Artículo

Llamedo, P.; Salvador, J.; de la Torre, A.; Quiroga, J.; Alexander, P.; Hierro, R.; Schmidt, T.; Pazmiño, A.; Quel, E. "11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America" (2019) Journal of Geophysical Research: Atmospheres. 124(2):451-467
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Gravity wave (GW) activity is analyzed using temperature (T) data retrieved from a Rayleigh light detection and ranging (lidar) at Río Gallegos, Argentina (51.6°S, 69.3°W). GW characteristics are derived from 302 nights of observations providing more than 1,018 hr of high-resolution lidar data between 20- and 56-km height from August 2005 to December 2015. T measurements are performed by a Differential Absorption Lidar instrument. This lidar was the southernmost outside Antarctica until the end of 2017. Río Gallegos is an exceptional place to observe large amplitude GW. Every lidar measurement is classified according to its relative position to the polar vortex. The lidar measurements are compared with collocated Sounding of the Atmosphere using Broadband Emission Radiometry and Global Positioning System-Radio Occultation data. The different instruments show different windows of the GW spectrum, providing complementary observations. In general, the geometric mean of the specific GW potential energy (PE) is larger during winter and spring than during summer and autumn. The largest geometric mean of PE is found inside the vortex and decreases monotonically at its edge, outside it and when there is no vortex. The same behavior is observed with satellite data. On average, it can be seen that lidar observations provide larger PE values than limb sounding measurements. From a Morlet continuous wavelet transform analysis, three distinct modes are captured from Sounding of the Atmosphere using Broadband Emission Radiometry and from Global Positioning System-Radio Occultation data at the upper and lower stratosphere, respectively. In particular, a systematic 3.5- to 4-year oscillation, possibly related to El Niño–Southern Oscillation is observed. ©2018. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America
Autor:Llamedo, P.; Salvador, J.; de la Torre, A.; Quiroga, J.; Alexander, P.; Hierro, R.; Schmidt, T.; Pazmiño, A.; Quel, E.
Filiación:LIDTUA, CIC, Facultad de Ingeniería, Universidad Austral and CONICET, Buenos Aires, Argentina
Laser and Application Research Center (CEILAP)–UNIDEF (MINDEF-CONICET)Villa Martelli, Argentina
Facultad Regional Buenos Aires (UTN-FRBA), Universidad Tecnológica Nacional, Buenos Aires, Argentina
Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos, and CIT, Río Gallegos, Argentina
Instituto de Física de Buenos Aires, CONICET, Buenos Aires, Argentina
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
LATMOS, UVSQ University Paris Saclay, UPMC University Paris 06, CNRS, Guyancourt, France
Palabras clave:GPS RO; SABER; gravity waves activity; lidar; polar vortex; southen South America; stratosphere
Año:2019
Volumen:124
Número:2
Página de inicio:451
Página de fin:467
DOI: http://dx.doi.org/10.1029/2018JD028673
Título revista:Journal of Geophysical Research: Atmospheres
Título revista abreviado:J. Geophys. Res. Atmos.
