Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Background: The purpose of the present study was to enhance the stability toward isomerization and control the release of an encapsulated free-solvent extract of lycopene, obtained from a nonconventional natural source, by means of alginate beads containing sugar (trehalose) and biopolymers (chitosan, low methoxyl pectin, and arabic gum). Methods: Lycopene was extracted from freeze-dried pulp of pink grapefruit obtaining a free solvent extract. Lycopene encapsulation was conducted by a double procedure consisting of emulsification and ionotropic gelation in alginate-Ca(II) beads, modified by the addition of sugar and biopolymers. The influence of beads’ composition was studied on lycopene stability and release, as well as molecular mobility and diffusion in the beads. Results and Conclusions: The addition of a second excipient (besides alginate) in the formulation should be carefully conducted, since stability during alginate-Ca(II) bead generation could be even compromised, leading to high lycopene losses. Beads containing trehalose and chitosan were the ones that best preserved the lycopene content and minimized isomerization changes. This could be related to the reduced molecular mobility and lower diffusion coefficient of this system. Lycopene release was severely affected by the composition of the beads, allowing to modulate its release depending on a desired application. Then, a good strategy to obtain high lycopene formulations ready to use or for their incorporation in a subsequent technological process (such as freeze-drying or extrusion) was reported in the present study.[Figure not available: see fulltext.]. © 2017, The Author(s).


Documento: Artículo
Título:Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers
Autor:Aguirre Calvo, T.R.; Santagapita, P.R.
Filiación:Departamentos de Industrias y Química Orgánica, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Carotenoids; Isomerization; Molecular mobility; Transport properties
Título revista:Chemical and Biological Technologies in Agriculture
Título revista abreviado:Chem. Biol. Technol. Agric.


  • Labat-Robert, J., Robert, L., Longevity and aging. Role of free radicals and xanthine oxidase. A review (2014) Pathol Biol., 62, pp. 61-66. , COI: 1:STN:280:DC%2BC2crls1yhtg%3D%3D, PID: 24650523
  • Sen, L., Chen, G., Zhang, C., Wu, M., Wu, S., Liu, Q., Research progress of natural antioxidants in foods for the treatment of diseases (2014) Food Sci Hum Wellness, 3, pp. 110-116
  • Clinton, S.K., Emenhiser, C., Schwartz, S.J., Bostwick, D.G., Williams, A.W., Moore, B.J., cis–trans lycopene isomers, carotenoids, and retinol in the human prostate (1996) Cancer Epidemiol Biomark Prev, 5, pp. 823-833. , COI: 1:CAS:528:DyaK28XmvFKqu70%3D
  • Miller, N.J., Sampson, J., Candeias, L.P., Bramley, P.M., Rice-Evans, C.A., Antioxidant activities of carotenes and xanthophylls (1996) FEBS Lett, 384, pp. 240-246. , COI: 1:CAS:528:DyaK28XivV2muro%3D, PID: 8617362
  • Woodall, A.A., Lee, S.W.M., Weesie, R.J., Jackson, M.J., Britton, G., Oxidation of carotenoids by free radicals: relationship between structure and reactivity (1997) Biochim Biophys Acta, 1336, pp. 33-42. , COI: 1:CAS:528:DyaK2sXkt1Sjs7c%3D, PID: 9271248
  • DiMascio, P., Kaiser, S., Sies, H., Lycopene as the most effective biological carotenoid singlet oxygen quencher (1989) Arch Biochem Biophys, 274, pp. 532-538. , COI: 1:CAS:528:DyaL1MXlvVOjt7c%3D
