Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Maize husks, an agricultural and industrial residue generated in a large volume, were investigated as a potential source of useful biopolymers. Thus, their chemical composition was firstly studied, after which two biopolymer products were obtained and characterized. Maize husks were dried and milled, obtaining a 210 μm-main particle size powder (MHP). It contained carotenes (4 mg/100 g), and exhibited antioxidant capacity (≈195 mg ascorbic acid/100 g MHP) coming also from extractable coumaric and cinnamic acids-derivatives (14 mg/100 g). A 31% of the MPH was water-soluble at room temperature, mainly constituted by fructose, glucose, and sorbitol of mesophylls’ intracellular origin. The water insoluble fiber (WIF, ≈70%), which showed antioxidant capacity (≈25–33 mg ascorbic acid/100 g WIF), was almost entirely constituted by the cell wall biopolymers or alcohol insoluble residue (AIR) of the MPH, mostly arabinoxylans (≈26%) crosslinked by ferulic residues (18.6 mg/100 g MPH), and cellulose (26%). Low levels of pectins (5.5%) and lignin (7%) were found. Hence, a 1.25%-sulfur nanocellulose (NCC) was directly obtained with sulfuric acid (−15 mV Zeta-potential; 147 °C onset of thermal-degradation) without the necessity of previous delignification. On the other hand, a water soluble arabinoxylan enriched fraction (AX-EF) with pseudoplastic behavior in water and sensibility to calcium ions (≈3 Pa⋅s initial Newtonian-viscosity) was isolated by alkaline hydrolysis of diferulate bridges. Despite a 56% of crystallinity, NCC showed the highest water absorption capacity when compared to that of the AX-EF and AIR. Maize husks constitute an important source of biopolymers for development of materials and food additives/ingredients with relevant hydration and antioxidant properties. © 2019


Documento: Artículo
Título:Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development
Autor:Bernhardt, D.C.; Ponce, N.M.A.; Basanta, M.F.; Stortz, C.A.; Rojas, A.M.
Filiación:Departamento de Industrias-ITAPROQ, Argentina
Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina
CONICET, Argentina
Palabras clave:Food science
Título revista:Heliyon
Título revista abreviado:Heliyon


  • Gibson, L., Benson, G., Origin, History, and Uses of maize (Zea mays) (2002),; Dhugga, K.S., Maize biomass yield and composition for biofuels (2007) Crop Sci., 47, pp. 2211-2227
  • Roth, G., Maize Stover for Biofuel Production (2015),; Hernández, X., Caen las estimaciones de la cosecha 2017/2018, se prevén 46,5 Mt de soja y 35 Mt de maíz (2018),,; Olagunju, A., Onyike, E., Muhammad, A., Aliyu, S., Abdullahi, A.S., Effects of fungal (Lachnocladium spp.) pretreatment on nutrient and antinutrient composition of maize cobs (2013) Afr. J. Biochem. Res., 7 (11), pp. 210-214
  • (2013) COST European Cooperation in Science and Technology Project, TD1203-Food Waste Valorisation for Sustainable Chemicals, Materials & Fuels, p. 207. , EUBis) at:
  • John, M.J., Thomas, S., Biofibres and biocomposites (2008) Carbohydr. Polym., 71, pp. 343-364
  • (2010) International Foundation for Science, Annual Report, ,, Stockholm, Sweden
  • Fagbemigun, T.K., Fagbemi, O.D., Otitoju, O., Mgbachiuzor, E., Igwe, C.C., Pulp and paper-making potential of maize husk (2014) Int. J. Agric. Sci., 4 (4), pp. 209-213
  • Kohajdová, Z., Karovičová, J., Jurasová, M., Influence of carrot pomace powder on the rheological characteristics of wheat flour dough and on wheat rolls quality (2012) Acta Sci. Polon. Techn. Alimen., 11, pp. 381-387
  • de Escalada Pla, M.F., Rojas, A.M., Gerschenson, L.N., Effect of butternut (Cucurbita moschata Duchesne ex Poiret) fibres on bread-making, quality and staling (2013) Food Bioproc. Technol., 6, pp. 828-838
  • Basanta, M.F., de Escalada Pla, M.F., Raffo, M.D., Stortz, C.A., Rojas, A.M., Cherry fibers isolated from harvest residues as valuable dietary fiber and functional food ingredients (2014) J. Food Eng., 126, pp. 149-155
  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H., Dietary fibre and fibre-rich by-products of food processing: characterization, technological functionality and commercial applications: a review (2011) Food Chem., 124, pp. 411-421
  • Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose (1944) J. Biol. Chem., 153, pp. 375-380
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Robers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Anal. Chem., 28, pp. 350-356
  • Filisetti-Cozzi, T.M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Anal. Biochem., 197, pp. 157-162
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193 (1), pp. 265-275
  • Mattoo, R., Ishaq, M., Saleemuddin, M., Protein assay by Coomassie Brilliant Blue G-250 binding methods unsuitable for plant tissues rich in phenols and phenolases (1987) Anal. Biochem., 163, pp. 376-384
  • Yaphe, W., Arsenault, G.P., Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides (1965) Anal. Biochem., 13, pp. 143-148
  • Fissore, E.N., Ponce, N.M.A., Matkovic, L., Stortz, C.A., Rojas, A.M., Gerschenson, L.N., Isolation of pectin enriched products from red beet (Beta vulgaris L. var. conditiva) wastes: composition and functional properties (2011) Food Sci. Technol. Int., 17 (6), pp. 517-527
  • Basanta, M.F., de Escalada Pla, M.F., Stortz, C.A., Rojas, A.M., Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages (2013) Carbohyd. Polym., 92, pp. 830-841
  • Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M., Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications (2013) Carbohydr. Polym., 94 (1), pp. 154-169
  • Saraiva Morais, J.P., de Freitas Rosa, M., de sá Moreira de Souza Filho, M., Dias Nascimento, L., Magalhães do Nascimento, D., Ribeiro Cassales, A., Extraction and characterization of nanocellulose structures from raw cotton linter (2013) Carbohydr. Polym., 91, pp. 229-235
  • Biswas, A.K., Sahoo, J., Chatli, M.K., A simple UV-Vis spectrophotometric method for determination of b-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets (2011) LWT Food Sci. Technol., 44, pp. 1809-1813
  • Karkalas, J.J., An improved enzymic method for the determination of native and modified starch (1985) J. Sci. Food Agric., 36, pp. 1019-1027
  • Ng, A., Parr, A.J., Ingham, L.M., Rigby, N.M., Waldron, K.M., Cell wall chemistry of carrots (Daucus carota CV. Amstrong) during maturation and storage (1998) J. Agric. Food Chem., 46, pp. 2933-2939
  • Basanta, M.F., Marin, A., De Leo, S.A., Gerschenson, L.N., Erlejman, A.G., Tomás-Barberán, F.A., Rojas, A.M., Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation (2016) J. Funct. Foods, 24, pp. 287-296
  • Vaidyanathan, S., Bunzel, M., Development and application of a methodology to determine free ferulic acid and ferulic acid ester-linked to different types of carbohydrates in cereal products (2012) Cereal Chem., 89 (5), pp. 247-254
  • Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity (1995) LWT Food Sci. Technol., 28, pp. 25-30
  • Pulido, R., Bravo, L., Saura-Calixto, F., Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay (2000) J. Agric. Food Chem., 48, pp. 3396-3402
  • Xiao, L.P., Sun, Z.J., Shi, Z.J., Xu, F., Sun, R.C., Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production (2011) BioResources, 6 (2), pp. 1576-1598
  • Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W.S., Teixeira, J.A., Vicente, A.A., Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production (2011) Carbohydr. Polym., 85 (3), pp. 522-528
  • Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., WSXM: a software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instr., 78, p. 013705
  • Labuza, T.P., McNally, L., Gallagher, D., Hawkes, J., Hurtado, F., Stability of intermediate moisture foods. 1. Lipid oxidation (1972) J. Food Sci., 37, pp. 154-159
  • Pengelly, J.J.L., Kwasny, S., Bala, S., Evans, J.R., Voznesenskaya, E.V., Koteyeva, N.K., Edwards, G.E., von Caemmerer, S., Functional analysis of maize husk photosynthesis (2011) Plant Phys., 156, pp. 503-513
  • Shaw, J.R., Dickinson, D.B., Studies on sugars and sorbitol in developing maize kernels (1984) Plant Phys., 75, pp. 207-211
  • Brett, C.T., Waldron, K.W., (1996) The Physiology and Biochemistry of Plant Cell walls, , second ed. Chapman and Hall London 128, 133, 162
  • Qi, X., Behrens, B.X., West, P.R., Mort, A.J., Solubilization and partial characterization of extensin fragments from cell wall of cotton suspension cultures (1995) Plant Phys., 108, pp. 1691-1701