ISSN:2169897X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2169897X_v124_n2_p451_Llamedo

Referencias:

  • Alexander, P., de la Torre, A., Llamedo, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JD009390
  • Alexander, P., de la Torre, A., Llamedo, P., Hierro, R., Schmidt, T., Haser, A., Wickert, J., A method to improve the determination of wave perturbations close to the tropopause by using a digital filter (2011) Atmospheric Measurement Techniques, 4 (9), pp. 1777-1784. , https://doi.org/10.5194/amt-4-1777-2011
  • Alexander, P., Luna, D., Llamedo, P., de la Torre, A., A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations (2010) Annales de Geophysique, 28 (2), pp. 587-595. , https://doi.org/10.5194/angeo-28-587-2010
  • Alexander, S.P., Klekociuk, A.R., Murphy, D.J., Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E) (2011) Journal of Geophysical Research, 116. , https://doi.org/10.1029/2010JD015164
  • Alexander, S.P., Klekociuk, A.R., Tsuda, T., Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation (2009) Journal of Geophysical Research, 114. , https://doi.org/10.1029/2009JD011851
  • Alexander, S.P., Sato, K., Watanabe, S., Kawatani, Y., Murphy, D.J., Southern Hemisphere extratropical gravity wave sources and intermittency revealed by a middle-atmosphere general circulation model (2016) Journal of the Atmospheric Sciences, 73 (3), pp. 1335-1349. , https://doi.org/10.1175/JAS-D-15-0149.1
  • Anthes, R.A., Bernhardt, P.A., Chen, Y., Cucurull, L., Dymond, K.F., Ector, D., Healy, S.B., Zen, Z., The COSMIC/FORMOSAT-3 MISSION early results (2008) American Meteorological Society, 89 (3), pp. 313-334. , https://doi.org/10.1175/BAMS-89-3-313
  • Baumgaertner, A.J.G., McDonald, A.J., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations (2007) Journal of Geophysical Research, 112. , https://doi.org/10.1029/2006JD007504
  • Bègue, N., Vignelles, D., Berthet, G., Portafaix, T., Payen, G., Jégou, F., Benchérif, H., Godin-Beekmann, S., Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption (2017) Atmospheric Chemistry and Physics, 17, pp. 15,019-15,036. , https://doi.org/10.5194/acp-17-15019-2017
  • Bencherif, H., Portafaix, T., Baray, J.L., Morel, B., Baldy, S., Leveau, J., Diab, R., LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier (2003) Journal of Atmospheric and Solar - Terrestrial Physics, 65 (6), pp. 707-715. , https://doi.org/10.1016/S1364-6826(03)00006-3
  • Cao, B., Heale, C.J., Guo, Y., Liu, A.Z., Snively, J.B., Observation and modeling of gravity wave propagation through reflection and critical layers above Andes Lidar Observatory at Cerro Pachón, Chile (2016) Journal of Geophysical Research: Atmospheres, 121, pp. 12,737-12,750. , https://doi.org/10.1002/2016JD025173
  • Carleton, A.M., Atmospheric teleconnections involving the Southern Ocean (2003) Journal of Geophysical Research, 108 (C4). , https://doi.org/10.1029/2000JC000379
  • Chen, W.N., Tsao, C.C., Nee, J.B., Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere (2004) Journal of Atmospheric and Solar - Terrestrial Physics, 66 (1), pp. 39-49. , https://doi.org/10.1016/j.jastp.2003.09.014
  • Choi, H.-J., Chun, H.-Y., Effects of convective gravity wave drag in the Southern Hemisphere winter stratosphere (2013) Journal of the Atmospheric Sciences, 70 (7), pp. 2120-2136. , https://doi.org/10.1175/JAS-D-12-0238.1
  • de la Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophysical Research Letters, 32. , https://doi.org/10.1029/2005GL022959
  • de la Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large-amplitude gravity waves above the southern Andes, the Drake Passage and the Antarctic Peninsula (2012) Journal of Geophysical Research, 117. , https://doi.org/10.1029/2011JD016377
  • de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? (2006) Geophysical Research Letters, 33. , https://doi.org/10.1029/2006GL027343
  • de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., Hierro, R., On the distortions in calculated GW parameters during slanted atmospheric soundings (2018) Atmospheric Measurement Techniques, 11 (3), pp. 1363-1375. , https://doi.org/10.5194/amt-11-1363-2018
