Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we study the vicinage effects that arise in the interaction of molecular projectiles with solids, considering, in particular, the effects produced by the excitation of inner shells. For this purpose, we use two different approaches. On one side we extend the use of the semiclassical impact-parameter model for the excitation of atomic shells, considering quantum corrections and the role of target screening in the vicinage effects. On the other hand, we adapt our extended wave-packet model, developed in a previous work to the calculation of stopping ratios and ionization cross sections for correlated ions. This model introduces modifications to the wave-packet method originally proposed by Kaneko, using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. Finally, we add the contribution of valence electrons calculated with the Lindhard free-electron-gas model and compare with experimental results of vicinage effects in the energy-loss and ionization cross sections for hydrogen molecules interacting with C, Al, Si, Al2O3, and SiO2 targets. © 2019 American Physical Society.

Registro:

Documento: Artículo
Título:Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets
Autor:Archubi, C.D.; Arista, N.R.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio, Pabellón IAFE, Buenos Aires, 1428, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, S. C. de Bariloche, 8400, Argentina
Palabras clave:Alumina; Aluminum oxide; Electron gas; Electrons; Energy dissipation; Molecules; Silica; Wave packets; Free electron gas; Hydrogen molecule; Ionization cross section; Molecular projectiles; Quantum correction; Valence electron; Wave packet models; Wave-packet method; Ionization of gases
Año:2019
Volumen:99
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevA.99.032702
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v99_n3_p_Archubi

Referencias:

  • Arista, N.R., Stopping of molecules and clusters (2000) Nucl. Instrum. Methods Phys. Res., Sect. B, 164-165, p. 108
  • Urbassek, H.M., Dröge, V., Nieminen, R.M., Orientation effects in the stopping of slow dimers in an electron gas (1993) J. Phys.: Condens. Matter, 5, p. 3289
  • Diez Muiño, R., Salin, A., Energy and angular momentum transfer in the excitation of electron-hole pairs by slow dimers (2000) Phys. Rev. B, 62, p. 5207
  • Koval, N.E., Borisov, A.G., Rosa, L.F.S., Stori, E.M., Dias, J.F., Grande, P.L., Sanchez-Portal, D., Diez Muiño, R., Vicinage effect in the energy loss of (Equation presented) dimers: Experiment and calculations based on time-dependent density-functional theory (2017) Phys. Rev. A, 95, p. 062707
  • Garcia-Molina, R., Denton, C.D., Abril, I., Arista, N.R., Energy-loss and exit-angle distributions of fragmented (Equation presented) ions after traversing carbon foils (2000) Phys. Rev. A, 62, p. 012901
  • Denton, C., Garcia-Molina, R., Abril, I., Lantschner, G.H., Eckardt, J.C., Arista, N.R., Effect of the neutral charge fraction in the Coulomb explosion of (Equation presented) ions through aluminum foils (2002) Nucl. Instrum. Methods B, 193, p. 198
  • Shubeita, S.M., Grande, P.L., Dias, J.F., Garcia-Molina, R., Denton, C.D., Abril, I., Energy loss of swift (Equation presented) and (Equation presented) molecules in gold: Vicinage effects (2011) Phys. Rev. B, 83, p. 245423
  • Sigmund, P., Schinner, A., Stopping of swift hydrogen diclusters: Oscillator model (2011) Eur. Phys. J. D, 61, p. 39
  • Hoir, A.L., Cohen, C., Ganem, J.J., Trimaille, I., Vickridge, I.C., Shubeita, S.M., Vicinage effect for hydrogen clusters in (Equation presented) and (Equation presented) (2012) Phys. Rev. A, 85, p. 042901
  • Wang, G., Wang, Y., Vicinage effects for a nitrogen molecular cluster in plasmas (2014) Plasma Sci. Technol., 16, p. 637
  • Brandt, W., Ratkowski, A., Ritchie, R.H., Ion Beam Analysis: Fundamentals and Applications (1974) Phys. Rev. Lett., 33, p. 1325
  • Tape, J.W., Gibson, W.M., Remillieux, J., Laubert, R., Wegner, H.E., Energy loss of atomic and molecular ions beams in thin foils (1976) Nucl. Instrum. Methods, 132, p. 75
  • Eckardt, J.C., Lantschner, G., Arista, N.R., Baragiola, R.A., Electronic stopping of slow molecular ions in solids (1978) J. Phys. C, 11, p. L851
  • Nyaiesh, A.R., Steckeimacher, W., Lucas, M.W., Energy loss of fast (Equation presented) molecules in solids II (1978) J. Phys. C, 11, p. 2917
  • Horino, Y., Vicinage effects in Rutherford backscattering intensities of MeV clusters ions penetrating thin layers of condensed matter (1988) Nucl. Instrum. Methods Phys. Res., Sect. B, 33, p. 178
  • Susuki, Y., Fritz, M., Kimura, K., Mannami, M., Sakamoto, N., Ogawa, H., Katayama, I., Ikegami, H., Stopping power of carbon for 9.6-MeV/amu (Equation presented) ions (1994) Phys. Rev. A, 50, p. 3533
  • Fritz, M., Kimura, K., Susuki, Y., Mannami, M., Energy loss of carbon-transmitted 1-MeV (Equation presented) ions (1994) Phys. Rev. A, 50, p. 2405
  • Susuki, Y., Fritz, M., Kimura, K., Mannami, M., Sakamoto, N., Ogawa, H., Katayama, I., Ikegami, H., Energy loss and dissociation of 10-MeV/amu (Equation presented) ions in carbon foils (1995) Phys. Rev. A, 51, p. 3868
  • Matsunami, N., Energy loss distribution of (Equation presented) with 100 keV in thin carbon foils (1996) Nucl. Instrum. Methods Phys. Res., Sect. B, 115, p. 55
  • Touchrift, B., Salah, H., Benouali, N., Stopping power of high energy molecular (Equation presented) ions interacting with silicon targets (2008) Nucl. Instrum. Methods Phys. Res., Sect. B, 266, p. 1177
  • Fadanelli, R.C., Grande, P.L., Schiwietz, G., Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen (2008) Phys. Rev. A, 77, p. 032902
  • Lurio, A., Andersen, H.H., Feldman, L.C., Search for cluster effects in x-ray production by fast hydrogen molecules (1978) Phys. Rev. A, 17, p. 90
  • Ootuka, A., Fujimoto, F., Komaki, K., Kawatsura, K., Ozawa, K., Terasawa, M., Molecular effect of Al K (Equation presented) x-ray yields from aluminum oxide films for (Equation presented) and (Equation presented) ion bombardments (1983) Phys. Lett. A, 97, p. 191
  • Ootuka, A., Kawatsura, K., Komaki, K., Fujimoto, F., Kouchi, K., Shibata, H., Molecular effects in KL multiple ionization of Al for (Equation presented) and (Equation presented) ion impacts (1988) Nucl. Instrum. Methods Phys. Res., Sect. B, 33, p. 304
  • Yamazaki, Y., Yasaka, A., Oda, N., Molecular and chemical effect in Auger processes induced by molecular ions (1983) Phys. Rev. A, 28, p. 1873. , (R)
  • Shubeita, S.M., Sortica, M.A., Grande, P.L., Dias, J.F., Arista, N.R., Signature of plasmon excitations in the stopping ratio of fast hydrogen clusters (2008) Phys. Rev. B, 77, p. 115327
  • Shubeita, S.M., Fadanelli, R.C., Dias, J.F., Grande, P.L., Denton, C.D., Abril, I., Garcia-Molina, R., Arista, N.R., Role of electronic excitations in the energy loss of (Equation presented) projectiles in high- materials (2009) Phys. Rev. B, 80, p. 205316