  • Zeller, B.L., Saleeb, F.Z., Ludescher, R.D., Trends in development of porous carbohydrate food ingredients for use in flavor encapsulation (1999) Trends Food Sci Technol, 9, pp. 389-394
  • Gombotz, W.R., Wee, S.F., Protein release from alginate matrices (1998) Adv Drug Del Rev., 31, pp. 267-285. , COI: 1:CAS:528:DyaK1cXhvVSjsLc%3D
  • Fang, Z., Bhandari, B., Encapsulation of polyphenols—a review (2010) Trends Food Sci Technol, 21, pp. 510-523. , COI: 1:CAS:528:DC%2BC3cXhtlSnur%2FE
  • Aguirre Calvo, T.R., Busch, V.M., Santagapita, P.R., Stability and release of an encapsulated solvent-free lycopene extract in alginate-based beads (2017) LWT Food Sci Technol., 77, pp. 406-412. , COI: 1:CAS:528:DC%2BC28XitVSmt73F
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Invertase stability in alginate beads. Effect of trehalose and chitosan inclusion and of drying methods (2012) Food Res Int., 47, pp. 321-330. , COI: 1:CAS:528:DC%2BC38XnvVSjur8%3D
  • Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate–chitosan beads (2010) Int J Biol Macromol, 47, pp. 21-26
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromol, 12, pp. 3147-3155. , COI: 1:CAS:528:DC%2BC3MXhtVegt7nP
  • Patel, S., Goyal, A., Applications of natural polymer gum arabic: a review (2015) Int J Food Prop, 18, pp. 986-998. , COI: 1:CAS:528:DC%2BC2MXisF2ksrg%3D
  • Fish, P., Wayne, W., Perkins, V., Collins, J.K., A quantitative assay for lycopene that utilizes reduced volumes of organic solvent (2002) J Food Comp Anal., 15, pp. 309-317. , COI: 1:CAS:528:DC%2BD38XmtFSiurg%3D
  • Britton, G., Structure and properties of carotenoids in relation to function (1992) FASEB J., 9, pp. 1551-1558
  • Rodríguez Amaya, D.B., Kimura, M., Harvestplus handbook for carotenoid analysis (2004) HarvestPlus Technical Monograph, p. 2. , Washington, HarvestPlus
  • Santagapita, P.R., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., Dalla Rosa, M., Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration (2013) Food Bioprocess Technol, 6, pp. 1434-1443
  • (2016) J Qual Reliab Eng., , Aguirre Calvo TR, Santagapita PR. Physicochemical characterization of alginate beads containing sugars and biopolymers
  • Coppi, G., Iannuccelli, V., Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system (2009) Int J Pharm, 367, pp. 127-132. , COI: 1:CAS:528:DC%2BD1MXpsF2gtg%3D%3D, PID: 18940240
  • Peppas, N.A., Analysis of Fickian and non-Fickian drug release from polymers (1985) Pharm Acta Helvetiae., 60, pp. 110-111. , COI: 1:CAS:528:DyaL2MXktFWgtb8%3D
  • Ritger, P.L., Peppas, N.A., A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs (1987) J Control Release., 5, pp. 23-36. , COI: 1:CAS:528:DyaL2sXkvVeku7o%3D
  • Deladino, L., Anbinder, P.S., Navarro, A.S., Martino, M.N., Encapsulation of natural antioxidants extracted from Ilex paraguariensis (2008) Carbohydr Pol., 71, pp. 126-134. , COI: 1:CAS:528:DC%2BD2sXht1Oqs7zF
  • Rha, C.K., Rodríguez-Sanchez, D., Process for encapsulation and encapsulated active material system (1988) US patent., 4 (744), p. 933
  • Gasserod, O., Sannes, A., Skjask-Braek, G., Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability (1999) Biomaterials, 20, pp. 773-783
  • Simpson, N.E., Grant, S.C., Blackband, S.J., Constantinidis, I., NMR properties of alginate microbeads (2003) Biomaterials, 24, pp. 4941-4948. , COI: 1:CAS:528:DC%2BD3sXotVSjsrY%3D, PID: 14559007
  • Hills, B.P., Cano, C., Belton, P.S., Proton NMR relaxation studies of aqueous polysaccharide systems (1991) Macromolecules, 24, pp. 2944-2950. , COI: 1:CAS:528:DyaK3MXitVOlsbw%3D