  • de la Torre, A., Giraldez, A., Alexander, P., Saturated gravity wave spectra measured with balloons in Mendoza (Argentina) (1994) Geophysical Research Letters, 21, pp. 2039-2042. , https://doi.org/10.1029/94GL01589
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Quarterly Journal of the Royal Meteorological Society, 137 (656), pp. 553-597. , https://doi.org/10.1002/qj.828
  • Duck, T.J., Whiteway, J.A., Carswell, A.I., Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming (1998) Geophysical Research Letters, 25, pp. 2813-2816. , https://doi.org/10.1029/98GL02113
  • Duck, T.J., Whiteway, J.A., Carswell, A.I., The gravity wave-Arctic stratospheric vortex interaction (2001) Journal of the Atmospheric Sciences, 58 (23), pp. 3581-3596. , https://doi.org/10.1175/1520-0469(2001)058<3581:TGWASV>2.0.CO;2
  • Ehard, B., Kaifler, B., Dörnbrack, A., Preusse, P., Eckermann, S.D., Bramberger, M., Gisinger, S., Rapp, M., Horizontal propagation of large-amplitude mountain waves into the polar night jet (2017) Journal of Geophysical Research: Atmospheres, 122, pp. 1423-1436. , https://doi.org/10.1002/2016JD025621
  • Ehard, B., Kaifler, B., Kaifler, N., Rapp, M., Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements (2015) Atmospheric Measurement Techniques, 8 (11), pp. 4645-4655. , https://doi.org/10.5194/amt-8-4645-2015
  • Ern, M., Preusse, P., Krebsbach, M., Mlynczak, M.G., Russell, J.M., III, Equatorial wave analysis from SABER and ECMWF temperatures (2008) Atmospheric Chemistry and Physics, 8 (4), pp. 845-869. , https://doi.org/10.5194/acp-8-845-2008
  • Fernald, F.G., Analysis of atmospheric lidar observations: Some comments (1984) Applied Optics, 23 (5), p. 652. , https://doi.org/10.1364/AO.23.000652
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Reviews of Geophysics, 41 (1). , https://doi.org/10.1029/2001RG000106
  • Fritts, D.C., Smith, R.B., Taylor, M.J., Doyle, J.D., Eckermann, S.D., Dörnbrack, A., Rapp, M., Ma, J., The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere (2016) Bulletin of the American Meteorological Society, 97 (3), pp. 425-453. , https://doi.org/10.1175/BAMS-D-14-00269.1
  • Geller, M.A., Alexander, M.J., Love, P.T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Zhou, T., A comparison between gravity wave momentum fluxes in observations and climate models (2013) Journal of Climate, 26 (17), pp. 6383-6405. , https://doi.org/10.1175/JCLI-D-12-00545.1
  • Gross, M.R., McGee, T.J., Ferrare, R.A., Singh, U.N., Kimvilakani, P., Temperature measurements made with a combined Rayleigh–Mie and Raman lidar (1997) Applied Optics, 36 (24), pp. 5987-5995. , https://doi.org/10.1364/AO.36.005987
  • Hauchecorne, A., Chanin, M.L., Density and temperature profiles obtained by lidar between 35 and 70 km (1980) Geophysical Research Letters, 7, pp. 565-568. , https://doi.org/10.1029/GL007i008p00565
  • Hauchecorne, A., Godin, S., Marchand, M., Hesse, B., Souprayen, C., Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity (2002) Journal of Geophysical Research, 107 (D20). , https://doi.org/10.1029/2001JD000491
  • Hendricks, E.A., Doyle, J.D., Eckermann, S.D., Jiang, Q., Reinecke, P.A., What is the source of the stratospheric gravity wave belt in austral winter? (2014) Journal of the Atmospheric Sciences, 71 (5), pp. 1583-1592. , https://doi.org/10.1175/JAS-D-13-0332.1
  • Hindley, N.P., Wright, C.J., Smith, N.D., Mitchell, N.J., The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO (2015) Atmospheric Chemistry and Physics, 15 (14), pp. 7797-7818. , https://doi.org/10.5194/acp-15-7797-2015
  • Hoffmann, L., Grimsdell, A.W., Alexander, M.J., Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations (2016) Atmospheric Chemistry and Physics, 16 (14), pp. 9381-9397. , https://doi.org/10.5194/acp-16-9381-2016
  • Hoffmann, L., Xue, X., Alexander, M.J., A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations (2013) Journal of Geophysical Research: Atmospheres, 118, pp. 416-434. , https://doi.org/10.1029/2012JD018658
