Artículo

Demertzi, A.; Tagliazucchi, E.; Dehaene, S.; Deco, G.; Barttfeld, P.; Raimondo, F.; Martial, C.; Fernández-Espejo, D.; Rohaut, B.; Voss, H.U.; Schiff, N.D.; Owen, A.M.; Laureys, S.; Naccache, L.; Sitt, J.D. "Human consciousness is supported by dynamic complex patterns of brain signal coordination" (2019) Science Advances. 5(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Adopting the framework of brain dynamics as a cornerstone of human consciousness, we determined whether dynamic signal coordination provides specific and generalizable patterns pertaining to conscious and unconscious states after brain damage. A dynamic pattern of coordinated and anticoordinated functional magnetic resonance imaging signals characterized healthy individuals and minimally conscious patients. The brains of unresponsive patients showed primarily a pattern of low interareal phase coherence mainly mediated by structural connectivity, and had smaller chances to transition between patterns. The complex pattern was further corroborated in patients with covert cognition, who could perform neuroimaging mental imagery tasks, validating this pattern’s implication in consciousness. Anesthesia increased the probability of the less complex pattern to equal levels, validating its implication in unconsciousness. Our results establish that consciousness rests on the brain’s ability to sustain rich brain dynamics and pave the way for determining specific and generalizable fingerprints of conscious and unconscious states. Copyright © 2019 The Authors.

Registro:

Documento: Artículo
Título:Human consciousness is supported by dynamic complex patterns of brain signal coordination
Autor:Demertzi, A.; Tagliazucchi, E.; Dehaene, S.; Deco, G.; Barttfeld, P.; Raimondo, F.; Martial, C.; Fernández-Espejo, D.; Rohaut, B.; Voss, H.U.; Schiff, N.D.; Owen, A.M.; Laureys, S.; Naccache, L.; Sitt, J.D.
Filiación:GIGA-Consciousness, GIGA Institute B34, University of Liège, Avenue de l’Hôpital, 11, Sart Tilman, 4000, Belgium
INSERM, U 1127, Paris, F-75013, France
Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, 47 bd de l’Hôpital, Paris, 75013, France
Instituto de Física de Buenos Aires, Physics Deparment (University of Buenos Aires), Buenos Aires, Argentina
Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, Gif/Yvette, F-91191, France
Collège de France, 11, Place Marcelin Berthelot, Paris, 75005, France
Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Calle Ramon Trias Fargas 25-27, Barcelona, 08005, Spain
Institucio Catalana de la Recerca I Estudis Avancats (ICREA), University of Pompeu Fabra, Passeig Lluis Companys 23, Barcelona, 08010, Spain
Laboratory of Integrative Neuroscience, Physics Department, FCEyN UBA and IFIBA, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Department of Computer Science, Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160–Ciudad UniversitariaC1428EGA, Argentina
Sorbonne Universités, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, 91-105 bd de l’Hôpital, Paris, 75013, France
CONICET, Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
Brain and Mind Institute, Western Interdisciplinary Research Building, N6A 5B7, University of Western Ontario, London, ON, Canada
Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032-3784, United States
Radiology Department, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, 516 E. 72nd Street, New York, NY 10021, United States
Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
Instituto de Investigaciones Psicológicas (IIPSI) CONICET, Enfermera Gordillo s/n, Córdoba, Argentina
Palabras clave:Magnetic resonance imaging; Neuroimaging; Complex pattern; Dynamic patterns; Dynamic signals; Functional magnetic resonance imaging; Healthy individuals; Human consciousness; Phase coherence; Structural connectivity; Coordination reactions
Año:2019
Volumen:5
Número:2
DOI: http://dx.doi.org/10.1126/sciadv.aat7603
Título revista:Science Advances
Título revista abreviado:Sci. Adv.
ISSN:23752548
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_23752548_v5_n2_p_Demertzi

Referencias:

  • Storm, J.F., Boly, M., Casali, A.G., Massimini, M., Olcese, U., Pennartz, C.M.A., Wilke, M., Consciousness regained: Disentangling mechanisms, brain systems, and behavioral responses (2017) J. Neurosci., 37, pp. 10882-10893
  • Stern, P., Neuroscience: In search of new concepts (2017) Science, 358, pp. 464-465
  • Tononi, G., Consciousness as integrated information: A provisional manifesto (2008) Biol. Bull., 215, pp. 216-242
  • Northoff, G., Huang, Z., How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC) (2017) Neurosci. Biobehav. Rev., 80, pp. 630-645
  • Dehaene, S., Changeux, J.-P., Experimental and theoretical approaches to conscious processing (2011) Neuron, 70, pp. 200-227
  • Deco, G., Kringelbach, M.L., Metastability and coherence: Extending the communication through coherence hypothesis using a whole-brain computational perspective (2016) Trends Neurosci, 39, pp. 125-135
  • Breakspear, M., Dynamic models of large-scale brain activity (2017) Nat. Neurosci., 20, pp. 340-352
  • Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M., Time-resolved resting-state brain networks (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 10341-10346
  • Betzel, R.F., Fukushima, M., He, Y., Zuo, X.-N., Sporns, O., Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks (2016) Neuroimage, 127, pp. 287-297
  • Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Chang, C., Dynamic functional connectivity: Promise, issues, and interpretations (2013) Neuroimage, 80, pp. 360-378
  • Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke, K., Laufs, H., Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 15419-15424
  • Chow, H.M., Horovitz, S.G., Carr, W.S., Picchioni, D., Coddington, N., Fukunaga, M., Xu, Y., Braun, A.R., Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 10300-10305
  • Tagliazucchi, E., Chialvo, D.R., Siniatchkin, M., Amico, E., Brichant, J.-F., Bonhomme, V., Noirhomme, Q., Laureys, S., Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics (2016) J. R. Soc. Interface, 13, p. 20151027
  • Amico, E., Gomez, F., Di Perri, C., Vanhaudenhuyse, A., Lesenfants, D., Boveroux, P., Bonhomme, V., Laureys, S., Posterior cingulate cortex-related co-activation patterns: A resting state fMRI study in propofol-induced loss of consciousness (2014) PLOS ONE, 9
  • Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., Signature of consciousness in the dynamics of resting-state brain activity (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 887-892
  • Hudetz, A.G., Liu, X., Pillay, S., Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness (2015) Brain Connect, 5, pp. 10-22
  • Monti, M.M., Vanhaudenhuyse, A., Coleman, M.R., Boly, M., Pickard, J.D., Tshibanda, L., Owen, A.M., Laureys, S., Willful modulation of brain activity in disorders of consciousness (2010) N. Engl. J. Med., 362, pp. 579-589
  • Casarotto, S., Comanducci, A., Rosanova, M., Sarasso, S., Fecchio, M., Napolitani, M., Pigorini, A., Massimini, M., Stratification of unresponsive patients by an independently validated index of brain complexity (2016) Ann. Neurol., 80, pp. 718-729
  • Engemann, D.A., Raimondo, F., King, J.-R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Sitt, J.D., Robust EEG-based cross-site and cross-protocol classification of states of consciousness (2018) Brain, 141, pp. 3179-3192
  • Schiff, N.D., Cognitive motor dissociation following severe brain injuries (2015) JAMA Neurol, 72, pp. 1413-1415
  • Demertzi, A., Antonopoulos, G., Heine, L., Voss, H.U., Crone, J.S., de Los Angeles, C., Bahri, M.A., Laureys, S., Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients (2015) Brain, 138, pp. 2619-2631
  • Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V., Hajj-Ali, N., Evans, A.C., Brain mechanisms of propofol-induced loss of consciousness in humans: A positron emission tomographic study (1999) J. Neurosci., 19, pp. 5506-5513
  • Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., Moodie, C.A., Poldrack, R.A., The dynamics of functional brain networks: Integrated network states during cognitive task performance (2016) Neuron, 92, pp. 544-554
  • Bullmore, E., Sporns, O., The economy of brain network organization (2012) Nat. Rev. Neurosci., 13, pp. 336-349
  • Stender, J., Mortensen, K.N., Thibaut, A., Darkner, S., Laureys, S., Gjedde, A., Kupers, R., The minimal energetic requirement of sustained awareness after brain injury (2016) Curr. Biol., 26, pp. 1494-1499
  • Demertzi, A., Soddu, A., Laureys, S., Consciousness supporting networks (2013) Curr. Opin. Neurobiol., 23, pp. 239-244
