Artículo

Camporeale, G.; Lorenzo, J.R.; Thomas, M.G.; Salvatierra, E.; Borkosky, S.S.; Risso, M.G.; Sánchez, I.E.; de Prat Gay, G.; Alonso, L.G. "Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein" (2017) Redox Biology. 11:38-50
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Infection with oncogenic human papillomavirus induces deregulation of cellular redox homeostasis. Virus replication and papillomavirus-induced cell transformation require persistent expression of viral oncoproteins E7 and E6 that must retain their functionality in a persistent oxidative environment. Here, we dissected the molecular mechanisms by which E7 oncoprotein can sense and manage the potentially harmful oxidative environment of the papillomavirus-infected cell. The carboxy terminal domain of E7 protein from most of the 79 papillomavirus viral types of alpha genus, which encloses all the tumorigenic viral types, is a cysteine rich domain that contains two classes of cysteines: strictly conserved low reactive Zn+2 binding and degenerate reactive cysteine residues that can sense reactive oxygen species (ROS). Based on experimental data obtained from E7 proteins from the prototypical viral types 16, 18 and 11, we identified a couple of low pKa nucleophilic cysteines that can form a disulfide bridge upon the exposure to ROS and regulate the cytoplasm to nucleus transport. From sequence analysis and phylogenetic reconstruction of redox sensing states we propose that reactive cysteine acquisition through evolution leads to three separate E7s protein families that differ in the ROS sensing mechanism: non ROS-sensitive E7s; ROS-sensitive E7s using only a single or multiple reactive cysteine sensing mechanisms and ROS-sensitive E7s using a reactive-resolutive cysteine couple sensing mechanism. © 2016 The Authors

Registro:

Documento: Artículo
Título:Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein
Autor:Camporeale, G.; Lorenzo, J.R.; Thomas, M.G.; Salvatierra, E.; Borkosky, S.S.; Risso, M.G.; Sánchez, I.E.; de Prat Gay, G.; Alonso, L.G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
ULB-Neuroscience Institute, Universite Libre de Bruxelles, Bruxelles, Belgium
RNA Cell Biology Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir-CONICET and IIBBA-CONICET, Buenos Aires, Argentina
Protein Physiology Laboratory, Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:cysteine; protein E7; reactive oxygen metabolite; cysteine; disulfide; oncogene protein E7, Human papillomavirus type 16; protein E7; Article; carboxy terminal sequence; cell nucleus; controlled study; cytoplasm; disulfide bond; genetic conservation; Human papillomavirus type 11; Human papillomavirus type 16; Human papillomavirus type 18; molecular evolution; nonhuman; oxidation reduction reaction; phylogeny; priority journal; sequence analysis; transport at the cellular level; cell transformation; genetics; metabolism; neoplasm; nucleolus; oxidation reduction reaction; oxidative stress; pathology; protein transport; virus replication; Cell Nucleolus; Cell Transformation, Neoplastic; Cysteine; Cytoplasm; Disulfides; Neoplasms; Oxidation-Reduction; Oxidative Stress; Papillomavirus E7 Proteins; Protein Transport; Virus Replication
Año:2017
Volumen:11
Página de inicio:38
Página de fin:50
DOI: http://dx.doi.org/10.1016/j.redox.2016.10.020
Título revista:Redox Biology
Título revista abreviado:Redox Biol.
ISSN:22132317
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; disulfide, 16734-12-6; Cysteine; Disulfides; oncogene protein E7, Human papillomavirus type 16; Papillomavirus E7 Proteins
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_22132317_v11_n_p38_Camporeale

Referencias:

