Artículo

Novoselov, A.A.; Silva, D.; Schneider, J.; Abrevaya, X.C.; Chaffin, M.S.; Serrano, P.; Navarro, M.S.; Conti, M.J.; Souza Filho, C.R.D. "Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes" (2017) Scientific Reports. 7(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The environmental conditions on the Earth before 4 billion years ago are highly uncertain, largely because of the lack of a substantial rock record from this period. During this time interval, known as the Hadean, the young planet transformed from an uninhabited world to the one capable of supporting, and inhabited by the first living cells. These cells formed in a fluid environment they could not at first control, with homeostatic mechanisms developing only later. It is therefore possible that present-day organisms retain some record of the primordial fluid in which the first cells formed. Here we present new data on the elemental compositions and mineral fingerprints of both Bacteria and Archaea, using these data to constrain the environment in which life formed. The cradle solution that produced this elemental signature was saturated in barite, sphene, chalcedony, apatite, and clay minerals. The presence of these minerals, as well as other chemical features, suggests that the cradle environment of life may have been a weathering fluid interacting with dry-land silicate rocks. The specific mineral assemblage provides evidence for a moderate Hadean climate with dry and wet seasons and a lower atmospheric abundance of CO2 than is present today. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes
Autor:Novoselov, A.A.; Silva, D.; Schneider, J.; Abrevaya, X.C.; Chaffin, M.S.; Serrano, P.; Navarro, M.S.; Conti, M.J.; Souza Filho, C.R.D.
Filiación:University of Campinas, Institute of Geosciences, Campinas, 13083-970, Brazil
University of Concepción, Institute of Applied Economic Geology, Casilla 160-C, Concepción, Chile
University of Campinas, School of Civil Engineering, Architecture and Urban Design, Campinas, 13083-889, Brazil
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EHA, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), Buenos Aires, C1428ZAA, Argentina
University of Colorado, Boulder, 80302, United States
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 14473, Germany
André Tosello Institute, Campinas, 13087-010, Brazil
Palabras clave:mineral; silicate; archaeon; astronomy; bacterium; chemistry; clay; climate; environment; prokaryotic cell; Archaea; Bacteria; Clay; Climate; Earth (Planet); Environment; Minerals; Prokaryotic Cells; Silicates
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-04161-2
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:silicate, 12627-13-3; Clay; Minerals; Silicates
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Novoselov

Referencias:

  • Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago (2001) Nature, 409, pp. 176-178
  • Trail, D., Watson, E.B., Tailby, N.D., The oxidation state of Hadean magmas and implications for early Earth's atmosphere (2011) Nature, 480, pp. 79-82
  • Bell, E.A., Boehnke, P., Harrison, T.M., Mao, W.L., Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon (2015) PNAS, 112 (47), pp. 14518-14521
  • Hedges, S.B., Life (2009) The Timetree of Life, pp. 89-98. , S. B. Hedges and S. Kumar (eds.). Oxford University Press
  • Battistuzzi, F.U., Feijao, A., Hedges, S.B., A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land (2004) BMC Evolutionary Biology, 4 (44)
  • Schopf, J.W., Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis (2015) PNAS, 112 (7), pp. 2087-2092
  • Trevors, J.T., The composition and organization of cytoplasm in prebiotic cells (2011) Int. J. Mol. Sci., 12, pp. 1650-1659
  • Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N., Gouy, M., Parallel adaptations to high temperatures in the Archaean eon (2008) Nature, 456, pp. 942-946
  • Abramov, O., Mojzsis, S.J., Microbial habitability of the Hadean Earth during the late heavy bombardment (2009) Nature, 459, pp. 419-422
  • Chopra, A., Lineweaver, C.H., Brocks, J.J., Ireland, T.R., Palaeoecophylostoichiometrics: Searching for the elemental composition of the Last Universal Common Ancestor (2010) Australian Space Science Conference 2009, pp. 91-104. , edited by W. Short and I. Cairns, National Space Society of Australia, Sydney
  • Mulkidjanian, A.Y., Origin of first cells at terrestrial, anoxic geothermal fields (2012) PNAS, 109 (14), pp. E821-E830
  • Galimov, E.M., Natochin, Y.V., Ryzhenko, B.N., Cherkasova, E.V., Chemical composition of the primary aqueous phase of the Earth and origin of life (2012) Geochemistry International, 50 (13), pp. 1048-1068
  • Novoselov, A.A., From cytoplasm to environment: The inorganic ingredients for the origin of Life (2013) Astrobiology, 13 (3), pp. 294-302
  • Macallum, A.B., The paleochemistry of the body fluids and tissues (1926) Physiol. Rev., 6, pp. 316-357
  • Oren, A., (2002) Halophilic Microorganisms and Their Environments, , Dordrecht: Kluwer, Acad. Publ
  • Letunova, S.V., Ulubekova, M.V., Shcherbakov, V.I., Manganese concentration by microorganisms inhabiting soils of the manganese biogeochemical province of the Georgian SSR (1978) Microbiology, 47, pp. 273-278
  • Neveu, M., Poret-Peterson, A.T., Anbar, A.D., Elser, J.J., Ordinary stoichiometry of extraordinary microorganisms (2015) Geobiology
  • Madigan, M.T., Martinko, J.M., Stahl, D.A., Clark, D.P., (2015) Brock Biology of Microorganisms, , 14th edition, Pearson Benjamin- Cummings, San Francisco
  • Driese, S.G., Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry (2011) Precambrian Research, 189, pp. 1-17
  • Teitler, Y., Ubiquitous occurrence of basaltic-derived paleosols in the Late Archean Fortescue Group, Western Australia (2015) Precambrian Research, 267, pp. 1-27
  • Frausto da Silva, J.J.R., Williams, R.J.P., (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, , 2nd edition Claredon Press Oxford
  • Couradeau, E., An early-branching microbialite cyanobacterium forms intracellular carbonates (2012) Science, 336, pp. 459-462
  • Hirota, R., Hata, Y., Ikeda, T., Ishida, T., Kuroda, A., The silicon layer supports acid resistance of Bacillus cereus spores (2010) Journal of Bacteriology, 192 (1), pp. 111-116
  • Shkolnik, M.Y., (1984) Trace Elements in Plants, , Elsevier, New York
  • Saladino, R., Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites (2004) ChemBioChem, 5, pp. 1558-1566
  • Saladino, R., A One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: Implications for the origin of life (2003) ChemBioChem, 4, pp. 514-521
  • Senanayake, S.D., Idriss, H., Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces (2006) PNAS, 103 (5), pp. 1194-1198
  • Saladino, R., Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide (2011) Astrobiology, 11, pp. 815-824
  • AlDahan, A.A., Morad, S., Some remarks on the stability of sphene in diagenetic environments (1988) Chem. Geol., 70, pp. 249-255
  • Jiang, L., Worden, R.H., Cai, C., Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China (2015) Geochim. Cosmochim. Acta, 165, pp. 249-262
  • Takai, K., Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under highpressure cultivation (2008) PNAS, 105 (31), pp. 10949-10954
  • Fouillac, C., Michard, G., Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs (1981) Geothermics, 10 (1), pp. 55-70
  • Palandri, J.L., Reed, M.H., Reconstruction of in situ composition of sedimentary formation waters (2001) Geochim. Cosmochim. Acta, 65 (11), pp. 1741-1767
