Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The physical mechanism responsible for the emergence of primordial cosmic seeds from a perfect isotropic and homogeneous Universe has not been fully addressed in standard cosmic inflation. To handle this shortcoming, D. Sudarsky et al have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton's wave function generates the inhomogeneity and anisotropy at all scales. In this paper we analyze the viability of a set of inflationary potentials in both the context of the collapse proposal and within the standard inflationary framework. For this, we perform a statistical analysis using recent CMB and BAO data to obtain the prediction for the scalar spectral index n s in the context of a particular collapse model: the Wigner scheme. The predicted n s and the tensor-to-scalar ratio r in terms of the slow roll parameters is different between the collapse scheme and the standard inflationary model. For each potential considered we compare the prediction of n s and r with the limits established by observational data in both pictures. The result of our analysis shows in most cases a difference in the inflationary potentials allowed by the observational limits in both frameworks. In particular, in the standard approach the more concave a potential is, the more is favored by the data. On the other hand, in the Wigner scheme, the data favors equally all type of concave potentials, including those at the border between convex and concave families. © 2019 Elsevier B.V.

Registro:

Documento: Artículo
Título:Observational constraints on inflationary potentials within the quantum collapse framework
Autor:León, G.; Pujol, A.; Landau, S.J.; Piccirilli, M.P.
Filiación:Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata, Argentina
CONICET, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria - Pab. I, Buenos Aires, 1428, Argentina
Año:2019
Volumen:24
DOI: http://dx.doi.org/10.1016/j.dark.2019.100285
Título revista:Physics of the Dark Universe
Título revista abreviado:Phys. Dark Universe
ISSN:22126864
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_22126864_v24_n_p_Leon

Referencias:

  • Ade, P.A.R., Planck 2015 results. XIII. Cosmological parameters (2015) Astron. Astrophys., 594 (2016), p. A13
  • Ade, P.A.R., Planck 2015 results. XX. Constraints on inflation (2015) Astron. Astrophys., 594 (2016), p. A20
  • Aghanim, N., Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters (2015) Astron. Astrophys., 594 (2016), p. A11
  • Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett. B, 91, pp. 99-102
  • Guth, A.H., The inflationary universe: A possible solution to the horizon and flatness problems (1981) Phys. Rev. D, 23, pp. 347-356
  • Linde, A.D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems (1982) Phys. Lett. B, 108, pp. 389-393
  • Albrecht, A., Steinhardt, P.J., Cosmology for grand unified theories with radiatively induced symmetry breaking (1982) Phys. Rev. Lett., 48, pp. 1220-1223
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rep., 215, pp. 203-333
  • Mukhanov, V.F., Chibisov, G.V., Quantum fluctuation and nonsingular universe (1981) JETP Lett., 33, pp. 532-535. , (in Russian)
  • Mukhanov, V.F., Chibisov, G., Nose (1982) Sov. Phys.—JETP, 56, p. 258
  • Starobinsky, A.A., Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations (1982) Phys. Lett. B, 117, pp. 175-178
  • Guth, A.H., Pi, S.Y., Fluctuations in the new inflationary universe (1982) Phys. Rev. Lett., 49, pp. 1110-1113
  • Hawking, S.W., The development of irregularities in a single bubble inflationary universe (1982) Phys. Lett. B, 115, p. 295
  • Bardeen, J.M., Steinhardt, P.J., Turner, M.S., Spontaneous creation of almost scale - free density perturbations in an inflationary universe (1983) Phys. Rev. D, 28, p. 679
  • Ade, P., Joint analysis of BICEP2/Keck array and Planck data (2015) Phys. Rev. Lett., 114, p. 101301
  • Baumann, D., McAllister, L., (2015) Inflation and String Theory, Cambridge Monographs on Mathematical Physics, , Cambridge University Press URL
  • Martin, J., Ringeval, C., First CMB constraints on the inflationary reheating temperature (2010) Phys. Rev. D, 82, p. 023511
  • Martin, J., Ringeval, C., Vennin, V., Observing inflationary reheating (2015) Phys. Rev. Lett., 114 (8), p. 081303
  • Martin, J., Ringeval, C., Vennin, V., Encyclopaedia inflationaris (2014) Phys. Dark Univ., 5-6, pp. 75-235
  • Martin, J., Ringeval, C., Trotta, R., Vennin, V., The best inflationary models after planck (2014) J. Cosmol. Astropart. Phys., 1403, p. 039
  • Grishchuk, L.P., Sidorov, Y.V., Squeezed quantum states of relic gravitons and primordial density fluctuations (1990) Phys. Rev. D, 42, pp. 3413-3421
  • Grishchuk, L., Haus, H.A., Bergman, K., Generation of squeezed radiation from vacuum in the cosmos and the laboratory (1992) Phys. Rev. D, 46, pp. 1440-1449
  • Polarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Classical Quantum Gravity, 13, pp. 377-392
  • Lesgourgues, J., Polarski, D., Starobinsky, A.A., Quantum to classical transition of cosmological perturbations for nonvacuum initial states (1997) Nucl. Phys., B497, pp. 479-510
  • Grishchuk, L.P., Martin, J., Best unbiased estimates for the microwave background anisotropies (1997) Phys. Rev. D, 56, pp. 1924-1938
  • Kiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, pp. 164-173
  • Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A., Pointer states for primordial fluctuations in inflationary cosmology (2007) Classical Quantum Gravity, 24, pp. 1699-1718
  • Egusquiza, I.L., Feinstein, A., Perez Sebastian, M.A., Valle Basagoiti, M.A., On the entropy and the density matrix of cosmological perturbations (1998) Classical Quantum Gravity, 15, pp. 1927-1936
  • Burgess, C.P., Holman, R., Hoover, D., Decoherence of inflationary primordial fluctuations (2008) Phys. Rev. D, 77, p. 063534
  • Nomura, Y., Physical theories, eternal inflation, and quantum universe (2011) J. High Energy Phys., 11, p. 063
  • Nomura, Y., Quantum mechanics, spacetime locality, and gravity (2013) Found. Phys., 43, pp. 978-1007
  • Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge University Press New York; Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., Inflation and squeezed quantum states (1994) Phys. Rev. D, 50, pp. 4807-4820
  • Sudarsky, D., Shortcomings in the understanding of why cosmological perturbations look classical (2011) Internat. J. Modern Phys. D, 20, pp. 509-552
  • Landau, S.J., León, G., Sudarsky, D., Quantum origin of the primordial fluctuation spectrum and its statistics (2013) Phys. Rev. D, 88 (2), p. 023526
  • Martin, J., Vennin, V., Observational constraints on quantum decoherence during inflation (2018) J. Cosmol. Astropart. Phys., 1805, p. 063
  • Martin, J., Vennin, V., Non gaussianities from quantum decoherence during inflation (2018) J. Cosmol. Astropart. Phys., 1806, p. 037
  • Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Classical Quantum Gravity, 23, pp. 2317-2354
  • Cañate, P., Pearle, P., Sudarsky, D., Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation (2013) Phys. Rev. D, 87 (10), p. 104024
  • Penrose, R., On gravity's role in quantum state reduction (1996) Gen. Relativity Gravitation, 28, pp. 581-600
  • Diosi, L., A universal master equation for the gravitational violation of quantum mechanics (1987) Phys. Lett. A, 120, p. 377
  • Diosi, L., Models for universal reduction of macroscopic quantum fluctuations (1989) Phys.Rev. A, 40, pp. 1165-1174
  • Martin, J., Vennin, V., Peter, P., Cosmological inflation and the quantum measurement problem (2012) Phys. Rev. D, 86 (10), p. 103524
  • Das, S., Lochan, K., Sahu, S., Singh, T.P., Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism (2013) Phys. Rev., D88 (8), p. 085020. , [Phys. Rev. D89 (10) (2014) 109902 (erratum)]
  • Das, S., Sahu, S., Banerjee, S., Singh, T.P., Classicalization of inflationary perturbations by collapse models in the light of BICEP2 (2014) Phys. Rev. D, 90 (4), p. 043503
