“TWO-EGG CLUTCHES” IN CORY’S SHEARWATER
(CALONECTRIS DIOMEDEA)

JEAN-LOUIS MOUGIN

Laboratoire de Zoologie (Mammifères et Oiseaux), Muséum National d’Histoire Naturelle.
55 rue Buffon, 75005 Paris, France.

ABSTRACT.— In the Cory’s Shearwater (Calonectris diomedea) of Selvagem Grande, “two-egg clutches” represented 0.52% of the total number of clutches. “Two-egg clutches” were found principally in attractive nests occupied by inexperienced breeders. The first egg seemed to be laid mostly by lonely females taking advantage of the pre-laying exodus to enter the temporarily empty nest of a young inexperienced pair. These females deserted their egg after a few days, then the legitimate tenants laid the second egg. The first egg was deserted on average after three days and replaced four days later. The breeding success of “two-egg clutches” was significantly lower than that of one-egg clutches, because of the failure of the first egg. Among other Procellariiformes, as in Cory’s Shearwaters, “two-egg clutches” are always rare and show little success.

KEY WORDS: Calonectris diomedea, Cory’s Shearwater, Selvagem Grande, “Two-egg clutches”.

RESUMEN. PUESTAS “DE DOS HUEVOS” EN LA PARDELA GRANDE (CALONECTRIS DIOMEDEA).— Las puestas “de dos huevos” representaron el 0.52% del número total de puestas en la población de la Pardela Grande (Calonectris diomedea) de Selvagem Grande. Las puestas “de dos huevos” se encontraron principalmente en nidos atractivos ocupados por parejas reproductivas de poca experiencia. El primer huevo pareció haber sido puesto mayormente por hembras solitarias que, aprovechando el exodo pre-postura, entran al nido temporariamente vacío de una pareja joven y de poca experiencia. Estas hembras abandonan su huevo luego de unos pocos días, luego de lo cual la pareja legítima retoma y se produce la postura del segundo huevo. El primer huevo fue abandonado, en promedio, luego de tres días, y reemplazado cuatro días más tarde. El éxito de las puestas “de dos huevos” fue significativamente menor que el de las puestas de un huevo, debido al fracaso del primer huevo. Entre otros Procellariiformes, así como en la Pardela Grande, las puestas “de dos huevos” son siempre raras y muestran un bajo éxito.

Received 15 September 2000, corrected version received 25 January 2001, accepted 16 November 2001

One-egg clutches are usual among Procellariiformes (Warham 1990). Nevertheless, two eggs are found in a few nests of several species: Cape Petrel Daption capense (Gain 1914, Downes et al. 1959), Slender-billed Prion Pachyptila belcheri (Strange 1980), Manx Shearwater Puffinus puffinus (Harris 1966), European Storm-petrel Hydrobates pelagicus (Scott 1970), Fork-tailed Storm-petrel Oceanodroma furcata (Boersma et al. 1980), White-throated Storm-petrel Nesofregetta albicularis (Crossin 1974), Grey-backed Storm-petrel Garrodia nereis (Plant 1989), White-faced Storm-petrel Pelagodroma marina (Richdale 1965), among many others. Some hypotheses have been presented as regards their origin. The possibility of a double laying by the same female is no more accepted nowadays—and thus the term “two-egg clutch” is not appropriate but it is a time-honoured custom to use it—and the replacement clutches noted in some Hydrobatids (Boersma et al. 1980) seem out of place in the family which lays the biggest eggs compared with the weight of the females.

Nests with two eggs have already been noted in the Cory’s Shearwater (Calonectris diomedea) on Malta (Cachia Zammit and Borg 1988). Our aim in looking for them in the population of Selvagem Grande (30°09’N, 15°52’W), the largest of the Portuguese Selvagens Islands situated between Madeira and the Canary Islands, was to know: (1) if they existed, (2) how many birds were concerned and who were they, and (3) if these “double clutches” were successful.
The population of Cory’s Shearwaters of Selvagem Grande numbers about 36 000 breeders (Mougin et al. 1996), 15–20% of which are new breeders (on average 8.9 years old, range 4–13 years; Mougin et al. 2000a), and less than 10 000 prospecting young birds. At the end of the wintering period spent at sea in the Southern Hemisphere, the birds of Selvagem Grande come back to their colonies (at the end of February and beginning of March) and settle usually on their former nest with their former mate. Most of the nests are more or less hypogeous and show a comparatively low density (0.1–0.8 nests/m²) without any vegetation cover. As among other Procellariids, the nest, visited sporadically and cyclically during the pre-egg stage (Mougin et al. 2000b), is deserted by both sexes a few days before laying (pre-laying exodus), on average 19 days for females and 8 days for males (Jouanin et al. 2001). This situation allow birds other than the tenants to frequent the nest, even if the number of potential nests is not limited, the birds breeding nowadays on Selvagem Grande being far less numerous than some decades ago. After laying, the first stint of the female is short, a few hours or a few days, 1.8 days on average. Afterwards, both sexes incubate alternatively.

Methods

As an annex to a long-term project dealing with the demography of the population, the search for “two-egg clutches” has been carried out every year since 1980 —with the exception of 1991 and 1993— in four colonies of Cory’s Shearwaters of Selvagem Grande numbering about 500 pairs in all. The nests were checked every year in June–July, during incubation, which allowed the determination of the rate of occupation (number of years of occupation / number of years of existence of the nest site during the period of study). Between 1983 and 1985, they have also been visited during the laying period. During incubation, nests and adults were checked or marked. Recruits were thus known and therefore their breeding experience during the following years. Measurements taken at the time of ringing allowed sex determination (Mougin et al. 1986). Nearly fledged chicks were censused during a later visit, which permitted the computation of breeding success. A control performed shortly after egg laying is always hazardous, the birds deserting readily their egg. A few days later, when the rhythm of changeover is well established, it will not jeopardise egg survival, the birds being less shy. So we have not tried to check ringed adults immediately after laying and, as the parents of the first egg in “two-egg clutches” normally desert their egg not long after laying, we only know the identity of those of the second egg.

The statistical analyses were based on Chi-square tests and Student’s t-tests. Means are given ± SD.