  • Jiang, Q., Doyle, J.D., Reinecke, A., Smith, R.B., Eckermann, S.D., A modeling study of stratospheric waves over the southern Andes and Drake Passage (2013) Journal of the Atmospheric Sciences, 70 (6), pp. 1668-1689. , https://doi.org/10.1175/JAS-D-12-0180.1
  • John, S.R., Kumar, K.K., A discussion on the methods of extracting gravity wave perturbations from space-based measurements (2013) Geophysical Research Letters, 40, pp. 2406-2410. , https://doi.org/10.1002/grl.50451
  • Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., Fritts, D.C., Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere (2015) Geophysical Research Letters, 42, pp. 9488-9494. , https://doi.org/10.1002/2015GL066465
  • Kaifler, B., Lübken, F.-J., Höffner, J., Morris, R.J., Viehl, T.P., Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica (2015) Journal of Geophysical Research: Atmospheres, 120, pp. 4506-4521. , https://doi.org/10.1002/2014JD022879
  • Kogure, M., Nakamura, T., Ejiri, M.K., Nishiyama, T., Tomikawa, Y., Tsutsumi, M., Suzuki, H., Abo, M., Rayleigh/Raman lidar observations of gravity wave activity from 15 to 70 km altitude over Syowa (69°S, 40°E), the Antarctic (2017) Journal of Geophysical Research: Atmospheres, 122, pp. 7869-7880. , https://doi.org/10.1002/2016JD026360
  • Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfiled, R.P., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System (1997) Journal of Geophysical Research, 102, pp. 23,429-23,466. , https://doi.org/10.1029/97JD01569
  • Lee, A.M., Roscoe, H.K., Jones, A.E., Haynes, P.H., Shuckburgh, E.F., Morrey, M.W., Pumphrey, H.C., The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring (2001) Journal of Geophysical Research, 106, pp. 3203-3211. , https://doi.org/10.1029/2000JD900398
  • Llamedo, P., Hierro, R., de la Torre, A., Alexander, P., ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles (2016) International Journal of Climatology, , https://doi.org/10.1002/joc.4702
  • Luna, D., Alexander, P., de la Torre, A., Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements (2013) Advances in Space Research, 52 (5), pp. 879-882. , https://doi.org/10.1016/j.asr.2013.05.015
  • Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., A. von Engeln, E. O'Clerigh, and C. Marquardt, Prospects of the EPS GRAS mission for operational atmospheric applications (2008) Bulletin of the American Meteorological Society, , https://doi.org/10.1175/2008BAMS2399.1
  • McGee, T.J., Gross, M., Ferrare, R., Heaps, W., Singh, U., Raman dial measurements of stratospheric ozone in the presence of volcanic aerosols (1993) Geophysical Research Letters, 20, pp. 955-958. , https://doi.org/10.1029/93GL00751
  • McLandress, C., Shepherd, T.G., Polavarapu, S., Beagley, S.R., Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? (2012) Journal of the Atmospheric Sciences, 69 (3), pp. 802-818. , https://doi.org/10.1175/JAS-D-11-0159.1
  • Nappo, C.J., (2002) An introduction to atmospheric gravity waves, p. 279. , International Geophysics Series, (p., San Diego, CA, Academic Press
  • Nash, E.R., Newman, P.A., Rosenfield, J.E., Schoeberl, M.R., An objective determination of the polar vortex using Ertel's potential vorticity (1996) Journal of Geophysical Research, 101, pp. 9471-9478. , https://doi.org/10.1029/96JD00066
  • Plougonven, R., Hertzog, A., Guez, L., Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations (2013) Quarterly Journal of the Royal Meteorological Society, 139 (670), pp. 101-118. , https://doi.org/10.1002/qj.1965
  • Plougonven, R., Zhang, F., Internal gravity waves from atmospheric jets and fronts (2014) Reviews of Geophysics, 52, pp. 33-76. , https://doi.org/10.1002/2012RG000419
  • Preusse, P., Ern, M., Bechtold, P., Eckermann, S.D., Kalisch, S., Trinh, Q.T., Riese, M., Characteristics of gravity waves resolved by ECMWF (2014) Atmospheric Chemistry and Physics, 14 (19), pp. 10,483-105,08. , https://doi.org/10.5194/acp-14-10483-2014
  • Pulido, M., Rodas, C., Dechat, D., Lucini, M.M., High gravity-wave activity observed in Patagonia, Southern America: Generation by a cyclone passage over the Andes mountain range (2012) Quarterly Journal of the Royal Meteorological Society, , https://doi.org/10.1002/qj.1983
