Artículo

Barcelona, H.; Yagupsky, D.; Agusto, M."The layered model of the Copahue geothermal reservoir, Argentina" (2019) Geothermal Energy. 7(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An exhaustive review of the available data related to the reservoir of the volcano-hosted Copahue geothermal system is presented. Reservoir interpretation to date suggests a vapor-dominated nature. However, the review provided reveals the limitations of this model, regarding the transition from shallow argillic to deep propylitic alteration zones, gas geothermometers calibrated to near-neutral pH environment, production tests, and low recharge of the feed zone, among the other features. We propose that a layered model with a shallow vapor zone above a fluid pressurized reservoir better accounts for the known features of the geothermal reservoir. Temperature profiles define the 800-m-thick upper thermal boundary that includes the impermeable clay cap. An argillic alteration layer (smectite + chlorite + illite + kaolinite) with low electric resistivity response, consistent with the presence of smectite, composes the clay cap. A shallow steam cap develops immediately below the impermeable layer. This vapor zone has 200–215 °C, low seismic activity, and high electrical resistivity, and is highlighted by the isothermal segment of the well logs. The bottom part of the reservoir is subjected to controversy because of the lack of direct measurements. The deep liquid-dominated reservoir has a temperature of ~ 280 °C, develops below 1500 m depth under near-neutral pH condition, and probably has a pervasive propylitic alteration, and wairakite + laumontite + chlorite + epidote + prehnite + actinolite is the likely mineral assemblage. Pressure collapse might trigger the development of the shallow steam cap during deflation–inflation volcanic cycles or Pleistocene-to-recent tectonic deformation. This work points out the main weak points of the previous conceptual model, providing an alternative one based on the first comprehensive compilation of data of the Copahue reservoir. Further research, including a deep exploration drilling stage, is required to establish the physicochemical reservoir state precisely and to validate the proposed layered model. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:The layered model of the Copahue geothermal reservoir, Argentina
Autor:Barcelona, H.; Yagupsky, D.; Agusto, M.
Filiación:CONICET-IDEAN, Instituto de Estudios Andinos, Universidad de Buenos Aires, Pabellón II, Nuñez, Buenos Aires, C1428EHA, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes, 2160 Ciudad Universitaria-Pabellón II, Buenos Aires, C1428EHA, Argentina
Palabras clave:Copahue geothermal field; Exploration; Geothermal reservoir; Liquid-dominated; Vapor-dominated; Clay alteration; Electric conductivity; Geothermal wells; Kaolinite; Natural resources exploration; Petroleum prospecting; Silicate minerals; Volcanoes; Well logging; Zeolites; Copahue; Exploration drilling; Geothermal reservoir; High-electrical resistivities; Isothermal segments; Tectonic deformations; Temperature profiles; Vapor dominated; Geothermal fields
Año:2019
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1186/s40517-019-0124-9
Handle:http://hdl.handle.net/20.500.12110/paper_21959706_v7_n1_p_Barcelona
Título revista:Geothermal Energy
Título revista abreviado:Geeotherm. Energy
ISSN:21959706
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21959706_v7_n1_p_Barcelona

Referencias:

  • Agusto, M., Caselli, A., Tassi, F., Dos Santos Afonso, M., Vaselli, O., Seguimiento geoquímico de las aguas ácidas del sistema volcán Copahue-Río Agrio: Posible aplicación para la identificación de precursores eruptivos (2012) Revista de la Asociación Geológica Argentina, 69 (4), pp. 481-495
  • Agusto, M., Velez, M.L., Caselli, A., Euillades, P., Tassi, F., Capaccioni, B., Vaselli, O., (2012) Correlación Entre anomalías térmicas, geoquímicas Y Procesos Deflacionarios En El volcán Copahue Actas Del Congreso Geologico Chileno, , Antofagasta
  • Agusto, M., Tassi, F., Caselli, A.T., Vaselli, O., Rouwet, D., Capaccioni, B., Darrah, T., Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina) (2013) J Volcanol Geother Res., 257, pp. 44-56
  • Agusto, M., Velez, M., Euillades, P., Tassi, F., Caselli, A., Lamberti, M., Szentiványi, J., Trinelli, A., (2018) Correlación entre cambios geoquímicos y deformación en el volcán Copahue (Argentina) durante el ciclo eruptivo 2012–2017 Foro internacional: Los volcanes y su impacto, 31–35, , Arequipa, Perú
  • Alamsyah, O., Bratakusuma, B., Hoang, V., Roberts, J.W., Dynamic modeling of Darajat Field using numerical simulation (2005) Proceedings World Geothermal Congress, Antalya Turkey, pp. 24-29
  • Allis, R., Shook, M., (1999) An alternative mechanism for the formation of The Geyser vapor-dominated reservoir. Proceedings, 24th Workshop on Geothermal Reservoir Engineering, pp. 53-63. , Stanford University, Stanford
  • Allis, R., Insight on the formation of vapor-dominated geothermal system (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 2489-2496
  • Aravena, D., Munoz, M., Morata, D., Lahsen, A., Parada, M.A., Dobson, P., Assessment of high enthalpy geothermal resources and promising areas of Chile (2016) Geothermics, 59, pp. 1-13
  • Arnórsson, S., (2000) Isotopic and chemical techniques in geothermal exploration, development and use, pp. 109-111. , International Atomic Energy Agency, Vienna
  • Batini, F., Brogi, A., Lazzarotto, A., Liotta, D., Pandeli, E., Geological features of Larderello-Travale and Mt Amiata geothermal areas (southern Tuscany, Italy) (2003) Episodes., 26 (3), pp. 239-244
  • Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow (2004) J Volcanol Geotherm Res., 132 (1), pp. 15-29
  • Boden, D.R., (2016) Geologic fundamentals of geothermal energy, , CRC Press, Boca Raton
  • Bogie, I., Kusumah, Y.I., Wisnandary, M.C., Overview of the Wayang Windu geothermal field (2008) Geothermal, 37, pp. 347-365
  • Bogie, I., Ussher, G., Lovelock, B., Mackenzie, K., Finding the productive sweet spots in the vapour and transitional vapour–liquid dominated geothermal fields of Java, Indonesia (2015) Proceedings World Geothermal Congress
  • Borzotta, E., Caselli, A.T., Mamani, M.J., Magma Chamber Associated to Deep Faults in Copahue Active Volcanic Complex, South America, Suggested by Magnetotelluric Study (2018) Geofizicheskiy Zhurnal, 40 (4), pp. 178-190
  • Caselli, A., Agusto, M., Vélez, M.L., Forte, P., Bengoa, C., Daga, R., Albite, J.M., Capaccioni, B., (2015) The 2012 Eruption En: Tassi, F, Vaselli, O Y Caselli, a (Eds) Copahue Volcano Springer, Active Volcanoes of the World 4: 61–77, , Berlin-Heidelberg
  • Cembrano, J., Lara, L., The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review (2009) Tectonophysics, 471 (1-2), pp. 96-113
  • Chiodini, G., Cioni, R., Marini, L., Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance (1993) Appl Geochem, 8 (4), pp. 357-371
  • Chiodini, G., Brombach, T., Caliro, S., Cardellini, C., Marini, L., Dietrich, V., Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece) (2002) Geophys Res Lett, 29 (16), p. 6