  • Mu, N., Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid-rock interactions: Part I. Characterization (2015) Marine and Petroleum Geology, 65, pp. 302-316
  • Millero, F.J., (2013) Chemical Oceanography, p. FL591. , Fourth Edition, CRC Press, Boca Raton
  • Cartwright, I., Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia (2004) Applied Geochemistry, 19, pp. 1233-1254
  • Takahashi, Y., Chtellier, X., Hattori, K.H., Kato, K., Fortin, D., Adsorption of rare earth elements onto bacteria cell walls and its implication for REE sorption onto natural microbial mats (2005) Chem Geol, 219, pp. 53-67
  • Takahashi, Y., Hirata, T., Shimizu, H., Ozaki, T., Fortin, D., A rare earth element signature of bacteria in natural waters? (2007) Chem Geol, 244, pp. 569-583
  • Moriwaki, H., Yamamoto, H., Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology (2013) Appl Microbiol Biotechnol, 97, pp. 1-8
  • Gao, S., Wedepohl, K.H., The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources (1995) Earth Planet. Sci. Lett., 133, pp. 81-94
  • Rudnick, R.L., Gao, S., 3.01. Composition of the continental crust (2003) Treatise on Geochemistry, pp. 1-56. , Holland, H. D., Turekian, K. K., Eds., Pergamon, Oxford
  • Bau, M., Dulski, P., Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater (1999) Chemical Geology, 155, pp. 77-90
  • Karpov, G.A., Nikolaeva, A.G., Alekhin, Y.V., Abundances and sources of rare-earth elements in the modern volcanogenic hydrothermal systems of Kamchatka (2014) Petrology, 21 (2), pp. 145-157
  • Homann, M., Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits (2015) Geology
  • Tessalina, S., Bourdon, B., Van Kranendonk, M.J., Philippot, P., Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton (2010) Nature Geosciences, 3, pp. 214-217
  • Alfimova, N.A., Novoselov, A.A., Matrenichev, V.A., Souza Filho, C.R., Conditions of subaerial weathering of basalts in the Neoarchean and Paleoproterozoic (2014) Precambrian Research, 241, pp. 1-16
  • Zerkle, A.L., Claire, M.W., Domagal-Goldman, S.D., Farquhar, J., Poulton, S.W., A bistable organic-rich atmosphere on the Neoarchaean Earth (2012) Nature Geoscience, 5
  • Rouf, M.A., Spectrochemical analysis of inorganic elements in Bacteria (1964) Journal of Bacteriology, 88 (6), pp. 1545-1549
  • Bertani, G., Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli (1952) Journal of Bacteriology, 62 (3), pp. 293-300
  • Wisse, C.A., Parish, M.E., Isolation and enumeration of spore forming thermoacidophilic, rod-shaped bacteria from citrus processing environments (1998) Dairy Food and Environmental Sanitation, 18, pp. 504-509
  • Collins, M.D., Nesterenkonia lacusekhoensis sp nov, isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia (2002) Int. J. Syst. Evol. Micr, 52, pp. 1145-1150
  • Dupuy, P., Recherche d'une technique d'isolement des Acetobacter du vin (1952) Ann Technol Agric, 1, pp. 107-112
  • Abrevaya, X.C., Comparative survival analysis of Deinococcus radiodurans and the Haloarchaea Natrialba magadii and Haloferax volcanii exposed to vacuum ultraviolet irradiation (2011) Astrobiology, 11, pp. 1030-1040
  • Kauri, T., Wallace, R., Kushner, D.J., Nutrition of the halophilic archaebacterium, Haloferax volcanii (1990) Syst. Appl. Microbiol., 13, pp. 14-18
  • Tindall, B.J., Mills, A.A., Grant, W.D., Natronobacterium gen nov and Natronococcus gen nov two genera of haloalkaliphilic archaebacteria (1984) System Appl. Microbiol., 5, pp. 41-57
  • Harmon, S.M., Kautter, D.A., Golden, D.A., Rhodehamel, E.J., (1995) Bacteriological Analytical Manual, , 8th ed, AOAC International, Arlington, VA
  • Bartholomew, J.W., Mittwer, T., The gram stain (1952) Bacteriol. Rev., 16 (1), pp. 1-29