  • León, G., Bengochea, G.R., Emergence of inflationary perturbations in the CSL model (2016) Eur. Phys. J. C, 76 (1), p. 29
  • Alexander, S., Jyoti, D., Magueijo, J., Inflation and the quantum measurement problem (2016) Phys. Rev. D, 94 (4), p. 043502
  • Markkanen, T., Rasanen, S., Wahlman, P., Inflation without quantum gravity (2015) Phys. Rev. D, 91 (8), p. 084064
  • de Unánue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev. D, 78 (4), p. 043510
  • León, G., Sudarsky, D., The slow-roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of the standard account and the ’collapse scheme’ (2010) Classical Quantum Gravity, 27 (22), p. 225017
  • Leon, G., De Unanue, A., Sudarsky, D., Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure (2011) Classical Quantum Gravity, 28, p. 155010
  • Diez-Tejedor, A., Sudarsky, D., Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure (2012) J. Cosmol. Astropart. Phys., 7, p. 45
  • Juárez-Aubry, B.A., Kay, B.S., Sudarsky, D., Generally covariant dynamical reduction models and the Hadamard condition (2018) Phys. Rev. D, 97 (2), p. 025010
  • Cañate, P., Ramirez, E., Sudarsky, D., Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. The second order construction (2018) J. Cosmol. Astropart. Phys., 1808 (8), p. 043
  • Landau, S.J., Scoccola, C.G., Sudarsky, D., Cosmological constraints on non-standard inflationary quantum collapse models (2012) Phys. Rev. D, 85, p. 123001
  • León, G., Landau, S.J., Piccirilli, M.P., Inflation including collapse of the wave function: The quasi-de Sitter case (2015) Eur. Phys. J., C75 (8), p. 393
  • Benetti, M., Landau, S.J., Alcaniz, J.S., Constraining quantum collapse inflationary models with CMB data (2016) J. Cosmol. Astropart. Phys., 1612 (12), p. 035
  • Piccirilli, M.P., León, G., Landau, S.J., Benetti, M., Sudarsky, D., Constraining quantum collapse inflationary models with current data: the semiclassical approach (2018) Int. J. Mod. Phys. D, 28 (2), p. 1950041
  • León, G., Kraiselburd, L., Landau, S.J., Primordial gravitational waves and the collapse of the wave function (2015) Phys. Rev. D, 92 (8), p. 083516
  • León, G., Majhi, A., Okon, E., Sudarsky, D., Reassessing the link between B-modes and inflation (2017) Phys. Rev. D, 96 (10), p. 101301
  • León, G., Majhi, A., Okon, E., Sudarsky, D., Expectation of primordial gravity waves generated during inflation (2018) Phys. Rev. D, 98 (2), p. 023512
  • Wheeler, J.A., Geometrodynamics and the issue of the final state (1964) Relativity, Groups, and Topology, Gordon and Breach, , DeWitt B.S. DeWitt C
  • Finkelstein, D., Space–time code (1969) Phys. Rev., 184, p. 1261
  • Konopka, T., Markopoulou, F., Severini, S., Quantum graphity: a model of emergent locality (2008) Phys. Rev. D, 77, p. 104029
  • Oriti, D., The group field theory approach to quantum gravity (2009) Approaches to Quantum Gravity, , Oriti D. Cambridge University Press
  • Steinacker, H., Emergent geometry and gravity from matrix models: an introduction (2010) Classical Quantum Gravity, 27, p. 133001
  • Eppley, K., Hannah, E., The necessity of quantizing the gravitational field (1977) Found. Phys., 7 (1), pp. 51-68
  • Mattingly, J., Why Eppley and Hannah's thought experiment fails (2006) Phys. Rev. D, 73, p. 064025
  • Huggett, N., Callender, C., Why quantize gravity (or any other field for that matter)? (2001) Philos. Sci., 68 (S3), pp. S382-S394
  • Albers, M., Kiefer, C., Reginatto, M., Measurement analysis and quantum gravity (2008) Phys. Rev. D, 78, p. 064051
  • Kent, A., Simple Refutation of the Eppley-Hannah Argument (2018); Page, D.N., Geilker, C.D., Indirect evidence for quantum gravity (1981) Phys. Rev. Lett., 47, pp. 979-982
  • Carlip, S., Is quantum gravity necessary? (2008) Classical Quantum Gravity, 25, p. 154010
  • Diez-Tejedor, A., Leon, G., Sudarsky, D., The collapse of the wave function in the joint metric-matter quantization for inflation (2012) Gen. Relativity Gravitation, 44, pp. 2965-2988
  • Mariani, M., Bengochea, G.R., León, G., Inflationary gravitational waves in collapse scheme models (2016) Phys. Lett. B, 752, pp. 344-351
  • Kinney, W.H., Horizon crossing and inflation with large eta (2005) Phys. Rev. D, 72, p. 023515
  • Lewis, A., Challinor, A., Lasenby, A., Efficient computation of CMB anisotropies in closed FRW models (2000) Astrophys. J., 538, pp. 473-476
  • Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Watson, F., The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant (2011) Mon. Not. R. Astron. Soc., 416, pp. 3017-3032
  • Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15 (2015) Mon. Not. R. Astron. Soc., 449, pp. 835-847
  • Anderson, L., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples (2014) Mon. Not. R. Astron. Soc., 441 (1), pp. 24-62
  • Lewis, A., Bridle, S., Cosmological parameters from CMB and other data: A Monte Carlo approach (2002) Phys. Rev. D, 66 (10), p. 103511

Citas:

---------- APA ----------
León, G., Pujol, A., Landau, S.J. & Piccirilli, M.P. (2019) . Observational constraints on inflationary potentials within the quantum collapse framework. Physics of the Dark Universe, 24.
http://dx.doi.org/10.1016/j.dark.2019.100285
---------- CHICAGO ----------
León, G., Pujol, A., Landau, S.J., Piccirilli, M.P. "Observational constraints on inflationary potentials within the quantum collapse framework" . Physics of the Dark Universe 24 (2019).
http://dx.doi.org/10.1016/j.dark.2019.100285
---------- MLA ----------
León, G., Pujol, A., Landau, S.J., Piccirilli, M.P. "Observational constraints on inflationary potentials within the quantum collapse framework" . Physics of the Dark Universe, vol. 24, 2019.
http://dx.doi.org/10.1016/j.dark.2019.100285
---------- VANCOUVER ----------
León, G., Pujol, A., Landau, S.J., Piccirilli, M.P. Observational constraints on inflationary potentials within the quantum collapse framework. Phys. Dark Universe. 2019;24.
http://dx.doi.org/10.1016/j.dark.2019.100285