Results

Frequency of nests with two eggs

The frequency of nests with two eggs observed in our colonies between 1980 and 1999, although always very low, has shown a significant annual variation ($\chi^2_{17} = 65.8$, $P < 0.01$), between 0 and 2.3% (Fig. 1). In all, 41 “two-egg clutches” have been observed during 18 years of observation for a total of 7891 clutches (0.52%).

Laying and breeding success

In the 10 “two-egg clutches” observed in 1983 and 1984, the first egg was deserted 2.7 ± 2.9 days after having been laid; the second was laid 4.4 ± 4.0 days after the desertion of the first or 7.3 ± 5.0 days after its laying.
“Two-egg clutches” in Cory’s Shearwater

The whole process between the laying of both eggs took a few days only, one week on average and two weeks at the most. No double hatching has been observed and, on the whole, the hatching success (eggs hatched / eggs laid) has been lower in “two-egg” than in one-egg clutches (Table 1). This being so, if we disregard the systematic failure of the first egg, the success of the second was a little lower, although not significantly, than that of one-egg clutches ($\chi^2 = 1.61$, $P > 0.05$). The fledging success (chicks fledged / eggs hatched) of the surviving chick did not differ from that of the chick of one-egg clutches ($\chi^2 = 3.8$, $P > 0.05$; Table 1). In all, the breeding success (chicks fledged / eggs laid) of “two-egg clutches” was significantly lower than that of one-egg clutches ($\chi^2 = 32.4$, $P < 0.01$; Table 1) because of the failure of the first egg.

Nests

The nests in which two eggs have been observed have shown a high rate of occupation, on average 0.85 ± 0.21 (range 0.33–1.00, $n = 41$) versus 0.63 ± 0.31 (0.05–1.00, $n = 708$) for the nests with one-egg clutches ($t = 6.18$, $P < 0.01$). The percentage of the nests with two eggs that were regularly occupied every year was 24.4, versus 11.2% of the nests with one-egg clutches ($\chi^2 = 6.38$, $P < 0.05$).

More than half (53.8%) of the pairs settled in the nests where two eggs have been observed had never bred there together, 39.5% of the males and 34.2% of the females having no previous experience of the site ($n = 38$).

![Figure 2](image-url)
Figure 2. Chronology of desertion and laying in 10 “two-egg clutches” in the studied colonies of *Calonectris diomedea* of Selvagem Grande in 1983 and 1984. (a) Frequency of desertion of the first egg (in days following laying). (b) Frequency of laying of the second egg (in days following the desertion of the first).

Table 1. Breeding success in nests with one-egg and “two-egg” clutches in the studied colonies of *Calonectris diomedea* of Selvagem Grande. Egg and chick mortality: total loss / eggs laid. χ^2 refers to the differences between one-egg clutches and both eggs in “two-egg clutches”. ns: non significant.

<table>
<thead>
<tr>
<th>“Two-egg clutches”</th>
<th>First egg</th>
<th>Second egg</th>
<th>Both eggs</th>
<th>One-egg clutches</th>
<th>χ^2_1</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs laid</td>
<td>27</td>
<td>27</td>
<td>54</td>
<td>4523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs lost</td>
<td>27 (100%)</td>
<td>12 (46.4%)</td>
<td>39 (72.2%)</td>
<td>1482 (32.8%)</td>
<td>37.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Eggs hatched</td>
<td>-</td>
<td>15 (55.6%)</td>
<td>15 (27.8%)</td>
<td>3041 (67.2%)</td>
<td>37.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Chicks lost</td>
<td>-</td>
<td>5 (33.3%)</td>
<td>5 (33.3%)</td>
<td>460 (15.1%)</td>
<td>3.8</td>
<td>ns</td>
</tr>
<tr>
<td>Chicks fledged</td>
<td>-</td>
<td>10 (37.0%)</td>
<td>10 (18.5%)</td>
<td>2581 (57.1%)</td>
<td>32.4</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total loss</td>
<td>27</td>
<td>17</td>
<td>44</td>
<td>1942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg and chick mortality</td>
<td>100%</td>
<td>63.0%</td>
<td>81.5%</td>
<td>42.9%</td>
<td>32.4</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Table 2. Breeding experience and length of pairing of the breeders observed in nests with one-egg and “two-egg” clutches in the studied colonies of Calonectris diomedea of Selvagem Grande. Data reported are means ± SD, with range in brackets, and sample size (n). Data for “two-egg clutches” concern only the pairs having laid the second egg. *: P < 0.05, **: P < 0.01.

<table>
<thead>
<tr>
<th>Experience (years)</th>
<th>“Two-egg clutches”</th>
<th>One-egg clutches</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>males</td>
<td>4.3 ± 4.0 (1–18)</td>
<td>7.1 ± 5.7 (1–23)</td>
<td>3.97 **</td>
</tr>
<tr>
<td>n = 39</td>
<td>n = 461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>females</td>
<td>5.8 ± 4.8 (1–18)</td>
<td>7.4 ± 5.9 (1–23)</td>
<td>2.00 *</td>
</tr>
<tr>
<td>n = 38</td>
<td>n = 474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>both sexes</td>
<td>5.0 ± 4.5 (1–18)</td>
<td>7.2 ± 5.8 (1–23)</td>
<td>4.04 **</td>
</tr>
<tr>
<td>n = 77</td>
<td>n = 935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of pairing (years)</td>
<td>2.2 ± 1.8 (1–9)</td>
<td>3.2 ± 2.8 (1–17)</td>
<td>3.04 **</td>
</tr>
<tr>
<td>n = 38</td>
<td>n = 355</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Birds

In several avian species, homosexual female-female pairs sometimes laid the supernumerary clutches (Conover et al. 1979, Ryder and Somppi 1979, Bried et al. 1999). This is not the case in the Cory’s Shearwater of Selvagem Grande.

Table 2 compares the breeding experience and the length of pairing of the birds settled in nests with “two-egg” or one-egg clutches. The pairs having laid the second egg in “two-egg clutches”, males as well as females, are always significantly less experienced than those having laid one-egg clutches, and the length of their pairing is shorter.

