Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A family of Ce0.95-xGdxEu0.05(OH)CO 3·H2O monodispersed spherical particles of ca. 200 nm with 0 ≤ x ≤ 0.95 was obtained by the urea homogeneous alkalinization method. These precursors were decomposed at 1273 K under an air atmosphere, resulting in ternary spheroidal phosphors obeying the general formula Ce 0.95-xGdxEu0.05O1.975-x/2. Samples with 0.57 ≤ x ≤ 0.95 exhibit a c-type (Ia3) structure related to the Gd2O3 lattice, while a Fm3m-type (CeO2) one was found for 0 ≤ x ≤ 0.19. For both ternary families, the partial substitution of host cations dramatically decreases the efficiency of the ligand to metal charge transfer (LMCT) based emission, with respect to their binary end members. In contrast, the emission obtained from direct excitation of Eu(iii) with visible light is enhanced. For both structures, the binary Ce(iv)-Gd(iii) host improved emission with respect to Gd0.95Eu0.05O1.5 and Ce0.95Eu 0.05O1.975 samples, achieving an optimum value for the sample Ce0.23Gd0.71Eu0.05O1.6 with a Ia3 structure. © 2013 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Monodispersed Ce(iv)-Gd(iii)-Eu(iii) oxide phosphors for enhanced red emission under visible excitation
Autor:Sorbello, C.; Barja, B.C.; Jobbágy, M.
Filiación:DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón II, C1428EHA-Buenos Aires, Argentina
INQUIMAE, CONICET, Argentina
Centro Interdisciplinario de Nanociencia y Nanotecnología, Argentina
Palabras clave:Direct excitation; General formulas; Homogeneous alkalinization; Ligand-to-metal charge transfers; Oxide phosphors; Partial substitution; Spherical particle; Structure-related; Phosphors; Urea; Light emission
Año:2014
Volumen:2
Número:6
Página de inicio:1010
Página de fin:1017
DOI: http://dx.doi.org/10.1039/c3tc31952k
Título revista:Journal of Materials Chemistry C
Título revista abreviado:J. Mater. Chem. C
ISSN:20507534
CODEN:JMCCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507534_v2_n6_p1010_Sorbello

Referencias:

  • Liu, Y., Tu, D., Zhu, H., Ma, E., Chen, X., (2013) Nanoscale, 5, pp. 1369-1384
  • Lechevallier, S., Lecante, P., Mauricot, R., Dexpert, H., Dexpert-Ghys, J., Kong, H.K., Law, G.L., Wong, K.L., (2010) Chem. Mater., 22, pp. 6153-6161
  • Gupta, B.K., Narayanan, T.N., Vithayathil, S.A., Lee, Y., Koshy, S., Reddy, A.L.M., Saha, A., Ajayan, P.M., (2012) Small, 8, pp. 3028-3034
  • Setua, S., Menon, D., Asok, A., Nair, S., Koyakutty, M., (2010) Biomaterials, 31, pp. 714-729
  • Li, J.G., Li, X.D., Sun, X.D., Ishigaki, T., (2008) J. Phys. Chem. C, 112, pp. 11707-11716
  • Chen, J., Patil, S., Seal, S., McGinnis, J.F., (2006) Nat. Nanotechnol., 1, pp. 142-150
  • Heckert, E.G., Karakoti, A.S., Seal, S., Self, W.T., (2008) Biomaterials, 29, pp. 2705-2709
  • Karakoti, A., Singh, S., Dowding, J.M., Seal, S., Self, W.T., (2010) Chem. Soc. Rev., 39, pp. 4422-4432
  • Shi, S.K., Hossu, M., Hall, R., Chen, W., (2012) J. Mater. Chem., 22, pp. 23461-23467
  • Li, J.G., Li, X.D., Sun, X.D., Ikegami, T., Ishigaki, T., (2008) Chem. Mater., 20, pp. 2274-2281
  • Hu, L.F., Ma, R.Z., Ozawa, T.C., Sasaki, T., (2009) Angew. Chem., Int. Ed., 48, pp. 3846-3849
  • Wu, C., Qin, W., Qin, G., Zhao, D., Zhang, J., Huang, S., Lu, S., Lin, H., (2003) Appl. Phys. Lett., 82, pp. 520-522
  • Vecht, A., Gibbons, C., Davies, D., Jing, X., Marsh, P., Ireland, T., Silver, J., Barber, D., (1999) J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct., 17, pp. 750-757
  • Jing, X., Ireland, T., Gibbons, C., Barber, D.J., Silver, J., Vecht, A., Fern, G., Morton, D.C., (1999) J. Electrochem. Soc., 146, pp. 4654-4658
  • Soler-Illia, G., Jobbagy, M., Candal, R.J., Regazzoni, A.E., Blesa, M.A., (1998) J. Dispersion Sci. Technol., 19, pp. 207-228
  • Matijevic, E., Hsu, W.P., (1987) J. Colloid Interface Sci., 118, pp. 506-523
  • Aiken, B., Hsu, W.P., Matijevic, E., (1988) J. Am. Ceram. Soc., 71, pp. 845-853
  • Rojas, T.C., Ocana, M., (2002) Scr. Mater., 46, pp. 655-660
  • Jobbagy, M., Sorbello, C., Sileo, E.E., (2009) J. Phys. Chem. C, 113, pp. 10853-10857
  • Jobbagy, M., Marino, F., Schobrod, B., Baronetti, G., Laborde, M., (2006) Chem. Mater., 18, pp. 1945-1950
  • Jobbagy, M., Soler-Illia, G., Regazzoni, A.E., Blesa, M.A., (1998) Chem. Mater., 10, pp. 1632-1637
  • Li, J.G., Ikegami, T., Mori, T., Wada, T., (2001) Chem. Mater., 13, pp. 2921-2927
  • Li, J.G., Ikegami, T., Mori, T., Wada, T., (2001) Chem. Mater., 13, pp. 2913-2920
  • Hernandez, W.Y., Centeno, M.A., Romero-Sarria, F., Odriozola, J.A., (2009) J. Phys. Chem. C, 113, pp. 5629-5635
  • Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Tondello, E., Ferroni, M., Polizzi, S., (2004) Chem. Vap. Deposition, 10, pp. 257-264
  • Shuk, P., Greenblatt, M., Croft, M., (2000) J. Alloys Compd., 303, pp. 465-471
  • Shannon, R.D., (1976) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr, 32, pp. 751-767
  • Pires, A.M., Davolos, M.R., Paiva-Santos, C.O., Stucchi, E.B., Flor, J., (2003) J. Solid State Chem., 171, pp. 420-423
  • Nakagawa, T., Osuki, T., Yamamoto, T.A., Kitauji, Y., Kano, M., Katsura, M., Emura, S., (2001) J. Synchrotron Radiat., 8, pp. 740-742
  • Babu, S., Schulte, A., Seal, S., (2008) Appl. Phys. Lett., 92, p. 123112
  • Wang, Z., Quan, Z., Lin, J., (2007) Inorg. Chem., 46, pp. 5237-5242
  • Montini, T., Speghini, A., De Rogatis, L., Lorenzut, B., Bettinelli, M., Graziani, M., Fornasiero, P., (2009) J. Am. Chem. Soc., 131, pp. 13155-13160
  • Mogensen, M., Sammes, N.M., Tompsett, G.A., (2000) Solid State Ionics, 129, pp. 63-94
  • Inaba, H., Tagawa, H., (1996) Solid State Ionics, 83, pp. 1-16
  • Sen, S., Avila-Paredes, H.J., Kim, S., (2008) J. Mater. Chem., 18, pp. 3915-3917
  • Kim, N.J., Stebbins, J.F., (2007) Chem. Mater., 19, pp. 5742-5747
  • Deguchi, H., Yoshida, H., Inagaki, T., Horiuchi, M., (2005) Solid State Ionics, 176, pp. 1817-1825
  • Ye, F., Mori, T., Ou, D.R., Zou, J., Auchterlonie, G., Drennan, J., (2008) Solid State Ionics, 179, pp. 827-831
  • Blasse, G., Bril, A., Nieuwpoo, W.C., (1966) J. Phys. Chem. Solids, 27, pp. 1587-1592
  • Liu, X.H., Chen, S.J., Wang, X.D., (2007) J. Lumin., 127, pp. 650-654
  • Li, L., Yang, H.K., Moon, B.K., Fu, Z., Guo, C., Jeong, J.H., Yi, S.S., Lee, H.S., (2009) J. Phys. Chem. C, 113, pp. 610-617
  • Nakayama, M., Martin, M., (2009) Phys. Chem. Chem. Phys., 11, pp. 3241-3249
  • Yoshida, H., Deguchi, H., Miura, K., Horiuchi, M., Inagaki, T., (2001) Solid State Ionics, 140, pp. 191-199
  • Wei, X., Pan, W., Cheng, L., Li, B., (2009) Solid State Ionics, 180, pp. 13-17
  • Tiseanu, C., Parvulescu, V.I., Sanchez-Dominguez, M., Boutonnet, M., (2012) J. Appl. Phys., 112, p. 013521
  • Kumar, A., Babu, S., Karakoti, A.S., Schulte, A., Seal, S., (2009) Langmuir, 25, pp. 10998-11007
  • Li, L., Yang, H.K., Moon, B.K., Fu, Z.L., Guo, C.F., Jeong, J.H., Yi, S.S., Lee, H.S., (2009) J. Phys. Chem. C, 113, pp. 610-617
  • Buijs, M., Meyerink, A., Blasse, G., (1987) J. Lumin., 37, pp. 9-20

Citas:

---------- APA ----------
Sorbello, C., Barja, B.C. & Jobbágy, M. (2014) . Monodispersed Ce(iv)-Gd(iii)-Eu(iii) oxide phosphors for enhanced red emission under visible excitation. Journal of Materials Chemistry C, 2(6), 1010-1017.
http://dx.doi.org/10.1039/c3tc31952k
---------- CHICAGO ----------
Sorbello, C., Barja, B.C., Jobbágy, M. "Monodispersed Ce(iv)-Gd(iii)-Eu(iii) oxide phosphors for enhanced red emission under visible excitation" . Journal of Materials Chemistry C 2, no. 6 (2014) : 1010-1017.
http://dx.doi.org/10.1039/c3tc31952k
---------- MLA ----------
Sorbello, C., Barja, B.C., Jobbágy, M. "Monodispersed Ce(iv)-Gd(iii)-Eu(iii) oxide phosphors for enhanced red emission under visible excitation" . Journal of Materials Chemistry C, vol. 2, no. 6, 2014, pp. 1010-1017.
http://dx.doi.org/10.1039/c3tc31952k
---------- VANCOUVER ----------
Sorbello, C., Barja, B.C., Jobbágy, M. Monodispersed Ce(iv)-Gd(iii)-Eu(iii) oxide phosphors for enhanced red emission under visible excitation. J. Mater. Chem. C. 2014;2(6):1010-1017.
http://dx.doi.org/10.1039/c3tc31952k