  • Potter, K., Carpenter, T.A., Hall, L.D., Mapping of the spatial variation in alginate concentration in calcium alginate gels by magnetic-resonance-imaging (MRI) (1993) Carbohydr Res, 246, pp. 43-49. , COI: 1:CAS:528:DyaK3sXmsFSgsbY%3D
  • Rayment, P., Wright, P., Hoad, C., Ciampi, E., Haydock, D., Gowland, P., Butler, M.F., Investigation of alginate beads for gastro-intestinal functionality, Part 1: In vitro characterization (2009) Food Hydrocoll., 23, pp. 816-822. , COI: 1:CAS:528:DC%2BD1cXht1yrsrbP
  • Zhang, Q., Saleh, A.S.M., Shen, Q., Discrimination of edible vegetable oil adulteration with used frying oil by low field nuclear magnetic resonance (2013) Food Bioprocess Technol, 6, pp. 2562-2570. , COI: 1:CAS:528:DC%2BC3sXht1yiurzL
  • Holz, M., Heil, S.R., Sacco, A., Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements (2000) Phys Chem., 2, pp. 4740-4742. , COI: 1:CAS:528:DC%2BD3cXnt1Klurs%3D
  • Šmejkalová, D., Piccolo, A., High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration (2010) Food Chem, 118, pp. 153-158
  • Bernin, D., Goudappel, G.-J., Van Ruijven, M., Altskär, A., Ström, A., Rudemo, M., Hermansson, A.-M., Nydén, M., Microstructure of polymer hydrogels studied by pulsed field gradient NMR diffusion and TEM methods (2011) Soft Matter, 7, pp. 5711-5716. , COI: 1:CAS:528:DC%2BC3MXntV2gt78%3D
  • Barreca, D., Laganà, G., Magazù, S., Migliardo, F., Gattuso, G., Bellocco, E., FTIR, ESI-MS, VT-NMR and SANS study of trehalose thermal stabilization of lysozyme (2014) Int J Biol Macromol, 63, pp. 225-232. , COI: 1:CAS:528:DC%2BC2cXisVCqsA%3D%3D, PID: 24291767
  • Santagapita, P.R., Buera, M.P., Electrolyte effects on amorphous and supercooled sugar systems (2008) J Non Crystall Sol., 354, pp. 1760-1767. , COI: 1:CAS:528:DC%2BD1cXitl2isL4%3D
  • Álvarez Cerimedo, M.S., Iriart, C.H., Candal, R.J., Herrera, M.L., Stability of emulsions formulated with high concentrations of sodium caseinate and trehalose (2010) Food Res Int, 43 (5), pp. 1482-1493
  • Klinkesorn, U., The role of chitosan in emulsion formation and stabilization (2013) Food Rev Int., 29, pp. 371-393. , COI: 1:CAS:528:DC%2BC3sXhtFCitLjN
  • Peppas, N.A., Korsmeyer, R.W., Dynamically swelling hydrogels in controlled release applications (1986) Hydrogels in medicine and pharmacy, pp. 109-136. , Peppas NA, (ed), CRC Press, Boca Raton
  • Alfrey, E., Gurnee, E.F., Lloyd, W.G.J., Diffusion in glassy polymers (1966) J Pol Sci., 12, pp. 249-261
  • Llabot, J.M., Manzo, R.H., Allemandi, D.A., Drug release from carbomer: carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system (2004) Int J Pharm, 276, pp. 59-66. , COI: 1:CAS:528:DC%2BD2cXjtlyqu74%3D, PID: 15113614


---------- APA ----------
Aguirre Calvo, T.R. & Santagapita, P.R. (2017) . Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers. Chemical and Biological Technologies in Agriculture, 4(1).
---------- CHICAGO ----------
Aguirre Calvo, T.R., Santagapita, P.R. "Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers" . Chemical and Biological Technologies in Agriculture 4, no. 1 (2017).
---------- MLA ----------
Aguirre Calvo, T.R., Santagapita, P.R. "Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers" . Chemical and Biological Technologies in Agriculture, vol. 4, no. 1, 2017.
---------- VANCOUVER ----------
Aguirre Calvo, T.R., Santagapita, P.R. Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers. Chem. Biol. Technol. Agric. 2017;4(1).