The birds having laid the first egg have never been checked and we have previously explained why. However, no significant difference was apparent between the duration of the stint preceding the desertion of the egg and that of the first female stint during a successful incubation (t = 0.95, P > 0.05), therefore we may probably assume that only lonely females are concerned, deserting the nest when they normally should have been relieved by their mate.

Discussion

In the Cory’s Shearwaters of Selvagem Grande, “two-egg clutches”, always very rare, are laid by birds short of experience in nests attractive for breeders. The first egg seems to be mostly the product of lonely females taking advantage of the pre-laying exodus of young inexperienced pairs to lay in their temporarily deserted nest. At the end of a stint of normal duration, not relieved by a male, they will desert the egg. When returning from their feeding trip, the “legitimate” tenants of the nest will lay the second egg, which will afterwards be brooded more or less assiduously, as is usual in birds rather devoid of experience. We have no information on the fertility of the first egg laid but the probable loneliness of the female at laying does not imply that she was also lonely days earlier and that no fertilization had occurred then.

“Two-egg clutches” seem to be always rare in Procellariiformes, from 0.02% to 5.60% according to the species (Fisher 1952, Prévost 1953, Warham 1962, Tickell and Pinder 1966, Fisher 1968, Mougin 1970, Imber 1976, Schramm 1983). As in the Cory’s Shearwater also, they seem to be laid by inexperienced birds (Fisher 1968). The competition of two pairs for the same nest site has been noted, as well as the reoccupation by a pair of a nest site deserted after laying by another pair (Pinder 1966, Fisher 1968, Imber 1976). Breeding failure is always important: 80% in Warham’s sample (1962), 100% in Pinder’s (1966), and one hatching only observed by Imber (1976). Only the Giant Petrels Macronectes sp. seem likely to succeed in hatching two eggs but, like the other Procellariiformes, they cannot fledge two chicks (Warham 1962). In other species, one egg is always lost, and sometimes both (Pinder 1966, Imber 1976), which is perhaps more related to the inexperience of the birds than to the size of the clutch.
The existence of “two-egg clutches” is not likely to favour the populations of Procellariformes, as one egg is systematically lost and the other moderately successful. But it is not either likely to affect them, even if the first egg had produced a chick if laid in a free nest, because they seldom occur and because, in that case, the success of the second egg is not compromised by the existence of the first. In fact, as far as the fate of the egg is concerned, the laying of a supernumerary egg in a nest seems to be similar to the “laying on the ground” observed in some Procellariformes, e.g., the Madeiran Storm-petrel (Oceanodroma castro; Mougin et al. 1990) and several shearwaters (Puffinus griseus, P. bulleri, and P. puffinus; Harris 1966, Warham et al. 1982, Harper 1983). Cases much more surprising of apparently useless laying of viable eggs are known in groups laying more than one egg, the Spheniscids for example. In the Macaroni Penguin Eudyptes chrysolophus, the first, smaller egg is discarded usually before the laying of the second, bigger egg (Mougin 1984, Williams 1989). Anyway, in the Cory’s Shearwater, either laid in the nest of another bird, on the ground or anywhere else, the eggs of lonely females have no chance of hatching. As they are rare, the loss is small for the population.

LITERATURE CITED

HARPER PC (1983) Biology of the Buller’s Shearwater (Puffinus bulleri) at the Poor Knights Islands, New Zealand. Notornis 30:299–318

SCHRAMM M (1983) The breeding biology of the petrels *Pterodroma macroptera*, *P. brevirostris* and *P. mollis* at Marion Island. *Emu* 83:75–81

UN EQUIPO ELECTROMECÁNICO ECONÓMICO PARA IDENTIFICAR DEPREDADORES DE HUEVOS EN NIDOS ARTIFICIALES

VÍCTOR R. CUETO 1 y EDUARDO T. MEQUIDA 2,3

1 Grupo de Investigación de Ecología de Comunidades de Desierto (Ecodes). Depto. Ecología, Genética y Evolución, Fac. de Cs. Exactas y Naturales, Univ. de Buenos Aires. Piso 4, Pab. 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina. vcueto@bg.fcen.uba.ar
3 Dirección actual: P. Alameda de Osuna 74 1°C, 28042 Madrid, España.

RESUMEN.— Describimos un equipo electromecánico económico para fotografiar depredadores de huevos en nidos artificiales. El equipo consta de tres partes: un disparador en el nido, un accionador del disparador de la cámara fotográfica y un desactivador del equipo. Las ventajas de este equipo son su bajo costo, el uso de una fuente de alimentación común y que incluye un circuito eléctrico muy sencillo de armar. Con este equipo identificamos cinco especies depredadoras de huevos (cuatro aves y un mamífero) en el desierto del Monte central, entre las cuales destaca Upucerthia certhioides, por ser la primera vez que se la identifica atacando nidos. Se indican algunas precauciones para evitar la activación del equipo sin la presencia del depredador y para obtener imágenes de buena calidad.

PALABRAS CLAVE: Argentina, aves, depredadores de nidada, equipo electromecánico, identificación de depredadores, mamíferos, Mendoza.

ABSTRACT. AN INEXPENSIVE ELECTROMECHANICAL SETUP TO IDENTIFY EGG PREDATORS AT ARTIFICIAL NESTS.— We describe an inexpensive electromechanical setup for identifying egg predators by photography at artificial nests. The setup consists of three main components: a trigger mechanism at nest, a mechanism that press the camera shutter, and a system to disconnect the setup. Advantages of this setup are its low cost, the use of a common battery, and that the electric circuit included is easy to assemble. With this setup we identified five species of egg predators (four birds and one mammal) in the central Monte desert, including Upucerthia certhioides, a species not previously observed predating nests. Some precautions to use the setup in the field and to get pictures of good quality are provided.

KEY WORDS: Argentina, birds, electromechanical setup, mammals, Mendoza, nest predators, predator identification.