  • Chiodini, G., Cardellini, C., Lamberti, M.C., Agusto, M., Caselli, A., Liccioli, C., Caliro, S., Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina) (2015) J Volcanol Geotherm Res., 304, pp. 294-303
  • Chiodini, G., Marini, L., Hydrothermal gas equilibria: the H 2 O–H 2 –CO 2 –CO–CH 4 system (1998) Geochimica et Cosmochimica Acta., 62, pp. 2673-2687
  • Corbett, G.J., Leach, T.M., A guide to pacific rim Au/Cu exploration A Workshop Presented in Jakarta, p. 82. , Indonesia 14–15 December 1993
  • Cumming, W., Mackie, R., (2007) MT Survey for Resource Assessment and Environmental Mitigation at the Glass Mountain KGRA, , California Energy Commission, GRDA Geothermal Resources Development Account Report
  • D’Amore, F., Panichi, C., Evaluation of deep temperatures of hydrothermal system by a new gas geothermometer (1980) Geochim Cosmochim Acta, 44, pp. 549-556
  • D’Amore, F., Truesdell, A.H., Calculation of geothermal reservoir temperatures and steam fractions from gas compositions (1985) GRC Symp Geotherm Energy, 9, pp. 303-310
  • Della Vedova, B., Vecellio, C., Bellani, S., Tinivella, U., Thermal modeling of the Larderello geothermal field (Tuscany, Italy) (2008) Int J Earth Sci, 97 (2), pp. 317-332
  • Delpino, D., Bermúdez, A., (1993) La actividad del volcán Copahue durante 1992 Erupción con emisión de azufre piroclástico Provincia de Neuquén 12º Congreso Geológico Argentino, 4, pp. 292-301. , Actas, Mendoza
  • Delpino, D., Bermúdez, A., . La erupción del volcán Copahue del año 2000 Impacto social y al medio natural Provincia del Neuquén Argentina 15º Congreso Geológico Argentino (2002) Actas, 3, pp. 365-370. , El Calafate
  • Dickinson, W.R., Snyder, W.S., Geometry of triple junctions related to San Andreas transform (1979) J Geophys Res, 84 (B2), pp. 561-572
  • DiPippo, R., (2016) Geothermal power plants: principles, applications, case studies and environmental impact, , Butterworth-Heinemann, New York
  • Elder, W., Moore, J., Geology of geothermal resources (2016) Geothermal Power Generation, Dippipo, R, pp. 7-32
  • Faust, C.R., Mercer, J.W., Geothermal reservoir simulation: 2 Numerical solution techniques for liquid-and vapor-dominated hydrothermal systems (1979) Water Resour Res., 15 (1), pp. 31-46
  • Folguera, A., Rojas Vera, E., Vélez, L., Tobal, J., Orts, D., Agusto, M., Caselli, A., Ramos, V., (2016) A review of the Geology, Structural Controls, and Tectonic Setting of Copahue Volcano, Southern Volcanic Zone, Andes, Argentina, pp. 3-22. , In Copahue Volcano, Tassi, F, Vaselli, O, Caselli, A
  • Gambill, D.T., Beraquit, D.B., Development history of the Tiwi geothermal field (1993) Philippines Geotherm, 22 (5-6), pp. 403-416
  • Gaviria Reyes, M.A., Agusto, M.R., Trinelli, M.A., Caselli, A.T., Dos Santos, A.M., Calabrese, S., Estudio hidrogeoquímico de las áreas termales del complejo volcánico Copahue-Caviahue Revista de la Asociación (2016) Geológica Argentina, 73 (2), pp. 256-269
  • Gifkins, C., Herrmann, W., Large, R., (2005) Altered volcanic rocks—a guide to description and interpretation Centre Ore Depos Res, , Univ Tasmania, Hobart
  • Giggenbach, W.F., Redox processes governing the chemistry of fumarolic gas discharges from White Island (1987) N Z Appl Geochem, 2, pp. 143-161
  • Giggenbach, W.F., Chemical techniques in geothermal exploration (1991) Application of geochemistry in geothermal reservoir development, pp. 253-273. , UNITAR, New York
  • Giggenbach, W.F., Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high heat flow sedimentary basins (1997) Geochim Cosmochim Acta, 61, pp. 3763-3785