  • Remsberg, E.E., Marshall, B.T., Garcia-Comas, M., Krueger, D., Lingenfelser, G., Martin-Torres, J., Mlynczak, M.G., Thompson, R.E., Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2008JD010013
  • Richter, J.H., Sassi, F., Garcia, R.R., Toward a physically based gravity wave source parameterization in a general circulation model (2010) Journal of the Atmospheric Sciences, 67 (1), pp. 136-156. , https://doi.org/10.1175/2009JAS3112.1
  • Sato, K., Tateno, S., Watanabe, S., Kawatani, Y., Gravity wave characteristics in the Southern Hemisphere revealed by a high resolution middle-atmosphere general circulation model (2012) Journal of the Atmospheric Sciences, 69 (4), pp. 1378-1396. , https://doi.org/10.1175/JAS-D-11-0101.1
  • Schmidt, T., Alexander, P., de la Torre, A., Stratospheric gravity wave momentum flux from radio occultations (2016) Journal of Geophysical Research: Atmospheres, 121, pp. 4443-4467. , https://doi.org/10.1002/2015JD024135
  • Schmidt, T., Wickert, J., Marquardt, C., Beyerle, G., Reigber, C., Galas, R., König, R., GPS radio occultation with CHAMP: An innovative remote sensing method of the atmosphere (2004) Advances in Space Research, 33 (7), pp. 1036-1040. , https://doi.org/10.1016/S0273-1177(03)00591-X
  • Shibata, T., Kobuchi, M., Maeda, M., Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar (1986) Applied Optics, 25 (5), pp. 685-688. , https://doi.org/10.1364/AO.25.000685
  • Wolfram, E.A., Salvador, J., D'Elia, R., Casiccia, C., Paes Leme, N., Pazmiño, A., Porteneuve, J., Quel, E., New differential absorption lidar for stratospheric ozone monitoring in Patagonia, South Argentina (2008) J. Opt. A: Pure Appl. Opt., 10 (10). , https://doi.org/10.1088/1464-4258/10/10/104021
  • Wolfram, E.A., Salvador, J., Orte, F., D'Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Quel, E., The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: A multi-instrument study (2012) Annales de Geophysique, 30 (10), pp. 1435-1449. , https://doi.org/10.5194/angeo-301435-2012
  • Wright, C.J., Hindley, N.P., Hoffmann, L., Alexander, M.J., Mitchell, N.J., Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage (2017) Atmospheric Chemistry and Physics, 17 (13), pp. 8553-8575. , https://doi.org/10.5194/acp-17-8553-2017
  • Wright, C.J., Hindley, N.P., Moss, A.C., Mitchell, N.J., Multiinstrument gravity-wave measurements over Tierra del Fuego and the Drake Passage—Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes (2016) Atmospheric Measurement Techniques, 9 (3), pp. 877-908. , https://doi.org/10.5194/amt-9-877-2016
  • Zhang, F., Generation of mesoscale gravity waves in upper-tropospheric jet-front systems (2004) Journal of the Atmospheric Sciences, 61 (4), pp. 440-457
  • Zhang, F., Koch, S., Davis, C., Kaplan, M., A survey of unbalanced flow diagnostics and their application (2000) JAdvances in Atmospheric Sciences, 17 (2), pp. 165-183

Citas:

---------- APA ----------
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., Schmidt, T.,..., Quel, E. (2019) . 11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America. Journal of Geophysical Research: Atmospheres, 124(2), 451-467.
http://dx.doi.org/10.1029/2018JD028673
---------- CHICAGO ----------
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., et al. "11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America" . Journal of Geophysical Research: Atmospheres 124, no. 2 (2019) : 451-467.
http://dx.doi.org/10.1029/2018JD028673
---------- MLA ----------
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., et al. "11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America" . Journal of Geophysical Research: Atmospheres, vol. 124, no. 2, 2019, pp. 451-467.
http://dx.doi.org/10.1029/2018JD028673
---------- VANCOUVER ----------
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., et al. 11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America. J. Geophys. Res. Atmos. 2019;124(2):451-467.
http://dx.doi.org/10.1029/2018JD028673