La depredación es la principal fuente de mortalidad de las nidadas en las aves paseriformes (Ricklefs 1969, Martin 1992) y, por lo tanto, es considerada una fuerte presión selectiva sobre el comportamiento y la historia de vida de estas aves (Martin 1993, 1995). Sin embargo, es poco lo que se sabe acerca de la identidad de los depredadores de nidos. Por ejemplo, distintos depredadores pueden tener patrones de actividad y tácticas de búsqueda de nidos especie-específicos y así imponer pre-ciones de selección sutilmente diferentes (Picman y Schriml 1994, Bayne y Hobson 1997). Conocerlos con precisión ayudaría a comprender los comportamientos de nidificación de las aves. Por otra parte, determinar la composición del ensamble de depredadores sería de gran valor para comprobar la importancia de la depredación por parte de animales domésticos o relacionados con las actividades humanas, como gatos, perros y ratas (Major 1991, Soulé et al. 1992).

La observación de eventos de depredación es muy rara, fundamentalmente porque ocurren rápidamente en relación con el tiempo que el nido está expuesto. Además, algunos depredadores tienen actividad principalmente nocturna o la presencia de un observador puede disuadirlos (Major 1991, Lindsey 1992). En muchos casos se ha inferido la identidad del
depredador por las marcas dejadas en el nido y en sus proximidades o por las características de los restos de los huevos (e.g., Christman y Dhondt 1997, Mabee 1997). Sin embargo, este método puede conducir a errores de interpretación o a subestimar la importancia de depredadores que no dejen marcas conspicuas (Marini y Melo 1998, Larivière 1999, Pietz y Granfors 2000).

En varios trabajos se han utilizado métodos remotos para detectar depredadores (e.g., Yahner y Wright 1985) y, en algunos casos, se han diseñado equipos económicos, principalmente de tipo mecánico (Picman 1987, Major 1991). Otros equipos requieren elementos electrónicos (Major y Gowing 1994), los cuales suelen ser difíciles de armar. En este trabajo presentamos un equipo electromecánico económico de fácil construcción, con el cual hemos identificado con éxito a varios depredadores de nidos en el desierto del Monte, en Argentina.

DESCRIPCIÓN Y USO DEL EQUIPO

El equipo consta de tres partes: un disparador en el nido, un accionador del disparador de la cámara fotográfica y un desactivador del equipo.

Disparador en el nido

Para armarlo utilizamos un microinterruptor Neumann MPH-3R en la posición en que sus contactos no interrumpen el paso de la corriente eléctrica del circuito. Estos contactos están identificados en la base del microinterruptor con las letras NC (iniciales de posición “normalmente cerrada”). Este tipo de microinterruptor tiene un brazo de 10 cm de largo al cual le unimos la base que sostiene el huevo (Fig. 1a). La base más el huevo tiene un peso que permite mantener a los contactos del microinterruptor separados (i.e., el microinterruptor en la posición abierta). Así, cuando se retira el huevo, el microinterruptor vuelve a su posición normal (i.e., cerrado), alimentando un electroimán que acciona el disparador de la cámara fotográfica (ver más abajo). Construimos con madera un soporte para el nido (un nido abandonado) y el microinterruptor (Fig. 1a).

Accionador del disparador de la cámara fotográfica

Para accionar el disparador de la cámara fotográfica empleamos un electroimán de los comúnmente utilizados en las cerraduras eléctricas de las puertas de los automóviles. Ar-

![Diagrama del equipo electromecánico]

Figura 1. Esquema del equipo electromecánico para identificar depredadores de huevos en nidos artificiales. El esquema muestra la ubicación de los componentes que forman el disparador en el nido (a), el accionador del disparador de la cámara fotográfica y el desactivador del equipo (b).
mamos una caja de madera para proteger la cámara fotográfica y el electroimán. Ubicamos el electroimán de forma tal que su brazo extensible se apoyara sobre el disparador de la cámara (Fig. 1b).

Desactivador del equipo

Este elemento es necesario porque una vez que el nido fue depredado el circuito queda alimentando el electroimán, por lo que se consumiría la carga de la batería. Esta parte se arma con un motor para aeromodelismo, el cual lleva adosada una leva al eje, y un microinterruptor Neumann Serie N4C en su posición normalmente cerrada (la característica de este microinterruptor es que una vez accionado no retorna a su posición original; i.e., queda permanentemente en su posición abierta). Estos dos elementos se ubican dentro de la caja para el accionador de forma tal que la leva del motor quede perpendicular al brazo del microinterruptor (Fig. 1b).

Circuito eléctrico

En la figura 2 se observan las conexiones de los componentes antes mencionados. Si bien el electroimán fue desarrollado para funcionar con una fuente de alimentación de 12 voltios, actúa correctamente con una batería de 9 voltios. Es útil incorporar un interruptor general del circuito para facilitar la instalación del equipo en el campo.

![Diagrama del circuito eléctrico del equipo electromecánico para identificar depredadores de huevos en nidos artificiales.](image)

Tabla 1. Depredadores de huevos en nidos artificiales identificados con el equipo electromecánico en la Reserva de la Biosfera de Nacuñán, Mendoza, Argentina, entre 1997 y 1999 (a partir de Mezquida 2000).

<table>
<thead>
<tr>
<th>Especie</th>
<th>Clase y Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milvago chimango</td>
<td>Aves, Falconidae</td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>Aves, Strigidae</td>
</tr>
<tr>
<td>Pseudoseisura lophotes</td>
<td>Aves, Furnariidae</td>
</tr>
<tr>
<td>Upucerthia certhioides</td>
<td>Aves, Furnariidae</td>
</tr>
<tr>
<td>Galictis cuja</td>
<td>Mammalia, Mustelidae</td>
</tr>
</tbody>
</table>

Activación del equipo

Una vez instalado el equipo en el lugar donde se quiere identificar a las especies depredadoras de nidadas, debe colocarse el interruptor general en NO y luego poner un huevo sobre la base del disparador en el nido, lo cual inactiva el circuito eléctrico. El paso siguiente es ubicar la leva del desactivador en una posición tal que, al terminar el primer giro del motor, golpee el brazo del microinterruptor N4C (Fig. 1b), cortando la alimentación del equipo. Posteriormente, se extiende el brazo del electroimán hasta que quede en contacto con el disparador de la cámara y finalmente se coloca el interruptor general en SI.

