Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2+) and single-wavelength dyes that increase their fluorescence upon Ca2+ binding. We validate the approach with experiments performed in aqueous solutions containing Ca2+ and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2+ and its dyes
Autor:Sigaut, L.; Villarruel, C.; Ponce, M.L.; Ponce Dawson, S.
Filiación:Departamento de Física, FCEN-UBA, IFIBA, CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Palabras clave:Bins; Calcium; Cell signaling; Dextran; Diffusion in liquids; Dynamic models; Enzyme activity; Fluorescence; Fluorescence spectroscopy; Physiological models; Reaction rates; Solutions; Spectroscopic analysis; Biophysical parameters; Fluorescence Correlation Spectroscopy; Intracellular components; Net transport rate; Reaction diffusion systems; Relevant reactions; Signaling pathways; Xenopus laevis oocytes; Diffusion
Año:2017
Volumen:95
Número:6
DOI: http://dx.doi.org/10.1103/PhysRevE.95.062408
Título revista:Physical Review E
Título revista abreviado:Phys. Rev. E
ISSN:24700045
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700045_v95_n6_p_Sigaut

Referencias:

  • Pando, B., Dawson, S.P., Mak, D.-O.D., Pearson, J.E., (2006) Proc. Natl. Acad. Sci. USA, 103, p. 5338. , http://www.pnas.org/content/103/14/5338.full.pdf+html
  • Dargan, S.L., Parker, I., (2003) J. Physiol., 553, p. 775
  • Dargan, S.L., Schwaller, B., Parker, I., (2004) J. Physiol., 556, p. 447
  • Nelson, M.T., Cheng, H., Rubart, M., Santana, L.F., Bonev, A.D., Knot, H.J., Lederer, W.J., (1995) Science, 270, p. 633
  • Allbritton, N., Meyer, T., Stryer, L., (1992) Science, 258, p. 1812
  • Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W., Lechleiter, J.D., (2008) Methods, 46, p. 143
  • Piegari, E., Lopez, L., Ipiña, E.P., Dawson, S.P., (2014) PLoS ONE, 9, p. 0095860
  • Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P., (2005) Biophys. J., 88, p. 2403
  • Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Dawson, S.P., (2010) Cell Calcium, 47, p. 273
  • Elson, E., (2011) Biophys. J., 101, p. 2855
  • Magde, D., Elson, E., Webb, W.W., (1972) Phys. Rev. Lett., 29, p. 705
  • Elson, E.L., (2001) Traffic, 2, p. 789
  • Haustein, E., Schwille, P., (2007) Annu. Rev. Biophys. Biomol. Struct., 36, p. 151. , http://www.annualreviews.org/doi/pdf/10.1146/annurev.biophys.36.040306.132612
  • Kaur, G., Costa, M.W., Nefzger, C.M., Silva, J., Fierro-Gonzalez, J.C., Polo, J.M., Bell, D.M., Plachta, N., (2013) Nat. Commun., 4, p. 1637
  • Thompson, N.L., (1999) Topics in Fluorescence Spectroscopy: Techniques, pp. 337-378. , edited by J. R. Lakowicz (Springer US, Boston, MA)
  • Lamb, D.C., Schenk, A., Röcker, C., Scalfi-Happ, C., Nienhaus, G.U., (2000) Biophys. J., 79, p. 1129
  • Bismuto, E., Gratton, E., Lamb, D.C., (2001) Biophys. J., 81, p. 3510
  • Ipiña, E.P., Dawson, S.P., (2013) Phys. Rev. e, 87, p. 022706
  • Ipiña, E.P., Dawson, S.P., (2014) Biophys. J., 107, p. 2674
  • Sigaut, L., Ponce, M.L., Colman-Lerner, A., Dawson, S.P., (2010) Phys. Rev. e, 82, p. 051912