  • Veal, E.A., Day, A.M., Morgan, B.A., Hydrogen peroxide sensing and signaling (2007) Mol. Cell, 26, pp. 1-14
  • Rhee, S.G., Cell signaling. H2O2, a necessary evil for cell signaling (2006) Science, 312, pp. 1882-1883
  • Gough, D.R., Cotter, T.G., Hydrogen peroxide: a Jekyll and Hyde signalling molecule (2011) Cell Death Dis., 2, p. e213
  • D'Autreaux, B., Toledano, M.B., ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 813-824
  • Lambeth, J.D., NOX enzymes and the biology of reactive oxygen (2004) Nat. Rev. Immunol., 4, pp. 181-189
  • Jones, D.P., Sies, H., The redox code (2015) Antioxid. Redox Signal., 23, pp. 734-746
  • Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., Talalay, P., Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 11908-11913
  • Putker, M., Vos, H.R., van Dorenmalen, K., de Ruiter, H., Duran, A.G., Snel, B., Burgering, B.M., Dansen, T.B., Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling (2015) Antioxid. Redox Signal., 22, pp. 15-28
  • Pu, M., Akhand, A.A., Kato, M., Hamaguchi, M., Koike, T., Iwata, H., Sabe, H., Nakashima, I., Evidence of a novel redox-linked activation mechanism for the Src kinase which is independent of tyrosine 527-mediated regulation (1996) Oncogene, 13, pp. 2615-2622
  • Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B., Oxidative stress, inflammation, and cancer: how are they linked? (2010) Free Radic. Biol. Med., 49, pp. 1603-1616
  • Halliwell, B., Oxidative stress and cancer: have we moved forward? (2007) Biochem. J., 401, pp. 1-11
  • De Marco, F., Oxidative stress and HPV carcinogenesis (2013) Viruses, 5, pp. 708-731
  • De Marco, F., Bucaj, E., Foppoli, C., Fiorini, A., Blarzino, C., Filipi, K., Giorgi, A., Perluigi, M., Oxidative stress in HPV-driven viral carcinogenesis: redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues (2012) PLoS One, 7, p. e34366
  • Williams, V.M., Filippova, M., Soto, U., Duerksen-Hughes, P.J., HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress (2011) Future Virol., 6, pp. 45-57
  • Foppoli, C., De Marco, F., Cini, C., Perluigi, M., Redox control of viral carcinogenesis: the human papillomavirus paradigm (2015) Biochim Biophys. Acta, 1850, pp. 1622-1632
  • zur Hausen, H., Papillomavirus infections-a major cause of human cancers (1996) Biochim. Biophys. Acta, 1288, pp. F55-F78
  • Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., Epidemiologic classification of human papillomavirus types associated with cervical cancer (2003) N. Engl. J. Med, 348, pp. 518-527
  • Crook, T., Morgenstern, J.P., Crawford, L., Banks, L., Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras (1989) EMBO J., 8, pp. 513-519
  • Looi, M.L., Mohd Dali, A.Z., Md Ali, S.A., Wan Ngah, W.Z., Mohd Yusof, Y.A., Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix (2008) Eur. J. Cancer Prev., 17, pp. 555-560
  • Sattayakhom, A., Chunglok, W., Ittarat, W., Chamulitrat, W., Study designs to investigate Nox1 acceleration of neoplastic progression in immortalized human epithelial cells by selection of differentiation resistant cells (2013) Redox Biol., 2, pp. 140-147
  • Chamulitrat, W., Schmidt, R., Tomakidi, P., Stremmel, W., Chunglok, W., Kawahara, T., Rokutan, K., Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes (2003) Oncogene, 22, pp. 6045-6053
  • Marullo, R., Werner, E., Zhang, H., Chen, G.Z., Shin, D.M., Doetsch, P.W., HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells (2015) Carcinogenesis, 36, pp. 1397-1406
  • Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., Prat-Gay, G.D., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41, pp. 10510-10518
  • Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586
  • Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Gorlach, M., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25, pp. 5953-5959
  • Todorovic, B., Massimi, P., Hung, K., Shaw, G.S., Banks, L., Mymryk, J.S., Systematic analysis of the amino acid residues of human papillomavirus type 16 E7 conserved region 3 involved in dimerization and transformation (2011) J. Virol., 85, pp. 10048-10057
  • Clements, A., Johnston, K., Mazzarelli, J.M., Ricciardi, R.P., Marmorstein, R., Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein (2000) Biochemistry, 39, pp. 16033-16045
  • Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., de Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7, p. e47661
  • Chemes, L.B., Camporeale, G., Sanchez, I.E., de Prat-Gay, G., Alonso, L.G., Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles (2014) Biochemistry, 53, pp. 1680-1696
  • Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., de Prat-Gay, G., The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers (2004) Biochemistry, 43, pp. 3310-3317
  • Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
  • Maddison, W.P., Maddison, D.R., Mesquite: A Modular System for Evolutionary Analysis (2016), Version 3.10; Marino, S.M., Gladyshev, V.N., Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces (2010) J. Mol. Biol., 404, pp. 902-916
  • Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., Sali, A., Comparative protein structure modeling using Modeller (2006) Curr. Protoc. Bioinformatics, , (Chapter 5, Unit 5 6)
  • Sanchez, R., Riddle, M., Woo, J., Momand, J., Prediction of reversibly oxidized protein cysteine thiols using protein structure properties (2008) Protein Sci., 17, pp. 473-481
  • Brandes, N., Schmitt, S., Jakob, U., Thiol-based redox switches in eukaryotic proteins (2009) Antioxid. Redox Signal., 11, pp. 997-1014
  • Kim, S.O., Merchant, K., Nudelman, R., Beyer, W.F., Jr., Keng, T., DeAngelo, J., Hausladen, A., Stamler, J.S., OxyR: a molecular code for redox-related signaling (2002) Cell, 109, pp. 383-396
  • Wood, M.J., Storz, G., Tjandra, N., Structural basis for redox regulation of Yap1 transcription factor localization (2004) Nature, 430, pp. 917-921
  • Dreier, K., Scheiden, R., Lener, B., Ehehalt, D., Pircher, H., Muller-Holzner, E., Rostek, U., Zwerschke, W., Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ (2011) Virology, 409, pp. 54-68
  • Eberhard, J., Onder, Z., Moroianu, J., Nuclear import of high risk HPV16 E7 oncoprotein is mediated by its zinc-binding domain via hydrophobic interactions with Nup62 (2013) Virology, 446, pp. 334-345
  • Paulsen, C.E., Carroll, K.S., Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery (2013) Chem. Rev., 113, pp. 4633-4679
  • Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins (2011) Antioxid. Redox Signal., 15, pp. 795-815
  • Bravo, I.G., de Sanjose, S., Gottschling, M., The clinical importance of understanding the evolution of papillomaviruses (2010) Trends Microbiol., 18, pp. 432-438
  • Lee, B.C., Dikiy, A., Kim, H.Y., Gladyshev, V.N., Functions and evolution of selenoprotein methionine sulfoxide reductases (2009) Biochim. Biophys. Acta, 1790, pp. 1471-1477
  • Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins, Antioxid, 15, pp. 795-815. , Redox Signal
  • Chemes, L.B., de Prat-Gay, G., Sanchez, I.E., Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions (2015) Curr. Opin. Struct. Biol., 32, pp. 91-101
  • Aho, J., Hankins, C., Tremblay, C., Lang, F., Forest, P., Pourreaux, K., Rouah, F., Coutlee, F., Molecular analysis of human papillomavirus type 52 isolates detected in the genital tract of human immunodeficiency virus-seropositive and -seronegative women (2003) J. Infect. Dis., 188, pp. 1517-1527
  • Fitch, W.M., Toward defining the course of evolution: minimum change for a specific tree topology (1971) Syst. Zool., 20, pp. 406-416
  • Hunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157

Citas:

---------- APA ----------
Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., Sánchez, I.E.,..., Alonso, L.G. (2017) . Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biology, 11, 38-50.
http://dx.doi.org/10.1016/j.redox.2016.10.020
---------- CHICAGO ----------
Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., et al. "Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein" . Redox Biology 11 (2017) : 38-50.
http://dx.doi.org/10.1016/j.redox.2016.10.020
---------- MLA ----------
Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., et al. "Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein" . Redox Biology, vol. 11, 2017, pp. 38-50.
http://dx.doi.org/10.1016/j.redox.2016.10.020
---------- VANCOUVER ----------
Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., et al. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biol. 2017;11:38-50.
http://dx.doi.org/10.1016/j.redox.2016.10.020