Ejemplo de uso del equipo

Durante la primavera y el verano de 1997-1998 y de 1998-1999 probamos el equipo electromecánico para tomar fotografías en la Reserva de la Biosfera de Nacuñán (34°03’S, 67°54’O), provincia de Mendoza, Argentina (diversos aspectos del área de estudio se describen en Marone et al. 2000). Sobre el soporte del nido (Fig. 1a) colocamos un nido abandonado de tipo taza (diámetro externo: 8–10 cm) con un huevo fresco de codorniz (Coturnix sp.) en su interior. Ubicamos el nido a una altura de 1–2 m, en árboles y arbustos comúnmente utilizados como sitio de nidificación por las aves en la reserva (Mezquida 2000). La instalación y activación del equipo no llevó más de 5–10 min. La cámara fotográfica utilizada fue una cámara compacta económica con flash electrónico con sensor incorporado (i.e., se dispura únicamente cuando las condiciones de luz lo requieren). La distancia entre el nido y la cámara fue de 1.3–1.5 m. Realizamos visitas
regulares (cada 1–3 días) para verificar el estado del huevo y del equipo fotográfico. Cuando el huevo fue depredado, lo reemplazamos por uno nuevo. Después de 3–4 eventos de depredación consecutivos, o pasados 10–15 días en los que no se observó ninguno, trasladamos el equipo a otra zona.

Con este equipo para tomar fotografías identificamos cinco especies de depredadores de nidadas en la Reserva de Nacuñán (Tabla 1; para más detalles ver Mezquida 2000). El elenco de especies identificadas sugiere que las aves son los principales depredadores de nidadas en Nacuñán. Las fotografías mostraron algunas especies que son conocidas depredadoras de huevos, como *Pseudoseisura lophotes* y *Milvago chimango*, pero también permitió identificar a algunas que no se conocía que realizan dicha actividad, como *Upucerthia certhioides*. La presencia de un nido activo de esta especie en las proximidades del sitio donde instalamos el disparador en el nido del equipo podría indicar la capacidad de *U. certhioides* para destruir nidos de posibles competidores, como ha sido observado en otras especies de aves (Belles-Isles y Picman 1986, Gardner 1998). Estos resultados enfatizan la necesidad de intensificar el reconocimiento de las especies que pueden participar en el ensamblaje de depredadores de nidadas, para comprender mejor las estrategias reproductivas de las aves en respuesta a este importante factor de mortalidad.

DISCUSIÓN

La principal característica de este equipo es su bajo costo (actualmente menos de US$ 30, excluyendo la cámara fotográfica y la batería). Si se tiene en cuenta la cámara fotográfica, el costo variará dependiendo de las prestaciones de la misma (e.g., autfoco, sensor del flash, impresión de fecha y hora). Otra ventaja es que funciona adecuadamente con una batería de 9 voltios, cuyo tamaño es pequeño y su uso comercial favorece tanto que el precio sea menor que el de otras pilas de mayor voltaje, como que sea fácil de conseguir. Por último, el circuito eléctrico es de sencilla construcción. Si la cámara utilizada no posee registro automático de fecha y hora, se puede colocar un reloj en las cercanías del nido para identificar el horario en el que ocurre el evento de depredación (e.g., Picman 1987).

Nuestra experiencia al utilizar el equipo en el campo nos permite indicar algunas precauciones. Una de las causas habituales de activación del equipo sin la presencia de un depredador fue el desplazamiento del huevo debido a las condiciones meteorológicas. Para minimizar este efecto recomendamos fijar bien el soporte del disparador en el nido y evitar colocarlo en ramas finas y en plantas muy flexibles. Dependiendo de la longitud del brazo y del peso de la base que sostiene al huevo (Fig. 1a), ocasionalmente puede ocurrir que al retirarse el huevo el microinterruptor MPH-3R no se active (i.e., se quede en la posición abierta). En este caso, se puede pegar un pequeño trozo de hilo al huevo y pasarlo por debajo de la base que lo sostiene, para asegurarse que el microinterruptor se accione cuando el huevo es retirado. Una causa por la que se pueden obtener fotografías mal enfocadas es la vibración producida por el electroimán al accionar el disparador de la cámara. Por lo tanto, es conveniente sujetar bien la cámara sobre una superficie lisa y dura (en nuestro caso la base de la caja de madera). También es aconsejable orientar la cámara hacia el sur para evitar reflejos del sol.

El soporte de madera que sostiene al disparador en el nido (Fig. 1a) es poco visible debido a su tamaño y a que queda oculto por el propio nido. Sin embargo, la caja que contiene la cámara y el resto de los componentes eléctricos (Fig. 1b) resulta bastante conspicua, a pesar de que su tamaño se reduzca al mínimo y se camufla externamente. Si algunos depredadores aprenden a asociar la presencia de este tipo de objetos con el nido que hay cercano a ellos, su importancia como depredadores de nidadas podría ser sobrestimada (Picozzi 1975). También, la presencia de este objeto podría disuadir a algunos depredadores de acceder al nido (Hernández et al. 1997). Sin embargo, Pietz y Granfors (2000) no encontraron un efecto de las cámaras utilizadas para identificar depredadores en la tasa de depredación en nidos naturales. En nuestro caso, la magnitud de este posible efecto requiere un estudio más detallado.

En conclusión, el equipo electromecánico para identificar depredadores de nidadas descrito presenta varias ventajas, como su bajo costo, un montaje sencillo y el uso de una fuente de alimentación común, y ha mostrado ser un sistema útil para la identificación de depredadores.
AGRADECIMIENTOS

A Rodolfo R. Cueto por su colaboración en el desarrollo y armado del equipo. A Luis Marone, Javier Lopez de Casenave, Jesús Herranz y un revisor anónimo por sus comentarios y sugerencias. A Fernando Milesi por su ayuda para digitalizar las figuras. ETM agradece al Programa MUTIS del Instituto de Cooperación Iberoamericana (ICI) por la concesión de una beca para realizar investigación en Argentina. El trabajo de campo fue financiado por Sigma Xi, MAB-UNESCO, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, IADIZA-Provincia de Mendoza, CONICET y Agencia de Promoción Científica y Tecnológica (BID 802/OC-AR PICT N° 01-03187). Contribución número 22 del Grupo de Investigación de Ecología de Comunidades de Desierto (Ecodes).