  • Dehaene, S., Kerszberg, M., Changeux, J.-P., A neuronal model of a global workspace in effortful cognitive tasks (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 14529-14534
  • Fornito, A., Harrison, B.J., Zalesky, A., Simons, J.S., Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 12788-12793
  • Genç, E., Schölvinck, M.L., Bergmann, J., Singer, W., Kohler, A., Functional connectivity patterns of visual cortex reflect its anatomical organization (2016) Cereb. Cortex, 26, pp. 3719-3731
  • Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., Glahn, D.C., Fox, P.T., Behavioral interpretations of intrinsic connectivity networks (2011) J. Cogn. Neurosci., 23, pp. 4022-4037
  • Laumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B., Gilmore, A.W., Petersen, S.E., On the stability of BOLD fMRI correlations (2017) Cereb. Cortex, 27, pp. 4719-4732
  • Fukunaga, M., Horovitz, S.G., van Gelderen, P., de Zwart, J.A., Jansma, J.M., Ikonomidou, V.N., Chu, R., Duyn, J.H., Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages (2006) Magn. Reson. Imaging, 24, pp. 979-992
  • He, B.J., Snyder, A.Z., Zempel, J.M., Smyth, M.D., Raichle, M.E., Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 16039-16044
  • He, B.J., Raichle, M.E., The fMRI signal, slow cortical potential and consciousness (2009) Trends Cogn. Sci., 13, pp. 302-309
  • Tagliazucchi, E., Laufs, H., Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep (2014) Neuron, 82, pp. 695-708
  • Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., Tracking whole-brain connectivity dynamics in the resting state (2014) Cereb. Cortex, 24, pp. 663-676
  • Naccache, L., Why and how access consciousness can account for phenomenal consciousness (2018) Philos. Trans. R. Soc. B Biol. Sci., 373, p. 20170357
  • Ward, A.F., Wegner, D.M., Mind-blanking: When the mind goes away (2013) Front. Psychol., 4, p. 650
  • Laureys, S., Celesia, G.G., Cohadon, F., Lavrijsen, J., León-Carrión, J., Sannita, W.G., Sazbon, L., Dolce, G., Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome (2010) BMC Med, 8, p. 68
  • Giacino, J.T., The minimally conscious state: Defining the borders of consciousness (2005) Prog. Brain Res., 150, pp. 381-395
  • Giacino, J.T., Kalmar, K., Whyte, J., The JFK Coma recovery Scale-revised: Measurement characteristics and diagnostic utility (2004) Arch. Phys. Med. Rehabil., 85, pp. 2020-2029
  • Fair, D.A., Dosenbach, N.U.F., Church, J.A., Cohen, A.L., Brahmbhatt, S., Miezin, F.M., Barch, D.M., Schlaggar, B.L., Development of distinct control networks through segregation and integration (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 13507-13512
  • Dosenbach, N.U.F., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A.T., Fox, M.D., Petersen, S.E., Distinct brain networks for adaptive and stable task control in humans (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 11073-11078
  • Mueller, S., Wang, D., Fox, M.D., Yeo, B.T.T., Sepulcre, J., Sabuncu, M.R., Shafee, R., Liu, H., Individual variability in functional connectivity architecture of the human brain (2013) Neuron, 77, pp. 586-595
  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O., Mapping the structural core of human cerebral cortex (2008) PLOS Biol, 6
  • Rubinov, M., Sporns, O., Complex network measures of brain connectivity: Uses and interpretations (2010) Neuroimage, 52, pp. 1059-1069
  • Deco, G., Tononi, G., Boly, M., Kringelbach, M.L., Rethinking segregation and integration: Contributions of whole-brain modelling (2015) Nat. Rev. Neurosci., 16, pp. 430-439
  • Annen, J., Frasso, G., Crone, J.S., Heine, L., Di Perri, C., Martial, C., Cassol, H., Laureys, S., Regional brain volumetry and brain function in severely brain-injured patients (2018) Ann. Neurol., 83, pp. 842-853

Citas:

---------- APA ----------
Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C.,..., Sitt, J.D. (2019) . Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science Advances, 5(2).
http://dx.doi.org/10.1126/sciadv.aat7603
---------- CHICAGO ----------
Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., et al. "Human consciousness is supported by dynamic complex patterns of brain signal coordination" . Science Advances 5, no. 2 (2019).
http://dx.doi.org/10.1126/sciadv.aat7603
---------- MLA ----------
Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., et al. "Human consciousness is supported by dynamic complex patterns of brain signal coordination" . Science Advances, vol. 5, no. 2, 2019.
http://dx.doi.org/10.1126/sciadv.aat7603
---------- VANCOUVER ----------
Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 2019;5(2).
http://dx.doi.org/10.1126/sciadv.aat7603