Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the asymptotic dynamics of arbitrary linear quantum open systems that are periodically driven while coupled with generic bosonic reservoirs. We obtain exact results for the heat flowing from each reservoir, and these results are valid beyond the weak-coupling or Markovian approximations. We prove the validity of the dynamical third law of thermodynamics (Nernst unattainability principle), showing that the ultimate limit for cooling is imposed by a fundamental heating mechanism that dominates at low temperatures, namely the nonresonant creation of excitation pairs in the reservoirs induced by the driving field. This quantum effect, which is missed in the weak-coupling approximation, restores the unattainability principle, the validity of which was recently challenged. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Fundamental limits for cooling of linear quantum refrigerators
Autor:Freitas, N.; Paz, J.P.
Filiación:Departamento de Física, FCEyN, UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Instituto de Física de Buenos Aires, UBA CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Palabras clave:Quantum theory; Thermodynamics; Asymptotic dynamics; Bosonic reservoirs; Heating mechanisms; Low temperatures; Markovian approximation; Quantum effects; Quantum open systems; Weak couplings; Quantum electronics
Año:2017
Volumen:95
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevE.95.012146
Título revista:Physical Review E
Título revista abreviado:Phys. Rev. E
ISSN:24700045
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_24700045_v95_n1_p_Freitas

Referencias:

  • Nernst, W., (1926) The New Heat Theorem, , (Methuen and Company, London)
  • Kolář, M., Gelbwaser-Klimovsky, D., Alicki, R., Kurizki, G., Quantum Bath Refrigeration Towards Absolute Zero: Challenging the Unattainability Principle (2012) Phys. Rev. Lett., 109, p. 090601
  • Cleuren, B., Rutten, B., Van Den Broeck, C., Cooling by Heating: Refrigeration Powered by Photons (2012) Phys. Rev. Lett., 108, p. 120603
  • Kosloff, R., Quantum thermodynamics: A dynamical viewpoint (2013) Entropy, 15, p. 2100
  • Vinjanampathy, S., Anders, J., Quantum thermodynamics (2016) Contemp. Phys., 57, p. 545
  • Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., Wehner, S., The second laws of quantum thermodynamics (2015) Proc. Natl. Acad. Sci. USA, 112, p. 3275
  • Abah, O., Rossnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E., Single-Ion Heat Engine at Maximum Power (2012) Phys. Rev. Lett., 109, p. 203006
  • An, S., Zhang, J.-N., Um, M., Lv, D., Lu, Y., Zhang, J., Yin, Z.-Q., Kim, K., Experimental test of the quantum Jarzynski equality with a trapped-ion system (2015) Nat. Phys., 11, p. 193
  • Pekola, J.P., Towards quantum thermodynamics in electronic circuits (2015) Nat. Phys., 11, p. 118
  • Linden, N., Popescu, S., Skrzypczyk, P., How small can Thermal Machines Be? the Smallest Possible Refrigerator (2010) Phys. Rev. Lett., 105, p. 130401
  • Levy, A., Kosloff, R., Quantum Absorption Refrigerator (2012) Phys. Rev. Lett., 108, p. 070604
  • Arrachea, L., Mucciolo, E.R., Chamon, C., Capaz, R.B., Microscopic model of a phononic refrigerator (2012) Phys. Rev. B, 86, p. 125424
  • Joulain, K., Drevillon, J., Ezzahri, Y., Ordonez-Miranda, J., Quantum Thermal Transistor (2016) Phys. Rev. Lett., 116, p. 200601
  • Allahverdyan, A.E., Hovhannisyan, K.V., Janzing, D., Mahler, G., Thermodynamic limits of dynamic cooling (2011) Phys. Rev. E, 84, p. 041109
  • Wu, L.-A., Segal, D., Brumer, P., No-go theorem for ground state cooling given initial system-thermal bath factorization (2013) Sci. Rep., 3, p. 1824
  • Ticozzi, F., Viola, L., Quantum resources for purification and cooling: Fundamental limits and opportunities (2014) Sci. Rep., 4, p. 5192
  • Masanes, L., Oppenheim, J., A Derivation (And Quantification) of the Third Law of Thermodynamics, , arXiv:1412.3828
  • Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P., Observation of the dynamical Casimir effect in a superconducting circuit (2011) Nature (London), 479, p. 376
  • Lähteenmäki, P., Paraoanu, G.S., Hassel, J., Hakonen P, J., Dynamical Casimir effect in a Josephson metamaterial (2013) Proc. Natl. Acad. Sci. USA, 110, p. 4234
  • Benenti, G., Strini, G., Dynamical Casimir effect and minimal temperature in quantum thermodynamics (2015) Phys. Rev. A, 91, p. 020502
  • Allahverdyan, A.E., Hovhannisyan, K.V., Mahler, G., Comment on "cooling by Heating: Refrigeration Powered by Photons," (2012) Phys. Rev. Lett., 109, p. 248903
  • Levy, A., Alicki, R., Kosloff, R., Quantum refrigerators and the third law of thermodynamics (2012) Phys. Rev. E, 85, p. 061126
  • Martinez, E.A., Pablo Paz, J., Dynamics and Thermodynamics of Linear Quantum Open Systems (2013) Phys. Rev. Lett., 110, p. 130406
  • Arrachea, L., Rizzo, B., Nonequilibrium Green's functions in the study of heat transport of driven nanomechanical systems (2013) J. Phys.: Conf. Ser., 427, p. 012012
  • Freitas, N., Pablo Paz, J., Analytic solution for heat flow through a general harmonic network (2014) Phys. Rev. E, 90, p. 042128

Citas:

---------- APA ----------
Freitas, N. & Paz, J.P. (2017) . Fundamental limits for cooling of linear quantum refrigerators. Physical Review E, 95(1).
http://dx.doi.org/10.1103/PhysRevE.95.012146
---------- CHICAGO ----------
Freitas, N., Paz, J.P. "Fundamental limits for cooling of linear quantum refrigerators" . Physical Review E 95, no. 1 (2017).
http://dx.doi.org/10.1103/PhysRevE.95.012146
---------- MLA ----------
Freitas, N., Paz, J.P. "Fundamental limits for cooling of linear quantum refrigerators" . Physical Review E, vol. 95, no. 1, 2017.
http://dx.doi.org/10.1103/PhysRevE.95.012146
---------- VANCOUVER ----------
Freitas, N., Paz, J.P. Fundamental limits for cooling of linear quantum refrigerators. Phys. Rev. E. 2017;95(1).
http://dx.doi.org/10.1103/PhysRevE.95.012146