Artículo

Tedesco, L.; Elguero, B.; Pacin, D.G.; Senin, S.; Pollak, C.; Garcia Marchiñena, P.A.; Jurado, A.M.; Isola, M.; Labanca, M.J.; Palazzo, M.; Yankilevich, P.; Fuertes, M.; Arzt, E. "von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME" (2019) Cell Death and Disease. 10(4)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Renal cell carcinoma (RCC) is the major cause of death among patients with von Hippel-Lindau (VHL) disease. Resistance to therapies targeting tumor angiogenesis opens the question about the underlying mechanisms. Previously we have described that RWDD3 or RSUME (RWD domain-containing protein SUMO Enhancer) sumoylates and binds VHL protein and negatively regulates HIF degradation, leading to xenograft RCC tumor growth in mice. In this study, we performed a bioinformatics analysis in a ccRCC dataset showing an association of RSUME levels with VHL mutations and tumor progression, and we demonstrate the molecular mechanism by which RSUME regulates the pathologic angiogenic phenotype of VHL missense mutations. We report that VHL mutants fail to downregulate RSUME protein levels accounting for the increased RSUME expression found in RCC tumors. Furthermore, we prove that targeting RSUME in RCC cell line clones carrying missense VHL mutants results in decreased early tumor angiogenesis. The mechanism we describe is that RSUME sumoylates VHL mutants and beyond its sumoylation capacity, interacts with Type 2 VHL mutants, reduces HIF-2α-VHL mutants binding, and negatively regulates the assembly of the Type 2 VHL, Elongins and Cullins (ECV) complex. Altogether these results show RSUME involvement in VHL mutants deregulation that leads to the angiogenic phenotype of RCC tumors. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME
Autor:Tedesco, L.; Elguero, B.; Pacin, D.G.; Senin, S.; Pollak, C.; Garcia Marchiñena, P.A.; Jurado, A.M.; Isola, M.; Labanca, M.J.; Palazzo, M.; Yankilevich, P.; Fuertes, M.; Arzt, E.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck Society, Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina
Departamento de Urología, Hospital Italiano de Buenos Aires, VHL Clinical Care Center, Buenos Aires, Argentina
Departamento de Patología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Ciudad Universitaria, Pabellon II, 2do Piso, Buenos Aires, C1428EGA, Argentina
Año:2019
Volumen:10
Número:4
DOI: http://dx.doi.org/10.1038/s41419-019-1507-3
Título revista:Cell Death and Disease
Título revista abreviado:Cell Death Dis.
ISSN:20414889
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20414889_v10_n4_p_Tedesco

Referencias:

  • Maher, E.R., Neumann, H.P., Richard, S., von Hippel-Lindau disease: a clinical and scientific review (2011) Eur. J. Hum. Genet., 19, pp. 617-623. , COI: 1:CAS:528:DC%2BC3MXmtlegsb8%3D
  • Nordstrom-O’Brien, M., Genetic analysis of von Hippel-Lindau disease (2010) Hum. Mutat., 31, pp. 521-537. , PID: 20151405
  • Iliopoulos, O., Kibel, A., Gray, S., Kaelin, W.G., Jr., Tumour suppression by the human von Hippel-Lindau gene product (1995) Nat. Med., 1, pp. 822-826. , COI: 1:CAS:528:DyaK2MXnt1ynu7c%3D
  • Semenza, G.L., HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations (2013) J. Clin. Invest., 123, pp. 3664-3671. , COI: 1:CAS:528:DC%2BC3sXhsVenu7bJ
  • Keith, B., Johnson, R.S., Simon, M.C., HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression (2011) Nat. Rev. Cancer, 12, pp. 9-22
  • Tarade, D., Ohh, M., The HIF and other quandaries in VHL disease (2018) Oncogene, 37, pp. 139-147. , COI: 1:CAS:528:DC%2BC2sXhsFWhsr7E
  • Hu, H., Hypoxia-inducible factors enhance glutamate signaling in cancer cells (2014) Oncotarget, 5, pp. 8853-8868. , PID: 25326682
  • Loboda, A., Jozkowicz, A., Dulak, J., HIF-1 and HIF-2 transcription factors–similar but not identical (2010) Mol. Cells, 29, pp. 435-442. , COI: 1:CAS:528:DC%2BC3cXmslShsbk%3D
  • Cho, H., On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models (2016) Nature, 539, pp. 107-111. , COI: 1:CAS:528:DC%2BC28Xhslyis73F
  • Roskoski, R., Jr., Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas (2017) Pharmacol. Res., 120, pp. 116-132. , COI: 1:CAS:528:DC%2BC2sXlsVamsLc%3D
  • Miao, D., Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma (2018) Science, 359, pp. 801-806. , COI: 1:CAS:528:DC%2BC1cXivVaisbw%3D
  • Yang, C., Huntoon, K., Ksendzovsky, A., Zhuang, Z., Lonser, R.R., Proteostasis modulators prolong missense VHL protein activity and halt tumor progression (2013) Cell Rep., 3, pp. 52-59. , COI: 1:CAS:528:DC%2BC3sXhvFWis78%3D
  • Hoffman, M.A., von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF (2001) Hum. Mol. Genet., 10, pp. 1019-1027. , COI: 1:CAS:528:DC%2BD3MXjslyqtLo%3D
  • Gossage, L., An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma (2014) Hum. Mol. Genet., 23, pp. 5976-5988. , COI: 1:CAS:528:DC%2BC28XhtFKqsLrP
  • Lai, Y., Song, M., Hakala, K., Weintraub, S.T., Shiio, Y., Proteomic dissection of the von Hippel-Lindau (VHL) interactome (2011) J. Proteome Res., 10, pp. 5175-5182. , COI: 1:CAS:528:DC%2BC3MXht12jsbzL
  • Gao, W., Li, W., Xiao, T., Liu, X.S., Kaelin, W.G., Jr., Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma (2017) Proc. Natl Acad. Sci. USA, 114, pp. 1027-1032. , COI: 1:CAS:528:DC%2BC2sXos1Cqug%3D%3D
  • Carbia-Nagashima, A., RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia (2007) Cell, 131, pp. 309-323. , COI: 1:CAS:528:DC%2BD2sXht1KqsbbJ
  • Schulman, B.A., Twists and turns in ubiquitin-like protein conjugation cascades (2011) Protein Sci., 20, pp. 1941-1954. , COI: 1:CAS:528:DC%2BC3MXhsVCksbrK
  • Hay, R.T., SUMO: a history of modification (2005) Mol. Cell, 18, pp. 1-12. , COI: 1:CAS:528:DC%2BD2MXjt1Oit78%3D
  • Eisenberg-Lerner, A., Ciechanover, A., Merbl, Y., Post-translational modification profiling—A novel tool for mapping the protein modification landscape in cancer (2016) Exp. Biol. Med. (Maywood)., 241, pp. 1475-1482. , COI: 1:CAS:528:DC%2BC2sXhslequ7c%3D
  • Gerez, J., RSUME inhibits VHL and regulates its tumor suppressor function (2015) Oncogene, 34, pp. 4855-4866. , COI: 1:CAS:528:DC%2BC2cXitFKlt7nL
  • Aranda, E., Owen, G.I., A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line (2009) Biol. Res., 42, pp. 377-389
  • Comprehensive molecular characterization of clear cell renal cell carcinoma (2013) Nature, 499, pp. 43-49
  • Ricketts, C.J., The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma (2018) Cell Rep., 23, pp. 313-326 e315. , COI: 1:CAS:528:DC%2BC1cXntVKqt70%3D
  • Cai, Q., Robertson, E.S., Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization (2010) PLoS ONE, 5. , &
  • Nowak-Sliwinska, P., Consensus guidelines for the use and interpretation of angiogenesis assays (2018) Angiogenesis, 21, pp. 425-532
  • Shan, B., RSUME is implicated in HIF-1-induced VEGF-A production in pituitary tumour cells (2012) Endocr. Relat. Cancer, 19, pp. 13-27. , COI: 1:CAS:528:DC%2BC38XnsFCqtLc%3D
  • Ji, C.X., MicroRNA-375 inhibits glioma cell proliferation and migration by downregulating RWDD3 in vitro (2018) Oncol. Rep., 39, pp. 1825-1834. , COI: 1:CAS:528:DC%2BC1cXitFyktrvM, PID: 29436665
