Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


A family of monophasic nanoplatelets of Ni(ii)-Co(ii) layered hydroxides, were obtained by a one-pot room temperature homogeneous alkalinization driven by the the epoxide route with glycidol. Both cations precipitate in the form of solid solutions, giving the general formula Ni1-xCox(OH)2-yCly·nH2O. Co(ii)-rich samples developed the simonkolleite-like alpha structure in which cations can adopt either octahedral (Oh) or tetrahedral (Td) environments, according to the formula (Ni,Co)Oh1-xCoTd2x(OH)2-2x(Cl)2x·nH2O. Ni(ii)-rich ones resulted in ill-crystallized turbostratic (Ni,Co)1-x(OH)2-x(Cl)x·nH2O. Despite the inherent differences in the crystallochemical nature of theses phases, electrochemical measurements depict a monotonous behavior in terms of their capacitance. An optimum performance was observed for samples with XNi(II) = 0.83 under most of the experimental conditions explored. This sample reaches a maximum specific capacitance of 2091 F g-1, registered at a discharge current density of 0.5 A g-1, while an energy density of 80.7 W h kg-1 was recorded at a power density of 960.4 W kg-1. © 2017 The Royal Society of Chemistry.


Documento: Artículo
Título:Nanotextured alpha Ni(II)-Co(II) hydroxides as supercapacitive active phases
Autor:Arencibia, N.; Oestreicher, V.; Viva, F.A.; Jobbágy, M.
Filiación:INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II C1428EHA, Buenos Aires, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, Buenos Aires, Argentina
Centro Interdisciplinario de Nanociencia y Nanotecnología, Argentina
Palabras clave:Capacitance; Positive ions; Discharge current density; Electrochemical measurements; Experimental conditions; General formulas; Homogeneous alkalinization; Layered hydroxides; Optimum performance; Specific capacitance; Nickel
Página de inicio:5595
Página de fin:5600