  • González-Partida, E., Carrillo-Chávez, A., Levresse, G., Tello-Hinojosa, E., Venegas-Salgado, S., Ramirez-Silva, G., Camprubi, A., Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico (2005) Appl Geochem, 20 (1), pp. 23-39
  • Grant, M.A., Bixley, P.F., (2011) Geothermal reservoir engineering, , 2, Elsevier Inc, New York
  • Gunderson, R., Cumming, W., Astra, D., Harvey, C., Analysis of smectite clays in geothermal drill cuttings by the methylene blue method: For well site geothermometry and resistivity sounding correlation (2000) Proceedings of the 2000 World Geothermal Congress, p. 1175e81. , Tokyo, Japan
  • Hanano, M., Matsuo, G.I., Initial state of the Matsukawa geothermal reservoir: reconstruction of a reservoir pressure profile and its implications (1990) Geothermics, 19 (6), pp. 541-560
  • Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E., Exploration for epithermal gold deposits (2000) Rev Econ Geol, 13 (2), pp. 45-77
  • Hedenquist, J.W., Reyes, A.G., Simmons, S.F., Taguchi, S., The thermal and geochemical structure of geothermal and epithermal systems: a framework for interpreting fluid inclusion data (1992) Eur J Mineral, 4, pp. 989-1015
  • Heise, W., Caldwell, T.G., Bibby, H.M., Bannister, S.C., Three-dimensional modeling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand (2008) Geophys J Int, 173 (2), pp. 740-750
  • Henley, R.W., Hedenquist, J.W., Roberts, P.J., Guide to the Active Epithermal (Geothermal) Systems and Precious Metal Deposits of New Zealand Gebruder Borntraeger (1986) Monograph Series on Mineral Deposits, 26
  • Henley, R.W., Ellis, A.J., Geothermal systems, ancient and modern (1983) Earth Sci Rev, 19, pp. 1-50
  • Hochstein, M.P., Sudarman, S., History of geothermal exploration in Indonesia from 1970 to (2000) Geothermics, 37, pp. 220-266
  • Ingebritsen, S.E., Sorey, M.L., Vapor-dominated zones within hydrothermal systems: evolution and natural state (1988) J Geophys Res, 93 (B11), pp. 13635-13655
  • Iriarte, S., (2013) Jornada Geotérmica Universidad De Concepción, Exploración geotérmica Proyecto Tolhuaca
  • (1992) The Feasibility Study on the Northem Neuquén Geothermal Development Project Ente Provincial De Energía De La Provincia Del Neuquén, JICA-EPEN (Unpublished), p. 89. , Neuquén
  • Jolie, E., Moeck, I., Faulds, J.E., Quantitative structural–geological exploration of fault-controlled geothermal systems—a case study from the Basin-and-Range Province, Nevada (USA) (2015) Geothermics., 54, pp. 54-67
  • Jurío, R.L., Características geoquímicas de los fluidos termales de Copahue (Neuquén, Argentina) (1977) Principales implicancias geotérmicas Minería., 172, pp. 1-11
  • Katili, J.A., Volcanism and plate tectonics in the Indonesian island arcs (1975) Tectonophysics, 26 (3-4), pp. 165-188
  • Kiseleva, I., Navrotsky, A., Belitsky, I.A., Fursenko, B.A., Thermochemistry and phase equilibria in calcium zeolites (1996) Am Miner, 81 (5-6), pp. 658-667
  • Layman, E., Soemarinda, S., The Patuha vapor-dominated resource West Java Indonesia (2003) Proceedings, 28Th Workshop on Geothermal Reservoir Engineering, Stanford University
  • Lazo, J., Basualto, D., Bengoa, C., Cardona, C., Franco, L., Gil-Cruz, F., Morales, S., Spatial Distribution of b-value of the Copahue volcano during the 2012–2014 eruptive period: Relationship between magmatic and hydrothermal system (2015) EGU General Assembly Conference Abstracts, 17
  • Liou, J.G., P-T stabilities of Laumontite, Wairakite, Lawsonite, and related minerals in the system CaAl 2 Si 2 O 8 –SiO 2 –H 2 O (1971) J Petrol, 12 (2), pp. 379-411
