch-enriched fraction. Changes on particle size, starch crystallinity, and functionality as a function of milling energy (2014) Food and Bioprocess Technology, 7, pp. 2723-2731. , COI: 1:CAS:528:DC%2BC2cXhtlWmsb3K
  • Sanguanpong, V., Chotineeranat, S., Piyachomkwan, K., Oates, C., Chinachoti, P., Sriroth, K., Preparation and structural properties of small-particle cassava starch (2003) Journal of the Science of Food and Agriculture, 83, pp. 760-768. , COI: 1:CAS:528:DC%2BD3sXktlyhsbw%3D
  • Saunders, R., Becker, R., Amaranthus: a potential food and feed resource (1984) Advances in cereal science and technology, pp. 357-396. , Pomeranzy, (ed), American Association of Cereal Chemists, St Paul, MN
  • Silva, D., Couturier, M., Berrin, J., Buleon, A., Rouau, X., Effects of grinding processes on enzymatic degradation of wheat straw (2012) Bioresource Technology, 103, pp. 192-200. , COI: 1:CAS:528:DC%2BC3MXhsFSqtrvK
  • Spada, J., Marczak, L., Tessaro, I., Noreña, C., Microencapsulation of β-carotene using native pinhao starch, modified pinhao starch and gelatin by freeze-drying (2012) International Journal of Food Science and Technology, 47, pp. 186-194. , COI: 1:CAS:528:DC%2BC38XktlCrtw%3D%3D
  • Sutter, C., Buera, M., Elizalde, B., β-Carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion (2007) International Journal of Pharmaceutics, 332, pp. 45-54. , COI: 1:CAS:528:DC%2BD2sXhvVSksb8%3D
  • Tamaki, S., Hisamatsu, M., Teranishi, K., Adachi, T., Yamada, T., Structural change of maize starch granules by ball-mill treatment (1998) Starch/Staerke, 50, pp. 342-348. , COI: 1:CAS:528:DyaK1cXmsVans70%3D
  • Tang, Y.C., Chen, B.H., Pigment change of freeze-dried carotenoid powder during storage (2000) Food Chemistry, 69, pp. 11-17. , COI: 1:CAS:528:DC%2BD3cXhvVait74%3D
  • Tari, A., Uday, S., Annapure, S., Singhal, S., Pushpa, R., Starch-based spherical aggregates: screening of small granule sized starches for entrapment of a model flavouring compound, vanillin (2003) Carbohydrate Polymers, 53, pp. 45-51. , COI: 1:CAS:528:DC%2BD3sXjsFCksbc%3D
  • Wagner, L., Warthesen, J., Stability of spray-dried encapsulated carrot carotenes (1995) Journal of Food Science, 60, pp. 1048-1052. , COI: 1:CAS:528:DyaK2MXosVKjtb4%3D
  • Yam, K.L., Papadakis, S.E., A simple digital imaging method for measuring and analyzing color of food surfaces (2004) Journal of Food Engineering, 61, pp. 137-142
  • Zhang, Z., Zhao, S., Xiong, S., Morphology and physicochemical properties of mechanically activated rice starch (2010) Carbohydrate Polymer, 79, pp. 341-348. , COI: 1:CAS:528:DC%2BD1MXhtlGjtLrO

Citas:

---------- APA ----------
Roa, D.F., Buera, M.P., Tolaba, M.P. & Santagapita, P.R. (2017) . Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling. Food and Bioprocess Technology, 10(3), 512-521.
http://dx.doi.org/10.1007/s11947-016-1830-y
---------- CHICAGO ----------
Roa, D.F., Buera, M.P., Tolaba, M.P., Santagapita, P.R. "Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling" . Food and Bioprocess Technology 10, no. 3 (2017) : 512-521.
http://dx.doi.org/10.1007/s11947-016-1830-y
---------- MLA ----------
Roa, D.F., Buera, M.P., Tolaba, M.P., Santagapita, P.R. "Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling" . Food and Bioprocess Technology, vol. 10, no. 3, 2017, pp. 512-521.
http://dx.doi.org/10.1007/s11947-016-1830-y
---------- VANCOUVER ----------
Roa, D.F., Buera, M.P., Tolaba, M.P., Santagapita, P.R. Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling. Food. Bioprocess Technol. 2017;10(3):512-521.
http://dx.doi.org/10.1007/s11947-016-1830-y