BIBLIOGRAFÍA CITADA

BIOLOGÍA REPRODUCTIVA DEL ÁGUILA MORA (GERANOAETUS MELANOLEUCUS) EN LA PATAGONIA SUR, ARGENTINA

MIGUEL D. SAGGESE1,2 y EDUARDO R. DE LUCCA1

2 Dirección actual: The Raptor Center, College of Veterinary Medicine, University of Minnesota. 1920 Fitch Ave., St. Paul, EEUU. midasa@ciudad.com.ar

RESUMEN.— La biología reproductiva de Geranoaetus melanoleucus fue estudiada en el departamento Deseado, provincia de Santa Cruz, entre septiembre de 1987 y enero de 1988. La temporada reproductiva se extendió, al menos, desde septiembre hasta fines de enero, cuando todos los pichones alcanzaron las ocho semanas de edad. Se encontraron seis parejas nidificando en un área de 130 km², con una densidad de una pareja cada 21.6 km². Todos los nidos estaban ubicados en paredones basálticos, entre 2.8 y 20 m (promedio 8.99 m) de altura. Algunas parejas tenían nidos alternativos en su territorio de nidificación. La postura promedio para seis nidos fue de 2.5 huevos. El período de incubación medido en tres nidos tuvo un rango de 37 a 42 días. La eclosión ocurrió entre el 7 y el 22 de noviembre, con un éxito de eclosión del 100%. Cinco de las seis parejas (83.3%) criaron exitosamente al menos un pichón. El éxito de cría fue de 1.67 pichones por pareja. Se describen las cópulas y el desarrollo de los pichones. Las Águilas Mora parecían tolerar a muchas especies, incluso a otras águilas, pero sufrían frecuentemente los ataques de Falco sparverius y Circus cinereus. Ataques de estas especies fueron también notados. La liebre europea (Lepus europaeus) fue la presa más aportada a los pichones en el nido.

PALABRAS CLAVE: Argentina, biología reproductiva, dieta, Geranoaetus melanoleucus, Patagonia, Santa Cruz.

ABSTRACT. BREEDING BIOLOGY OF GREY-EAGLE BUZZARD (GERANOAETUS MELANOLEUCUS) IN SOUTHERN PATAGONIA, ARGENTINA.—The breeding biology of Grey Eagle-Buzzard Geranoaetus melanoleucus was studied at Deseado department, Santa Cruz province, Argentina, between September 1987 and January 1988. The breeding period, as observed, extended at least from September to late January, when all birds reached an age of eight weeks. Six breeding pairs were found in 130 km², with a density of one pair per 21.6 km². All nests were placed in basaltic cliffs, between 2.8 and 20 m height (mean 8.99 m). Alternative nests were found for some pairs in their nesting range. Clutch size was 2.5 eggs for six pairs. Incubation period for three nesting pairs ranged between 37 and 42 days. Hatching occurred between November 7 and 22, with a hatching success of 100%. Five pairs out of six (83.3%) successfully raised at least one chick. Breeding success was 1.67 nestlings per pair. Four vocalizations were recorded for adults and two for nestlings. Mating and nestling development are described. Eagles appeared to be tolerant to some raptors in the area, including other eagles, but suffered the attacks of Falco sparverius and Circus cinereus. Attacks of eagles upon these raptors were also noted. European hare (Lepus europaeus) was the main prey brought to the nestlings.

KEY WORDS: Argentina, breeding biology, diet, Geranoaetus melanoleucus, Patagonia, Santa Cruz.

numerosos aspectos de su biología reproductiva, tales como la duración del ciclo reproductivo, la cópula, el tamaño de la puesta, el éxito de eclosión, el período de incubación, el desarrollo de los pichones, entre otros, siguen sin conocerse.

Los objetivos de este trabajo fueron: (1) estudiar los aspectos básicos de la nidificación del Águila Mora en la Patagonia sur (temporada reproductiva, densidad y sitios de nidificación, nidos, postura, éxito de eclosión y de cría); (2) obtener información sobre el crecimiento de los pichones y las presas aportadas por los adultos durante esta etapa; y (3) describir el comportamiento de los adultos y de los pichones durante la temporada reproductiva.

ÁREA DE ESTUDIO

El estudio se realizó entre el 20 de septiembre de 1987 y el 5 de enero de 1988 (primavera y principios de verano) en la estancia El Cuadro (47°30′S, 68°O, departamento Deseado, provincia de Santa Cruz). La estancia tiene una superficie de 22 500 ha y limita hacia el sur con el Monumento Natural Bosques Petrificados (dependiente de la Administración de Parques Nacionales), al cual ha sido recientemente anexada. La principal actividad económica en la estancia era la cría extensiva de ovinos, con una carga animal de aproximadamente 0.1 animales por hectárea, mostrando los campos evidencias de sobrepastoreo.

Fitogeográficamente, la región corresponde al Distrito Patagónico Central de la Provincia Patagónica (Cabrera 1976). El área se caracteriza por la sucesión de mesetas planas que se precipitan en barrancos hacia amplios valles y cañadones. En algunas de estas depresiones las aguas de vertientes forman lagunas y veeblas. En la base de los barrancos, valles y cañadones se suelen encontrar agrupaciones arbustivas de algarrobo patagónico (Prosopis denudans), calafate (Berberis cuneata) y molle (Schinus sp.). En la parte superior de las mesetas está compuesta por azorella (Azorella sp.), coirón (Stipa sp.), colapiche (Nassauvia glomerulosa) y quilembay (Chuquiraga avellanadae), los cuales no suelen superar los 50 cm de altura. El clima en el área es templado–frio y seco, con temperaturas promedio anuales de 10°C. Los vientos predominan del oeste y suelen superar los 80 km/h. Desde septiembre hasta enero la cantidad de horas de luz varió entre 13 y 17 h.