  • Lundgren, P., Nikkhoo, M., Samsonov, S.V., Milillo, P., Gil-Cruz, F., Lazo, J., Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations (2017) J Geophys Res, 122 (7), pp. 5729-5747
  • Mamani, M.J., Borzotta, E., Venencia, J.E., Maidana, A., Moyano, C.E., Castiglione, B., Electric structure of the Copahue Volcano (Neuquén Province, Argentina), from magnetotelluric soundings: 1D and 2D modellings (2000) J South Am Earth Sci., 13 (1-2), pp. 147-156
  • Martini, M., Bermúdez, A., Delpino, D., Giannini, L., The thermal manifestations of Copahue volcano area. Neuquén, Argentina (1997) Congreso Geológico Chileno, pp. 352-356
  • Mas, G.R., Mas, L.C., Bengochea, L., Inclusiones fluidas en el pozo exploratorio COP-3, campo geotérmico de Copahue, Provincia del Neuquén, Argentina (1993) XII Congreso Geológico Argentino, Mendoza, pp. 92-98
  • Mas, G.R., Mas, L.C., Bengochea, L., Zeolite zoning in drill holes of the Copahue geothermal field, Neuquén, Argentina (1995) Proceedings of the World Geothermal Congress, pp. 1077-1081
  • Mas, G.R., Mas, L.C., Bengochea, L., Hydrothermal, surface alteration in the Copahue geothermal field (Argentina) (1996) Proceedings twenty-fifth workshop on geothermal reservoir engineering, Stanford University Stanford, California, pp. 22-24. , In:,., p
  • Mas, L.C., Mas, G.R., Bengochea, L., Heat flow of Copahue geothermal field, its relation with tectonic scheme (2000) Proceedings of World Geothermal Congress, Tohoku, Japan, pp. 1419-1424
  • Melosh, G., Cumming, W., Benoit, D., Wilmarth, M., Colvin, A., Winick, J., Peretz, A., Exploration results and resource conceptual model of the Tolhuaca Geothermal Field, Chile (2010) Proceedings, World Geothermal Congress
  • Melosh, G., Moore, J., Stacey, R., Natural reservoir evolution in the Tolhuaca geothermal field, southern Chile Proceedings 36Th Workshop on Geothermal Reservoir Engineering, p. 2012. , Stanford University, Stanford, CA
  • Moeck, I.S., Catalog of geothermal play types based on geologic controls (2014) Renew Sustain Energy Rev, 37, pp. 867-882
  • Monterrosa, M., López, F.E.M., Sustainability analysis of the Ahuachapán geothermal field: management and modeling (2010) Geothermics, 39 (4), pp. 370-381
  • Moore, J.N., Allis, R.G., Nemcok, M., Powell, T.P., Bruton, C.J., Wannamaker, P.E., Raharjo, I.B., Norman, D.N., The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia (2008) Am J Sci, 308, pp. 1-48
  • Nakanishi, S., Abe, M., Todaka, N., Yamada, M., Sierra, J.L., Gingins, M.O., Pedro, G.E., Copahue geothermal system, Argentina—study of a vapor-dominated reservoir (1995) Proceedings World Geothermal Congress ‘95, pp. 18-31. , Florence
  • Naranjo, J.A., Polanco, E., The 2000 AD eruption of Copahue Volcano, Southern Andes (2004) Revista Geológica de Chile, 31, pp. 279-292
  • Nicholson, K., (1993) Geothermal Fluids, p. 263
  • Norton, D.L., Hulen, J.B., Preliminary numerical analysis of the magma-hydrothermal history of The Geysers geothermal system, California, USA (2001) Geothermics, 30 (2), pp. 211-234
  • Ozima, M., Podosek, F.A., (2002) Noble gas geochemistry, , Cambridge University Press, Cambridge
  • Panarello, H.O., Características isotópicas y termodinámicas de reservorio del campo geotérmico Copahue-Caviahue, provincia del Neuquén (2002) Revista de la Asociación geológica Argentina., 57 (3), pp. 328-340
  • Pérez-Flores, P., Cembrano, J., Sánchez-Alfaro, P., Veloso, E., Arancibia, G., Roquer, T., Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: insights from the northern termination of the Liquiñe-Ofqui fault System (2016) Chile Tectonophys, 680, pp. 192-210