  • Umeshbabu, E., Rajeshkhanna, G., Rao, G.R., (2014) Int. J. Hydrogen Energy, 39, pp. 15627-15638
  • Demarconnay, L., Raymundo-Piñero, E., Béguin, F., (2010) Electrochem. Commun., 12, pp. 1275-1278
  • Miller, J.R., Simon, P., (2008) Science, 321, pp. 651-652
  • Simon, P., Gogotsi, Y., (2008) Nat. Mater., 7, pp. 845-854
  • Liu, S., Sun, S., You, X.-Z., (2014) Nanoscale, 6, pp. 2037-2045
  • Cao, L., Xu, F., Liang, Y.Y., Li, H.L., (2004) Adv. Mater., 16, pp. 1853-1857
  • Wang, G., Zhang, L., Zhang, J., (2012) Chem. Soc. Rev., 41, pp. 797-828
  • Deng, W., Ji, X., Chen, Q., Banks, C.E., (2011) RSC Adv., 1, pp. 1171-1178
  • Cheng, J.P., Zhang, J., Liu, F., (2014) RSC Adv., 4, pp. 38893-38917
  • Wang, F., Xiao, S., Hou, Y., Hu, C., Liu, L., Wu, Y., (2013) RSC Adv., 3, pp. 13059-13084
  • Salunkhe, R.R., Hsu, S.H., Wu, K.C.W., Yamauchi, Y., (2014) Chemsuschem, 7, pp. 1551-1556
  • Huang, H.S., Chang, K.H., Suzuki, N., Yamauchi, Y., Hu, C.C., Wu, K.C.W., (2013) Small, 9, pp. 2520-2526
  • Bastakoti, B.P., Oveisi, H., Hu, C.C., Wu, K.C.W., Suzuki, N., Takai, K., Kamachi, Y., Yamauchi, Y., (2013) Eur. J. Inorg. Chem., pp. 1109-1112
  • Chaikittisilp, W., Hu, M., Wang, H.J., Huang, H.S., Fujita, T., Wu, K.C.W., Chen, L.C., Ariga, K., (2012) Chem. Commun., 48, pp. 7259-7261
  • Bastakoti, B.P., Kamachi, Y., Huang, H.S., Chen, L.C., Wu, K.C.W., Yamauchi, Y., (2013) Eur. J. Inorg. Chem., pp. 39-43
  • Gupta, V., Gupta, S., Miura, N., (2008) J. Power Sources, 175, pp. 680-685
  • Han, J., Roh, K.C., Jo, M.R., Kang, Y.-M., (2013) Chem. Commun., 49, pp. 7067-7069
  • Chen, H., Hu, L., Chen, M., Yan, Y., Wu, L., (2014) Adv. Funct. Mater., 24, pp. 934-942
  • Manohara, G.V., Kunz, D.A., Kamath, P.V., Milius, W., Breu, J., (2010) Langmuir, 26, pp. 15586-15591
  • Cai, H., Hillier, A.C., Franklin, K.R., Nunn, C.C., Ward, M.D., (1994) Science, 266, pp. 1551-1555
  • Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R., (1998) Eur. J. Inorg. Chem., pp. 1439-1446
  • Cai, H., Hillier, A.C., Franklin, K.R., Nunn, C.C., Ward, M.D., (1994) Science, 266, pp. 1551-1555
  • Ogawa, M., Kaiho, H., (2002) Langmuir, 18, pp. 4240-4242
  • Benito, P., Herrero, M., Barriga, C., Labajos, F.M., Rives, V., (2008) Inorg. Chem., 47, pp. 5453-5463
  • Jobbagy, M., Blesa, M.A., Regazzoni, A.E., (2007) J. Colloid Interface Sci., 309, pp. 72-77
  • Oh, J.M., Hwang, S.H., Choy, J.H., (2002) Solid State Ionics, 151, pp. 285-291
  • Liu, X.H., Ma, R.Z., Bando, Y., Sasaki, T., (2012) Adv. Mater., 24, pp. 2148-2153
  • Oestreicher, V., Fábregas, I., Jobbágy, M., (2014) J. Phys. Chem. C, 118, pp. 30274-30281
  • Oestreicher, V., Jobbágy, M., (2013) Langmuir, 29, pp. 12104-12109
  • Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W., Simpson, R.L., (2001) Chem. Mater., 13, pp. 999-1007
  • Gash, A.E., Tillotson, T.M., Satcher, J.H., Hrubesh, L.W., Simpson, R.L., (2001) J. Non-Cryst. Solids, 285, pp. 22-28
  • Gash, A.E., Satcher, J.H., Simpson, R.L., (2004) J. Non-Cryst. Solids, 350, pp. 145-151
  • Gash, A.E., Satcher, J.H., Simpson, R.L., (2003) Chem. Mater., 15, pp. 3268-3275
  • Zhang, H.D., Li, B., Zheng, Q.X., Jiang, M.H., Tao, X.T., (2008) J. Non-Cryst. Solids, 354, pp. 4089-4093
  • Ehrenberg, L., Hussain, S., (1981) Mutat. Res., 86, pp. 1-113
  • Soler-Illia, G., Jobbagy, M., Regazzoni, A.E., Blesa, M.A., (1999) Chem. Mater., 11, pp. 3140-3146
  • Okamoto, K., Iyi, N., Sasaki, T., (2007) Appl. Clay Sci., 37, pp. 23-31
  • Hawthorne, F.C., Sokolova, E., (2002) Can. Mineral., 40, pp. 939-946
  • Ma, R.Z., Liu, Z.P., Takada, K., Fukuda, K., Ebina, Y., Bando, Y., Sasaki, T., (2006) Inorg. Chem., 45, pp. 3964-3969
  • Neilson, J.R., Schwenzer, B., Seshadri, R., Morse, D.E., (2009) Inorg. Chem., 48, pp. 11017-11023
  • Liu, Z.P., Ma, R.Z., Osada, M., Takada, K., Sasaki, T., (2005) J. Am. Chem. Soc., 127, pp. 13869-13874
  • Taibi, M., Jouini, N., Rabu, P., Ammar, S., Fievet, F., (2014) J. Mater. Chem. C, 2, pp. 4449-4460
  • Taibi, M., Ammar, S., Jouini, N., Fievet, F., Molinie, P., Drillon, M., (2002) J. Mater. Chem., 12, pp. 3238-3244
  • Pandya, K.I., Ogrady, W.E., Corrigan, D.A., McBreen, J., Hoffman, R.W., (1990) J. Phys. Chem., 94, pp. 21-26
  • Kamath, P.V., Annal Therese, G.H., Gopalakrishnan, J., (1997) J. Solid State Chem., 128, pp. 38-41
  • Liang, J.B., Ma, R.Z., Iyi, N.B.O., Ebina, Y., Takada, K., Sasaki, T., (2010) Chem. Mater., 22, pp. 371-378
  • Tessier, C., Guerlou-Demourgues, L., Faure, C., Demourgues, A., Delmas, C., (2000) J. Mater. Chem., 10, pp. 1185-1193
  • Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Wei, F., (2012) Adv. Funct. Mater., 22, pp. 2632-2641
  • Oliva, P., Leonardi, J., Laurent, J.F., Delmas, C., Braconnier, J.J., Figlarz, M., Fievet, F., Deguibert, A., (1982) J. Power Sources, 8, pp. 229-255
  • Chen, G., Liaw, S.S., Li, B., Xu, Y., Dunwell, M., Deng, S., Fan, H., Luo, H., (2014) J. Power Sources, 251, pp. 338-343
  • Chen, H., Cai, F., Kang, Y., Zeng, S., Chen, M., Li, Q., (2014) ACS Appl. Mater. Interfaces, 6, pp. 19630-19637


---------- APA ----------
Arencibia, N., Oestreicher, V., Viva, F.A. & Jobbágy, M. (2017) . Nanotextured alpha Ni(II)-Co(II) hydroxides as supercapacitive active phases, 7(10), 5595-5600.
---------- CHICAGO ----------
Arencibia, N., Oestreicher, V., Viva, F.A., Jobbágy, M. "Nanotextured alpha Ni(II)-Co(II) hydroxides as supercapacitive active phases" 7, no. 10 (2017) : 5595-5600.
---------- MLA ----------
Arencibia, N., Oestreicher, V., Viva, F.A., Jobbágy, M. "Nanotextured alpha Ni(II)-Co(II) hydroxides as supercapacitive active phases" , vol. 7, no. 10, 2017, pp. 5595-5600.
---------- VANCOUVER ----------
Arencibia, N., Oestreicher, V., Viva, F.A., Jobbágy, M. Nanotextured alpha Ni(II)-Co(II) hydroxides as supercapacitive active phases. 2017;7(10):5595-5600.