MÉTODOS

Con la ayuda de fotografías aéreas (escala 1:60 000) y de mapas de la zona se definió un área de estudio de 13 000 ha donde se buscaron nidos activos en las primeras semanas. En cada sitio de nidificación se registró la altura del paredón, la distancia del nido al suelo, presencia de otras plataformas de nidificación en desuso (nidos alternativos), diámetro, altura y orientación. Los nidos fueron observados en cada oportunidad desde la parte superior de los paredones basálticos o por medio de observaciones a distancia.

Los descensos a los nidos para las mediciones y descripción de los nidos y pichones se realizaron desde la parte superior de los paredones basálticos, utilizando técnicas de montañismo. Excepto el nido F, todos los nidos fueron visitados cada 4–8 días desde la postura hasta la finalización del estudio para determinar el tamaño de puesta, la duración de la incubación, el éxito de eclosión, y para obtener datos sobre alimentación y éxito de cría. En dos de los nidos (nidos B y C) se registró el crecimiento de cinco pichones cada cuatro días, tomando las siguientes medidas: longitud del ala (cuerda), de las rectrices centrales y del tarso, longitud del dedo medio con uña, del pico con cera y sin cera y longitud total aproximada (pichón en posición decúbito ventral), describiéndose también las características del plumaje. Se realizaron observaciones ad libitum (Lehner 1979) de las águilas durante las visitas a los nidos. Las observaciones fueron realizadas con prismáticos 7–10×50.

Las fechas de comienzo y finalización de los diferentes periodos (puesta, incubación, nacimiento y permanencia de los pichones en el nido) fueron estimadas para el total de las parejas sobre la base de los datos obtenidos en algunos nidos a través de las periódicas visitas a los mismos. El éxito de eclosión se define como el total de pichones nacidos sobre el número total de huevos puestos en los cinco nidos en los cuales pudo medirse este parámetro. El éxito de cría se define como el promedio del número de pichones (de una edad
de 45–60 días) por pareja presentes al finalizar el estudio.

Los datos de alimentación durante la etapa de pichones fueron obtenidos a partir de los restos de presas observados durante las visitas a los nidos B, C y E, y a partir de la identificación de los aportes de presas por parte de los adultos al nido A. Solo se incluyen los restos de presas hallados en los nidos y no los encontrados al pie de los mismos, evitando así incluir restos producidos en etapas anteriores al nacimiento de los pichones.

RESULTADOS

Temporada reproductiva

Al arribar al área de estudio a fines de septiembre, las parejas ya estaban formadas y los nidos construidos. En este período se observó a los individuos aportando pastos secos (amaíllos) al nido. Estos aportes también se registraron durante los períodos de incubación y de crianza de los pichones.

Entre fines de septiembre y mediados de octubre tuvo lugar la puesta. Hallamos parejas incubando entre fines de septiembre y el 22 de noviembre. Los pichones nacieron entre el 7 y el 22 de noviembre y permanecieron en el nido al menos hasta el 5 de enero, momento en que se abandonó el área. En total, el ciclo reproductivo del Águila Mora abarcaría en la Patagonia sur, al menos, hasta el 22 de enero, fecha en que el último pichón nacido tendría la edad de 8 semanas (tiempo estimado de abandonar el nido en base a lo observado en los otros nidos). En base a estos datos, la temporada de cría del Águila Mora tendría una duración de, al menos, 120 días (entre fines de septiembre y fines de enero).

Densidad y nidificación

Se halló un total de seis parejas nidificantes en un área total de 13 000 ha. No se observaron otras parejas de águilas en el área. Esto equivale a una densidad de una pareja cada 21.6 km². La distancia entre nidos fue, en promedio, de 6.62 km (rango 2.4–13 km).

Los seis nidos activos hallados se encontraban ubicados en salientes rocosas de paredones basálticos que enfrentaban amplios valles. La altura promedio de los paredones utilizados por las águilas fue de 21.6 km². La distancia entre nidos fue, en promedio, de 6.62 km (rango 2.4–13 km).

Los seis nidos activos hallados se encontraban ubicados en salientes rocosas de paredones basálticos que enfrentaban amplios valles. La altura promedio de los paredones utilizados por las águilas fue de 14.16 m (Tabla 1). La altura promedio desde los nidos a la base de los paredones fue de 8.99 m (Tabla 1). Todos los territorios de nidificación presentaban cuerpos de agua (lagunas temporarias, permanentes o mallines). En tres de los sitios de nidificación (nidos A, B y F) se verificó la existencia de nidos alternativos, los cuales eran también utilizados como posaderos (Tabla 1). Además, tres de los sitios de nidificación (nidos A, B y F) se verificó la existencia de nidos alternativos, los cuales eran también utilizados como posaderos (Tabla 1). Además, tres de los sitios de nidificación presentaban manchas blancas producto de las deyecciones de las águilas, siendo muy evidentes a gran distancia.

Los nidos eran estructuras grandes (Tabla 1), construidos con ramas de 0.5–3 cm de diámetro y de hasta 150 cm de largo. Estaban apoyados sobre las salientes. En su estructura se

<table>
<thead>
<tr>
<th>Nido</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>altura del paredón</td>
<td>25</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>altura del nido en el paredón</td>
<td>12.50</td>
<td>6.15</td>
<td>8.50</td>
<td>2.80</td>
<td>20.00</td>
<td>4.00</td>
</tr>
<tr>
<td>diámetro externo</td>
<td>-</td>
<td>1.8×0.8</td>
<td>1.3×0.8</td>
<td>-</td>
<td>1.4×1.5</td>
<td>-</td>
</tr>
<tr>
<td>diámetro interno</td>
<td>-</td>
<td>0.5×0.5</td>
<td>0.6×0.4</td>
<td>-</td>
<td>0.9×0.8</td>
<td>-</td>
</tr>
<tr>
<td>altura</td>
<td>-</td>
<td>0.4</td>
<td>0.9</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>orientación</td>
<td>E</td>
<td>SE</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>Número de huevos</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Número de pichones nacidos</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Número de pichones criados exitosamente</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

a La pareja tenía dos plataformas más en el paredón.

b La pareja tenía una plataforma a 2.3 m del nido y otra a 1.6 m.

c La pareja tenía otra plataforma a 3.7 m de altura.
encontraron también restos de presas, principalmente patas de liebre y egagrópilas. El interior o lecho estaba recubierto con pastos, secos y amarillos. Las características sanitarias variaban según la pareja. Dos nidos estaban muy infestados con insectos, larvas de moscas, muy sucios por las deyecciones; los restantes nidos, en cambio, se mantenían más limpios. Tres de ellos parecían estar construidos sobre nidos viejos ya utilizados previamente. Todos ellos eran muy visibles desde grandes distancias.