  • Pesce, A., Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar (1989) Revista de la Asociación Geológica Argentina, 44, pp. 307-327
  • Petrinovic, I., Villarosa, G., D’Elía, L., Guzman, S., Paez, G., Outes, V., Manzoni, C., Hernando, I., La erupción del 22 de diciembre de 2012 del volcán Copahue, Neuquén, Argentina: Caracterización del ciclo eruptivo y sus productos (2014) Revista de la Asociación Geológica Argentina, 71, pp. 161-173
  • Pinti, D.L., Castro, M.C., Shouakar-Stash, O., Tremblay, A., Garduño, V.H., Hall, C.M., Hélie, J.F., Ghaleb, B., Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr (2013) J Volcanol Geotherm Res., 249, pp. 1-11
  • Pirajno, F., Hydrothermal processes associated with meteorite impacts (2009) Hydrothermal processes and mineral systems, , In:,., Springer,:, Dordrecht
  • Pratama, H.B., Saptadji, N.M., Numerical simulation for natural state of two-phase liquid dominated geothermal reservoir with steam cap underlying brine reservoir (2016) IOP Conference Series: Earth and Environmental Science, 42 (1). , IOP Publishing: Briston
  • Preuss, K., A quantitative model of vapor-dominated geothermal reservoirs as heat pipes in fractured porous rocks (1985) Geotherm Resour Coun Trans, 9, pp. 353-361
  • Raharjo, I.B., Allis, R.G., Chapman, D.S., (2012) Why are the only volcano-hosted vapor-dominated geothermal systems in West Java, Indonesia? In Geothermal Resources Council Annual Meeting 2012-Geothermal: Reliable, , Renewable, Global, GRC
  • Raharjo, I.B., Allis, R.G., Chapman, D.S., Volcano-hosted vapor-dominated geothermal systems in permeability space (2016) Geothermics, 62, pp. 22-32
  • Ramos, V., Folguera, A., Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation (2005) The Neuquén Basin: A Case Study in Sequence Stratigraphy and Basin Dynamics the Geological Society, Special Publications, 252, pp. 15-35. , In Spalletti L, Veiga G, Schwarz E, Howell A, London
  • Rejeki, S., Hadi, J., Suhayati, I., Porosity study for detail reservoir characterization in Darajat geothermal field, West Java, Indonesia (2005) Proc World Geothermal Congress 2005, , Antalya, Turkey, 24–29 April
  • Rejeki, S., Rohrs, D., Nordquist, G., Fitriyanto, A., (2010) Geologic conceptual model update of the Darajat geothermal field Indonesia Proceedings, p. 1283. , World Geothermal Congress, Paper
  • Roulleau, E., Tardani, D., Sano, Y., Takahata, N., Vinet, N., Bravo, F., Sanchez, J., New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: boiling steam separation and water-rock interaction at shallow depth (2016) J Volcanol Geoth Res, 328, pp. 70-83
  • Sanchez-Alfaro, P., Reich, M., Arancibia, G., Pérez-Flores, P., Cembrano, J., Driesner, T., Tardani, D., Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: insights into the interplay between hydrothermal alteration and brittle deformation (2016) J Volcanol Geotherm Res., 324, pp. 88-104
  • Schlüter, H.U., Gaedicke, C., Roeser, H.A., Schreckenberger, B., Meyer, H., Reichert, C., Prexl, A., Tectonic features of the southern Sumatra-western Java forearc of Indonesia (2002) Tectonics., 21 (5), p. 1047
  • Sepúlveda, F., Dorsch, K., Lahsen, A., Bender, S., Palacios, C., The chemical and isotopic composition of geothermal discharges from the Puyehue-Cordón Caulle area (405°S), Southern Chile (2004) Geothermal, 33 (5), pp. 655-673
  • Sepúlveda, F., (2006) El Sistema geotérmico De Cordón Caulle, Sur De Chile, , caracterización geológica y geoquímica Unpublished PhD thesis (Universidad de Chile)