  • Parkhurst, D.L., Appelo, C.A.J., (2013) Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-reaction, One- Dimensional Transport, and Inverse Geochemical Calculations: U.S Geological Survey Techniques and Methods, Book 6, 497. , chap. A43
  • Novoselov, A.A., Souza Filho, C.R., CRONO - A code for simulation of chemical weathering (2013) Computers & Geosciences, 60, pp. 168-175
  • Novoselov, A.A., Popov, S., De Souza Filho, C.R., Evaluation of uncertainties in solid-aqueous-gas chemical equilibrium calculations (2015) Computers & Geosciences, 79, pp. 118-128
  • Anderson, G.M., (2005) Thermodynamics of Natural Systems, 657. , Second edition. Cambridge University Press Cambridge
  • Johnson, J.W., Oelkers, E.H., Helgeson, H.C., SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C (1992) Computers & Geosciences, 18, pp. 899-947
  • Ziemniak, S.E., Jones, M.E., Combs, K.E.S., Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures (1993) J. Solution Chem., 22 (7), pp. 601-623
  • Blanc, P., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials (2012) Applied Geochemistry, 27 (10), pp. 2107-2116
  • Tacker, R.C., Stormer, J.C., A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems (1989) American Mineralogist, 74, pp. 877-888
  • Appelo, C.A.J., Principles caveats and improvements in databases for calculating hydrogeochemical reactions in saline waters from 0 to 200°C and 1 to 1000 atm (2015) Applied Geochemistry, 55, pp. 62-71
  • Palandri, J.L., Kharaka, Y.K., A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling (2004) Open-File Rep. 2004-1068, p. 70. , U.S. Geol. Surv., Menlo Park, California
  • Buettner, K.M., Valentine, A.M., Bioinorganic chemistry of titanium (2011) Chem. Rev., 112, pp. 1863-1881
  • Arnórsson, S., Chemical equilibria in Icelandic geothermal systems - Implications for chemical geothermometry investigations (1983) Geothermics, 12 (2-3), pp. 119-128
  • Kharaka, Y.K., Mariner, R.H., Chemical geothermometers and their application to formation waters from sedimentary basins (1989) Thermal History of Sedimentary Basins, pp. 99-117. , Springer
  • Sanjuan, B., Millot, R., Ásmundsson, R., Brach, M., Giroud, N., Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments (2014) Chem. Geol., 389, pp. 60-81
  • Reed, M., Spycher, N., Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution (1984) Geochim. Cosmochim. Acta, 48, pp. 1479-1492
  • Novoselov, A.A., Souza Filho, C.R., Potassium metasomatism of Precambrian paleosols (2015) Precambrian Research, 262, pp. 67-83
  • McDonough, W.F., Sun, S.-S., The composition of the Earth (1995) Chem. Geol., 120, pp. 223-253
  • Campodonico, V.A., Garía, M.G., Pasquini, A.I., The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers (2015) Journal of Hydrology, 528, pp. 161-176
  • Bau, M., Koschinsky, A., Dulski, P., Hein, J.R., Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater (1996) Geochim. Cosmochim. Acta, 60 (10), pp. 1709-1725

Citas:

---------- APA ----------
Novoselov, A.A., Silva, D., Schneider, J., Abrevaya, X.C., Chaffin, M.S., Serrano, P., Navarro, M.S.,..., Souza Filho, C.R.D. (2017) . Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-04161-2
---------- CHICAGO ----------
Novoselov, A.A., Silva, D., Schneider, J., Abrevaya, X.C., Chaffin, M.S., Serrano, P., et al. "Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-04161-2
---------- MLA ----------
Novoselov, A.A., Silva, D., Schneider, J., Abrevaya, X.C., Chaffin, M.S., Serrano, P., et al. "Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-04161-2
---------- VANCOUVER ----------
Novoselov, A.A., Silva, D., Schneider, J., Abrevaya, X.C., Chaffin, M.S., Serrano, P., et al. Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-04161-2