  • He, W., Relationship between RSUME and HIF-1alpha/VEGF-A with invasion of pituitary adenoma (2017) Gene, 603, pp. 54-60. , COI: 1:CAS:528:DC%2BC28XitFWnurvN
  • Chen, X., Knockdown of RWD domain containing 3 inhibits the malignant phenotypes of glioblastoma cells via inhibition of phosphoinositide 3-kinase/protein kinase B signaling (2018) Exp. Ther. Med., 16, pp. 384-393. , PID: 29977365
  • Kaelin, W.G., Jr., The VHL tumor suppressor gene: Insights into oxygen sensing and cancer (2017) Trans. Am. Clin. Climatol. Assoc., 128, pp. 298-307. , PID: 28790514
  • Tabaro, F., VHLdb: A database of von Hippel-Lindau protein interactors and mutations (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28XhtlCit7%2FP
  • Razafinjatovo, C., Characterization of VHL missense mutations in sporadic clear cell renal cell carcinoma: hotspots, affected binding domains, functional impact on pVHL and therapeutic relevance (2016) BMC Cancer, 16
  • Lai, Y., Song, M., Hakala, K., Weintraub, S.T., Shiio, Y., The interaction of the von Hippel-Lindau tumor suppressor and heterochromatin protein 1 (2012) Arch. Biochem. Biophys., 518, pp. 103-110. , COI: 1:CAS:528:DC%2BC38XhvVyisrw%3D
  • Yang, H., pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2 (2007) Mol. Cell, 28, pp. 15-27
  • Cheng, J., Kang, X., Zhang, S., Yeh, E.T., SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia (2007) Cell, 131, pp. 584-595. , COI: 1:CAS:528:DC%2BD2sXhtlWitrzJ
  • Koh, M.Y., Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma (2015) Cancer Res., 75, pp. 316-329. , COI: 1:CAS:528:DC%2BC2MXnslWisg%3D%3D
  • Cai, Q., Verma, S.C., Kumar, P., Ma, M., Robertson, E.S., Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification (2010) PLoS ONE, 5
  • Jiang, W., Immunohistochemistry successfully uncovers intratumoral heterogeneity and widespread co-losses of chromatin regulators in clear cell renal cell carcinoma (2016) PLoS ONE, 11
  • Lopez, J.I., Intratumor heterogeneity in clear cell renal cell carcinoma: a review for the practicing pathologist (2016) APMIS, 124, pp. 153-159
  • Zaldumbide, L., Snail heterogeneity in clear cell renal cell carcinoma (2016) BMC Cancer, 16
  • Kaelin, W.G., Jr., Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein (2009) Cancer, 115, pp. 2262-2272. , COI: 1:CAS:528:DC%2BD1MXmtVOksbs%3D
  • Jonasch, E., State of the science: an update on renal cell carcinoma (2012) Mol. Cancer Res., 10, pp. 859-880. , COI: 1:CAS:528:DC%2BC38XhtVeksr7J
  • Pierscianek, D., Study of angiogenic signaling pathways in hemangioblastoma (2017) Neuropathology, 37, pp. 3-11. , COI: 1:CAS:528:DC%2BC2sXhvVyrs7w%3D
  • Croci, D.O., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758. , COI: 1:CAS:528:DC%2BC2cXisFeiurk%3D
  • Saharinen, P., Eklund, L., Alitalo, K., Therapeutic targeting of the angiopoietin-TIE pathway (2017) Nat. Rev. Drug. Discov., 16, pp. 635-661. , COI: 1:CAS:528:DC%2BC2sXotVKnsbg%3D
  • Iwamoto, H., Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model (2015) Mol. Ther. Oncolytics, 2, p. 15020. , COI: 1:CAS:528:DC%2BC28XmsVKrtbc%3D
  • Coleman, M.L., Ratcliffe, P.J., Angiogenesis: escape from hypoxia (2009) Nat. Med., 15, pp. 491-493. , COI: 1:CAS:528:DC%2BD1MXlsF2lu7s%3D
  • Hanahan, D., Folkman, J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis (1996) Cell, 86, pp. 353-364. , COI: 1:CAS:528:DyaK28XltVSks7s%3D
  • Semenza, G.L., HIF-1: using two hands to flip the angiogenic switch (2000) Cancer Metastas-. Rev., 19, pp. 59-65. , COI: 1:CAS:528:DC%2BD3MXktlSntg%3D%3D

Citas:

---------- APA ----------
Tedesco, L., Elguero, B., Pacin, D.G., Senin, S., Pollak, C., Garcia Marchiñena, P.A., Jurado, A.M.,..., Arzt, E. (2019) . von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death and Disease, 10(4).
http://dx.doi.org/10.1038/s41419-019-1507-3
---------- CHICAGO ----------
Tedesco, L., Elguero, B., Pacin, D.G., Senin, S., Pollak, C., Garcia Marchiñena, P.A., et al. "von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME" . Cell Death and Disease 10, no. 4 (2019).
http://dx.doi.org/10.1038/s41419-019-1507-3
---------- MLA ----------
Tedesco, L., Elguero, B., Pacin, D.G., Senin, S., Pollak, C., Garcia Marchiñena, P.A., et al. "von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME" . Cell Death and Disease, vol. 10, no. 4, 2019.
http://dx.doi.org/10.1038/s41419-019-1507-3
---------- VANCOUVER ----------
Tedesco, L., Elguero, B., Pacin, D.G., Senin, S., Pollak, C., Garcia Marchiñena, P.A., et al. von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death Dis. 2019;10(4).
http://dx.doi.org/10.1038/s41419-019-1507-3