  • Shibuya, A., Tetsuro, M., Shinada, S., Yoshioka, H., Exploration of Geothermal Zone in Mt Aso West Area in Kyushu (2000) Proceedings of the World Geothermal Congress, pp. 1737-1741. , Japan
  • Sierra, J., D’Amore, F., Panarello, H., Pedro, G., (1992); Stelling, P., Shevenell, L., Hinz, N., Coolbaugh, M., Melosh, G., Cumming, W., Geothermal systems in volcanic arcs: volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide (2016) J Volcanol Geoth Res, 324, pp. 57-72
  • Tardani, D., Reich, M., Roulleau, E., Takahata, N., Sano, Y., Péres-Flores, P., Sànchez-Alfaro, P., Arancibia, G., Exploring the structural controls on helium, nitrogen and carbon isotopes signatures in hydrothermal fluids along an intra-arc fault system (2016) Geochim Cosmochim Acta., 184, pp. 193-211
  • Tassi, F., Agusto, M., Lamberti, C., Caselli, A.T., Pecoraino, G., Caponi, C., Vaselli, O., The 2012–2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids (2017) Bull Volcanol., 79 (10), p. 69
  • Terada, A., Sudo, Y., Thermal activity within the western-slope geothermal zone of Aso volcano, Japan: development of a new thermal area (2012) Geothermics, 42, pp. 56-64
  • Terceros, Z.D., Colorda, E.N.D.E., UCL State of the geothermal resources in Bolivia: Laguna Colorada project (2000) Proceedings of the World Geothermal Congress 2000, pp. 153-158
  • Thain, I.A., Carey, B., Fifty years of geothermal power generation at Wairakei (2009) Geothermics, 38 (1), pp. 48-63
  • Vargas, L.S., Püschel-Lovengreen, S., Analysis of geothermal power plant performance in the context of the Chilean electricity market (2016) Proceedings 38Th New Zealand Geothermal Workshop, 23, p. 25
  • Velez, M.L., Euillades, P., Caselli, A., Blanco, M., Díaz, J.M., Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm (2011) J Volcanol Geoth Res, 202 (1-2), pp. 117-126
  • Velez, L., Euillades, P., Blanco, M., Euillades, L., (2016) Ground Deformation between 2002 and 2013 from Insar Observations Copahue Volcano, pp. 175-198. , Springer
  • Villarroel Camacho, D.G., (2014) Geothermal Development in Bolivia United Nations University, Geothermal Training Programme
  • White, N.C., Hedenquist, J.W., Epithermal gold deposits: styles, characteristics, and exploration Society of Economic Geologists (1995) Newsletter, 23 (1), pp. 9-13
  • White, D.E., Muffler, L.J.P., Truesdell, A.H., Vapor-dominated hydrothermal systems compared with hot-water systems (1971) Econ Geol, 66 (1), pp. 75-97
  • Zapata, T., Brissón, I., Dzelalija, F., The role of basement in the Andean fold and thrust belt of the Neuquén Basin (1999) Thrust Tectonics, 99, pp. 122-124
  • Zarrouk, S.J., Moon, H., Efficiency of geothermal power plants: a worldwide review (2014) Geothermics, 51, pp. 142-153

Citas:

---------- APA ----------
Barcelona, H., Yagupsky, D. & Agusto, M. (2019) . The layered model of the Copahue geothermal reservoir, Argentina. Geothermal Energy, 7(1).
http://dx.doi.org/10.1186/s40517-019-0124-9
---------- CHICAGO ----------
Barcelona, H., Yagupsky, D., Agusto, M. "The layered model of the Copahue geothermal reservoir, Argentina" . Geothermal Energy 7, no. 1 (2019).
http://dx.doi.org/10.1186/s40517-019-0124-9
---------- MLA ----------
Barcelona, H., Yagupsky, D., Agusto, M. "The layered model of the Copahue geothermal reservoir, Argentina" . Geothermal Energy, vol. 7, no. 1, 2019.
http://dx.doi.org/10.1186/s40517-019-0124-9
---------- VANCOUVER ----------
Barcelona, H., Yagupsky, D., Agusto, M. The layered model of the Copahue geothermal reservoir, Argentina. Geeotherm. Energy. 2019;7(1).
http://dx.doi.org/10.1186/s40517-019-0124-9