  • Basanta, M.F., Rizzo, S.R., Szerman, N., Vaudagna, S.R., Descalzo, M.A., Gerschenson, L.N., Pérez, C.D., Rojas, A.M., Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties (2018) Food Res. Int., 106, pp. 1086-1094
  • Fry, S.C., Cross-linking of matrix polymers in the growing cell walls of angiosperms (1986) Ann. Rev. Plant Phys., 37, pp. 165-186
  • Vincken, J.P., Scholsm, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., Visser, R.G., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Phys., 132, pp. 1781-1789
  • Scheller, H.V., Ulvskov, P., Hemicelluloses (2010) Ann. Rev. Plant Biol., 61, pp. 263-289
  • Ebringerová, A., Hromádková, Z., Heinze, T., Hemicellulose (2005) Adv. Polym. Sci., 186, pp. 1-67
  • Zykwinska, A.W., Ralet, M.C.J., Garnier, C.D., Thibault, J.F.J., Evidence for in vitro binding of pectin side chains to cellulose (2005) Plant Phys., 139 (1), pp. 397-407
  • Rancour, D.M., Marita, J.M., Hatfield, R.D., Cell wall composition throughout development for the model grass Brachypodium distachyon (2012) Front. Plant Sci., 3. , article 266 1–14
  • Dornez, E., Gebruers, K., Delcour, J., Courtin, C., Grain-associated xylanases: occurrence, variability, and implications for cereal processing (2009) Trends Food Sci. Technol., 20, pp. 495-510
  • Žilić, S., Hadži-Tašković Šukalović, V., Milašinović, M., Ignjatović-Micić, D., Maksimović, M., Semenčenko, V., Effect of micronisation on the composition and properties of the flour from white, yellow and red maize (2010) Food Technol. Biotechnol., 48 (2), pp. 198-206. , FTB-2320
  • Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Kader, A., Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California (2002) J. Agric. Food Chem., 50 (17), pp. 4976-4982
  • Ross-Murphy, S.B., Rheological methods (1994) Physical Techniques for the Study of Food Biopolymers, pp. 343-393. , S.B. Ross-Murphy Blackie Academic & Professional, Chapman & Hall London
  • Lee, S., Warner, K., Inglett, G.E., Rheological properties and baking performance of new oat beta-glucan-rich hydrocolloids (2005) J. Agric. Food Chem., 53, pp. 9805-9809
  • Neto, W.P.F., Silvério, H.A., Dantas, N.O., Pasquini, D., Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls (2013) Ind. Crops Prod., 42, pp. 480-488
  • Wang, N., Ding, E., Chen, R., Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups (2007) Polymer, 48 (12), pp. 3486-3493
  • Tiller, F.M., Li, W., Chen, W., Solid/liquid separation (2008) Albright's Chemical Engineering Handbook, pp. 1597-1666. , L. Albright CRC Press Boca Raton (FL)
  • Roman, M., Winter, W.T., Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose (2004) Biomacrom, 5 (5), pp. 1671-1677
  • Garvey, C.J., Parker, I.H., Simon, G.P., On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres (2005) Macrom. Chem. Phys., 206 (15), pp. 1568-1575
  • Niu, F., Li, M., Huang, Q., Zhan, X., Pan, W., Yang, J., Li, J., The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance (2017) Carbohydr. Polym., 165, pp. 197-204
  • Dorset, D.L., Crystallography of the Polymethylene Chain: an Inquiry into the Structure of Waxes (2005), pp. 171-184. , Oxford Science University Ed; Theivasanthi, T., Christma, F.A., Toyin, A.J., Gopinath, S.C., Ravichandran, R., Synthesis and characterization of cotton fiber-based nanocellulose (2018) Int. J. Biol. Macromol., 109, pp. 832-836


---------- APA ----------
Bernhardt, D.C., Ponce, N.M.A., Basanta, M.F., Stortz, C.A. & Rojas, A.M. (2019) . Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development. Heliyon, 5(3).
---------- CHICAGO ----------
Bernhardt, D.C., Ponce, N.M.A., Basanta, M.F., Stortz, C.A., Rojas, A.M. "Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development" . Heliyon 5, no. 3 (2019).
---------- MLA ----------
Bernhardt, D.C., Ponce, N.M.A., Basanta, M.F., Stortz, C.A., Rojas, A.M. "Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development" . Heliyon, vol. 5, no. 3, 2019.
---------- VANCOUVER ----------
Bernhardt, D.C., Ponce, N.M.A., Basanta, M.F., Stortz, C.A., Rojas, A.M. Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development. Heliyon. 2019;5(3).