Artículo

Quinteiro, G.F.; Schmiegelow, C.T.; Reiter, D.E.; Kuhn, T."Reexamination of Bessel beams: A generalized scheme to derive optical vortices" (2019) Physical Review A. 99(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The electromagnetic field of optical vortices is in most cases derived from vector and scalar potentials using either a procedure based on the Lorenz or the Coulomb gauge. The former procedure has been typically used to derive paraxial solutions with Laguerre-Gauss radial profiles, while the latter procedure has been used to derive full solutions of the wave equation with Bessel radial profiles. We investigate the differences in the derivation procedures applying each one to both Bessel and Laguerre-Gauss profiles. We show that the electromagnetic fields thus derived differ in the relative strength of electric and magnetic contributions. The new solution that arises from the Lorenz procedure in the case of Bessel beams restores a field symmetry that previous work failed to resolve. Our procedure is further generalized and we find a spectrum of fields beyond the Lorenz and Coulomb gauge types. Finally, we describe a possible experiment to test our findings. © 2019 American Physical Society.

Registro:

Documento: Artículo
Título:Reexamination of Bessel beams: A generalized scheme to derive optical vortices
Autor:Quinteiro, G.F.; Schmiegelow, C.T.; Reiter, D.E.; Kuhn, T.
Filiación:Instituto de Modelado e Innovación Tecnológica, Departamento de Física, FaCENA, Universidad Nacional Del Nordeste, Corrientes, 3400, Argentina
Departamento de Física, IFIBA, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón i, Ciudad de Buenos Aires, 1428, Argentina
Universität Münster, Wilhelm-Klemm-Str. 10, Münster, 48149, Germany
Palabras clave:Electromagnetic fields; Gages; Laser beams; Vortex flow; Bessel beam; Coulomb gauge; Magnetic contribution; Optical vortices; Paraxial solutions; Radial profiles; Relative strength; Scalar potential; Bessel functions
Año:2019
Volumen:99
Número:2
DOI: http://dx.doi.org/10.1103/PhysRevA.99.023845
Handle:http://hdl.handle.net/20.500.12110/paper_24699926_v99_n2_p_Quinteiro
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v99_n2_p_Quinteiro

Referencias:

  • Lax, M., Louisell, W.H., McKnight, W.B., From Maxwell to paraxial wave optics (1975) Phys. Rev. A, 11, p. 1365
  • Alonso, M.A., The effect of orbital angular momentum and helicity in the uncertainty-type relations between focal spot size and angular spread (2011) J. Opt., 13, p. 64016
  • Bliokh, K.Y., Alonso, M.A., Ostrovskaya, E.A., Aiello, A., Angular momenta and spin-orbit interaction of nonparaxial light in free space (2010) Phys. Rev. A, 82, p. 63825
  • Wang, J.J., Wriedt, T., Lock, J.A., Mädler, L., General description of circularly symmetric Bessel beams of arbitrary order (2016) J. Quant. Spectrosc. Radiat. Transfer, 184, p. 218
  • Jáuregui, R., Rotational effects of twisted light on atoms beyond the paraxial approximation (2004) Phys. Rev. A, 70, p. 33415
  • Molina-Terriza, G., Torres, J.P., Torner, L., Management of the Angular Momentum of Light: Preparation of Photons in Multidimensional Vector States of Angular Momentum (2001) Phys. Rev. Lett., 88, p. 13601
  • Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S., Terabit-scale orbital angular momentum mode division multiplexing in fibers (2013) Science, 340, p. 1545
  • Ren, H., Li, X., Zhang, Q., Gu, M., On-chip noninterference angular momentum multiplexing of broadband light (2016) Science, 352, p. 805
  • Mirhosseini, M., Malik, M., Shi, Z., Boyd, R.W., Efficient separation of the orbital angular momentum eigenstates of light (2013) Nat. Commun., 4, p. 2781
  • Wang, J., Yang, J.-Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Willner, A.E., Terabit free-space data transmission employing orbital angular momentum multiplexing (2012) Nat. Photon., 6, p. 488
  • Krenn, M., Fickler, R., Fink, M., Handsteiner, J., Malik, M., Scheidl, T., Ursin, R., Zeilinger, A., Communication with spatially modulated light through turbulent air across Vienna (2014) New J. Phys., 16, p. 113028
  • Loudon, R., Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics (2003) Phys. Rev. A, 68, p. 13806
  • Dávila Romero, L.C., Andrews, D.L., Babiker, M., A quantum electrodynamics framework for the nonlinear optics of twisted beams (2002) J. Opt. B, 4, p. S66
  • Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes (1992) Phys. Rev. A, 45, p. 8185
  • Volke-Sepulveda, K., Garcés-Chávez, V., Chávez-Cerda, S., Arlt, J., Dholakia, K., Orbital angular momentum of a high-order Bessel light beam (2002) J. Opt. B, 4, p. S82
  • Matula, O., Hayrapetyan, A.G., Serbo, V.G., Surzhykov, A., Fritzsche, S., Atomic ionization of hydrogen-like ions by twisted photons: Angular distribution of emitted electrons (2013) J. Phys. B, 46, p. 205002
  • Jackson, J.D., (1999) Classical Electrodynamics, , (Wiley, New York)
  • Ettorre, M., Pavone, S.C., Casaletti, M., Albani, M., Experimental validation of Bessel beam generation using an inward Hankel aperture distribution (2015) IEEE Trans. Antennas Propag., 63, p. 2539
  • Davis, L.W., Theory of electromagnetic beams (1979) Phys. Rev. A, 19, p. 1177
  • Couture, M., Belanger, P.-A., From Gaussian beam to complex-source-point spherical wave (1981) Phys. Rev. A, 24, p. 355
  • Agrawal, G.P., Lax, M., Free-space wave propagation beyond the paraxial approximation (1983) Phys. Rev. A, 27, p. 1693
  • Monteiro, P.B., Neto, P.A.M., Nussenzveig, H.M., Angular momentum of focused beams: Beyond the paraxial approximation (2009) Phys. Rev. A, 79, p. 33830
  • Bliokh, K.Y., Ostrovskaya, E.A., Alonso, M.A., Rodríguez-Herrera, O.G., Lara, D., Dainty, C., Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems (2011) Opt. Express, 19, p. 26132
  • Iketaki, Y., Watanabe, T., Bokor, N., Fujii, M., Investigation of the center intensity of first-and second-order Laguerre-Gaussian beams with linear and circular polarization (2007) Opt. Lett., 32, p. 2357
  • Quinteiro, G.F., Reiter, D.E., Kuhn, T., Formulation of the twisted-light-matter interaction at the phase singularity: The twisted-light gauge (2015) Phys. Rev. A, 91, p. 33808
  • Li, C.-F., Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization (2009) Phys. Rev. A, 80, p. 63814
  • Zhao, Y., Edgar, J.S., Jeffries, G.D.M., McGloin, D., Chiu, D.T., Spin-to-Orbital Angular Momentum Conversion in a Strongly Focused Optical Beam (2007) Phys. Rev. Lett., 99, p. 73901
  • Bliokh, K.Y., Dennis, M.R., Nori, F., Relativistic Electron Vortex Beams: Angular Momentum and Spin-Orbit Interaction (2011) Phys. Rev. Lett., 107, p. 174802
  • Barnett, S.M., Relativistic Electron Vortices (2017) Phys. Rev. Lett., 118, p. 114802
  • Quinteiro, G.F., Reiter, D.E., Kuhn, T., Formulation of the twisted-light-matter interaction at the phase singularity: Beams with strong magnetic fields (2017) Phys. Rev. A, 95, p. 12106
  • Quinteiro, G.F., Kuhn, T., Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams (2014) Phys. Rev. B, 90, p. 115401
  • Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F., Transfer of optical orbital angular momentum to a bound electron (2016) Nat. Commun., 7, p. 12998
  • Leibfried, D., Blatt, R., Monroe, C., Wineland, D., Quantum dynamics of single trapped ions (2003) Rev. Mod. Phys., 75, p. 281
  • Quinteiro, G.F., Schmidt-Kaler, F., Schmiegelow, C.T., Twisted-Light-Ion Interaction: The Role of Longitudinal Fields (2017) Phys. Rev. Lett., 119, p. 253203
  • Quinteiro, G.F., Lucero, A.O., Tamborenea, P.I., Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams (2010) J. Phys.: Condens. Matter, 22, p. 505802

Citas:

---------- APA ----------
Quinteiro, G.F., Schmiegelow, C.T., Reiter, D.E. & Kuhn, T. (2019) . Reexamination of Bessel beams: A generalized scheme to derive optical vortices. Physical Review A, 99(2).
http://dx.doi.org/10.1103/PhysRevA.99.023845
---------- CHICAGO ----------
Quinteiro, G.F., Schmiegelow, C.T., Reiter, D.E., Kuhn, T. "Reexamination of Bessel beams: A generalized scheme to derive optical vortices" . Physical Review A 99, no. 2 (2019).
http://dx.doi.org/10.1103/PhysRevA.99.023845
---------- MLA ----------
Quinteiro, G.F., Schmiegelow, C.T., Reiter, D.E., Kuhn, T. "Reexamination of Bessel beams: A generalized scheme to derive optical vortices" . Physical Review A, vol. 99, no. 2, 2019.
http://dx.doi.org/10.1103/PhysRevA.99.023845
---------- VANCOUVER ----------
Quinteiro, G.F., Schmiegelow, C.T., Reiter, D.E., Kuhn, T. Reexamination of Bessel beams: A generalized scheme to derive optical vortices. Phys. Rev. A. 2019;99(2).
http://dx.doi.org/10.1103/PhysRevA.99.023845