  • Arista, N.R., Energy loss of correlated charges in an electron gas (1978) Phys. Rev. B, 18, p. 1
  • Basbas, G., Ritchie, R.H., Vicinage effect in ion-cluster collisions with condensed matter and with single atoms (1982) Phys. Rev. A, 25, p. 1943
  • Kaneko, T., Inelastic energy loss of (Equation presented) and (Equation presented) ions correlated with molecular orientation (1995) Phys. Rev. A, 51, p. 535
  • Kaneko, T., Wave packet theory of bond electrons (1989) Phys. Rev. A, 40, p. 2188
  • Kaneko, T., Partial and total electronic stoppings of solids and atoms for energetic ions (1989) Phys. Status Solidi B, 156, p. 49
  • Kaneko, T., Partial and electronic stopping cross sections of atoms and solids for protons (1993) At. Data Nucl. Data Tables, 53, p. 271
  • Lindhard, J., On the properties of a gas of charged particles (1954) K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 28, p. 1
  • Levine, Z.H., Louie, S.G., New model dielectric function and exchange-correlation potential for semiconductors and insulators (1982) Phys. Rev. B, 25, p. 6310
  • Montanari, C.C., Archubi, C.D., Mitnik, D.M., Miraglia, J.E., Energy loss of protons in Au, Pb, and Bi using relativistic wave functions (2009) Phys. Rev. A, 79, p. 032903
  • Archubi, C.D., Arista, N.R., Extended wave packet model to calculate energy loss moments of protons in matter (2017) Phys. Rev. A, 96, p. 062701
  • Bohr, N., The penetration of atomic particles through matter (1948) K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 18, p. 1
  • Jackson, J.D., (1975) Classical Electrodynamics, , (John Wiley and Sons, New York)
  • Sigmund, P., (2006) Particle Penetration and Radiation Effects, , (Springer, New York)
  • De M. Azevedo, G., Grande, P.L., Schiwietz, G., Impact-parameter dependent energy loss of screened ions (2000) Nucl. Instrum. Methods Phys. Res., Sect. B, 164-165, p. 203
  • Lifschitz, A.F., Arista, N.R., Velocity-dependent screening in metals (1998) Phys. Rev. A, 57, p. 200
  • Brandt, W., Reinheimer, J., Theory of semiconductor response to charge particles (1970) Phys. Rev. B, 2, p. 3104
  • Bethe, H.A., Jackiw, R., (1998) Intermediate Quantum Mechanics, , (CRC Press, Boca Raton, FL)
  • McLean, A.D., McLean, R.S., Roothaan-Hartree-Fock atomic wave functions Slater basis-set expansions for (Equation presented) = 2-54 (1981) At. Data Nucl. Data Tables, 26, p. 197
  • Clementi, E., Roetti, D., Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, (Equation presented) (1974) At. Data Nucl. Data Tables, 14, p. 177
  • Kihara, T., Aono, O., Unified theory of relaxations in plasmas, I. Basic theorem (1963) J. Phys. Soc. Jpn., 18, p. 837
  • Bunge, C.F., Barrientos, J.A., Bunge, A.V., Roothaan-Hartree-Fock ground-state atomic wave functions: Slater-type orbitals expansions and expectation values for (Equation presented)=2-54 (1993) At. Data Nucl. Data Tables, 53, p. 113
  • Abril, I., Garcia-Molina, R., Arista, N.R., Sanz-Navarro, C.F., Electronic energy loss of swift protons in the oxides (Equation presented), (Equation presented) and (Equation presented) (2002) Nucl. Instrum. Methods Phys. Res., Sect. B, 190, p. 89
  • Eder, K., Semrad, D., Bauer, P., Golser, R., Maier-Komor, P., Aumay, R., Penalba, M., Echenique, P.M., Absence of a "threshold Effect" in the Energy Loss of Slow Protons Traversing Large-Band-Gap Insulators (1997) Phys. Rev. Lett., 79, p. 4112
  • Kumakhov, M.A., Komarov, F., (1981) Energy Loss and Ion Ranges in Solids, , (Gordon and Breach, New York)
  • Matias, F., Fadanelli, R.C., Grande, P.L., Arista, N.R., Koval, N.E., Schiwietz, G., Stopping power of cluster ions in a free-electron gas from partial-wave analysis (2018) Phys. Rev. A, 98, p. 062716
  • Basbas, G., Brandt, W., Laubert, R., Universal cross sections for (Equation presented)-shell ionization by heavy charged particles, I. Low particle velocities (1973) Phys. Rev. A, 7, p. 983
  • Brandt, W., Lapicki, G., L-shell Coulomb ionization by heavy charged particles (1979) Phys. Rev. A, 20, p. 465

Citas:

---------- APA ----------
Archubi, C.D. & Arista, N.R. (2019) . Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets. Physical Review A, 99(3).
http://dx.doi.org/10.1103/PhysRevA.99.032702
---------- CHICAGO ----------
Archubi, C.D., Arista, N.R. "Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets" . Physical Review A 99, no. 3 (2019).
http://dx.doi.org/10.1103/PhysRevA.99.032702
---------- MLA ----------
Archubi, C.D., Arista, N.R. "Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets" . Physical Review A, vol. 99, no. 3, 2019.
http://dx.doi.org/10.1103/PhysRevA.99.032702
---------- VANCOUVER ----------
Archubi, C.D., Arista, N.R. Theoretical models to calculate stopping and ionization ratios of H2+ molecules in solid targets. Phys. Rev. A. 2019;99(3).
http://dx.doi.org/10.1103/PhysRevA.99.032702