  • Sigaut, L., Pearson, J.E., Colman-Lerner, A., Dawson, S.P., (2014) PLoS Comput. Biol., 10, p. e1003629
  • Arish, A.A., Porcher, A., Czerwonka, A., Dostatni, N., Fradin, C., (2010) Biophys. J., 99, p. L33
  • Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W., (2007) Cell, 130, p. 153
  • (2010) Version 7.10.0 (R2010a), , matlab, (MathWorks Inc., Natick, MA)
  • Culbertson, C.T., Jacobson, S.C., Ramsey, J.M., (2002) Talanta, 56, p. 365
  • Gennerich, A., Schild, D., (2002) Biophys. J., 83, p. 510
  • Qin, D., Yoshida, A., Noma, A., (1991) Japan. J. Physiol., 41, p. 333
  • Haynes, W.M., (2015) CRC Handbook of Chemistry and Physics 2015-2016, , (CRC Press, Boca Raton, FL)
  • Wegner, V.F., Wieder, N., Fink, R.H., (2014) Front. Genet., 5
  • Wachsmuth, M., Conrad, C., Bulkescher, J., Koch, B., Mahen, R., Isokane, M., Pepperkok, R., Ellenberg, J., (2015) Nat. Biotechnol., 33, p. 384
  • Biess, A., Korkotian, E., Holcman, D., (2011) PLoS Comput. Biol., 7, p. 1002182
  • Bressloff, P.C., Newby, J.M., (2013) Rev. Mod. Phys., 85, p. 135
  • Piegari, E., Sigaut, L., Dawson, S.P., (2015) Cell Calcium, 57, p. 109
  • Diaspro, A., Federici, F., Robello, M., (2002) Appl. Opt., 41, p. 685
  • Enderlein, J., Gregor, I., Patra, D., Fitter, J., (2004) Curr. Pharm. Biotechnol., 5, p. 155
  • Enderlein, J., Gregor, I., Patra, D., Dertinger, T., Kaupp, U.B., (2005) Chem. Phys. Chem., 6, p. 2324
  • Tan, C.-Y., Huang, Y.-X., (2015) J. Chem. Eng. Data, 60, p. 2827
  • Tsien, R., (1999) Calcium As A Cellular Regulator, pp. 28-54. , edited by E. Carafoli and C. Klee (Oxford University Press, New York)
  • Naraghi, M., (1997) Cell Calcium, 22, p. 255
  • Wawrezinieck, L., Rigneault, H., Marguet, D., Lenne, P.-F., (2005) Biophys. J., 89, p. 4029
  • Lenne, P.-F., Wawrezinieck, L., Conchonaud, F., Wurtz, O., Boned, A., Guo, X.-J., Rigneault, H., Marguet, D., (2006) EMBO J., 25, p. 3245
  • Rienzo, C.D., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F., (2014) Nat. Commun., 5, p. 5891
  • White, M.D., Angiolini, J.F., Alvarez, Y.D., Kaur, G., Zhao, Z.W., Mocskos, E., Bruno, L., Plachta, N., (2016) Cell, 165, p. 75
  • Krichevsky, O., Bonnet, G., (2002) Rep. Prog. Phys., 65, p. 251

Citas:

---------- APA ----------
Sigaut, L., Villarruel, C., Ponce, M.L. & Ponce Dawson, S. (2017) . Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2+ and its dyes. Physical Review E, 95(6).
http://dx.doi.org/10.1103/PhysRevE.95.062408
---------- CHICAGO ----------
Sigaut, L., Villarruel, C., Ponce, M.L., Ponce Dawson, S. "Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2+ and its dyes" . Physical Review E 95, no. 6 (2017).
http://dx.doi.org/10.1103/PhysRevE.95.062408
---------- MLA ----------
Sigaut, L., Villarruel, C., Ponce, M.L., Ponce Dawson, S. "Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2+ and its dyes" . Physical Review E, vol. 95, no. 6, 2017.
http://dx.doi.org/10.1103/PhysRevE.95.062408
---------- VANCOUVER ----------
Sigaut, L., Villarruel, C., Ponce, M.L., Ponce Dawson, S. Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2+ and its dyes. Phys. Rev. E. 2017;95(6).
http://dx.doi.org/10.1103/PhysRevE.95.062408