El tamaño de puesta promedio para los seis nidos fue de 2.5 huevos (entre 2 y 3; Tabla 1). Los huevos eran de color blanco. La pareja del nido A comenzó la incubación el 8 de octubre, naciendo el último pichón el 13 de noviembre (período de incubación de 37 días). A la pareja del nido B se la encontró incubando el 12 de octubre; el primer pichón nació el 19 noviembre y el último el 22 (período de incubación entre 39 y 42 días). El nido E contenía un huevo el 2 de octubre. El primer pichón nació el 7 de noviembre y el último el 10 de noviembre. Desde que se observó el primer huevo hasta el nacimiento del primer pichón transcurrieron 37 días, y 40 días hasta el nacimiento del último. Para los tres nidos estudiados, entonces, el período de incubación osciló entre 37 y 42 días.

De un total de seis nidos, se pudo determinar el éxito de eclosión para cinco de ellos (nidos A, B, C, D y E), siendo éste de 100%. Para estos cinco nidos, el éxito de cría promedio fue de dos pichones por pareja (Tabla 1). El nido F fue visitado mucho después de la eclosión de los huevos en los restantes nidos. No se observó que hubiera pichones en el nido, tampoco huevos y no pudo observarse a los adultos en las cercanías. Para el total de las parejas (n = 6), entonces, el éxito de cría promedio fue de 1.67 pichones por pareja. En los nidos A, C y D, durante los primeros días de vida de los pichones, se registró fratricidio (De Lucca y Saggese 1995).

Pichones

Los pichones de Águila Mora nacieron asincrónicamente. El nacimiento de uno de los pichones duró 18 h (desde que comenzó a romper la cáscara hasta que se liberó totalmente). El día del nacimiento los pichones tenían los ojos abiertos. Presentaban un plumón de color blanco. Las comisuras, el área periorcular y la cera eran de color amarillo verdoso, la piel era rosada y las patas eran de color amarillo anaranjado. Durante los primeros días, algunos estaban sucios, con restos de comida en la cabeza y el cuerpo. En algunos nidos se encontraban restos de presas y abundantes moscas.

<table>
<thead>
<tr>
<th>Edad</th>
<th>Pico sin cera H</th>
<th>Pico sin cera Ma</th>
<th>Pico sin cera Mb</th>
<th>Pico con cera H</th>
<th>Pico con cera Ma</th>
<th>Pico con cera Mb</th>
<th>Dedo medio H</th>
<th>Dedo medio Ma</th>
<th>Dedo medio Mb</th>
<th>Timoneras H</th>
<th>Timoneras Ma</th>
<th>Timoneras Mb</th>
<th>Tarso H</th>
<th>Tarso Ma</th>
<th>Tarso Mb</th>
<th>Ala H</th>
<th>Ala Ma</th>
<th>Ala Mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
<td>10.4</td>
<td>16.7</td>
<td>13.5</td>
<td>12.7</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.6</td>
<td>10.7</td>
<td>17.6</td>
<td>19.2</td>
<td>14</td>
<td>16.8</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
<td>21</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.0</td>
<td>13.0</td>
<td>22.5</td>
<td>22.1</td>
<td>20.3</td>
<td>22.5</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14.6</td>
<td>23.7</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.6</td>
<td>24.4</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14.6</td>
<td>24.4</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15.3</td>
<td>25.1</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16.4</td>
<td>28.2</td>
<td>37.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>25.1</td>
<td>37.3</td>
<td></td>
<td>90.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>25.1</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>27.7</td>
<td>42.6</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>26.0</td>
<td>39.2</td>
<td>91.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94.2</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>26.3</td>
<td>39.6</td>
<td>96.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94.4</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>30.1</td>
<td>43.3</td>
<td>39.4</td>
<td>124.0</td>
<td>100.4</td>
<td>94.6</td>
<td>265</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>26.9</td>
<td>42.2</td>
<td></td>
<td>94.8</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>30.7</td>
<td>48.8</td>
<td>103.5</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Medidas de los pichones de *Geranoaetus melanoleucus* del nido B en la Patagonia sur, a diferentes edades (expresadas en días). Todas las medidas en mm. H: Hembra; Ma y Mb: Machos.
y larvas. En dos nidos se encontraron garrapatas (Acarinae) en las axilas de los pichones. El plumón de alas y patas tenía en algunos pichones un leve tinte ocraceo. A los 10 días el iris se tornó pardo. La membrana nictitante era de color celeste. El diente de huevo permaneció al menos hasta los 18-20 días. A los 17 días, aproximadamente, comenzaron a aparecer los canutos de las plumas de las alas. A los 20 días comenzaron a aparecer las plumas de la cola, escapulares y cubiertas; a los 22 días un plumón blanco y denso cubría todo el cuerpo. A los 25 días aparecieron plumas en el dorso, negras, con ápice castaño. También eran visibles plumas en el pecho. La cera era verdosa en algunos pichones y azul-verdosa en otros. A los 30 días ya presentaban plumas en la corona y alrededor del conducto auditivo, las escapulares, cubiertas y remeras bien desarrolladas, plumas negras con ápice canela en el lomo y, en los flancos del pecho, plumas canela y negro. El abdomen también se iba emplumando a esta edad. Hacia los 40-45 días presentaban el cuerpo bastante emplumado, siendo bien evidente el dimorfismo sexual, como sucede en otras rapaces dimórficas, completándolo definitivamente a los 55 días. La permanencia en el nido de los pichones para tres nidos fue de ocho semanas, observándosese abandono en uno de ellos (nido D) a esta edad. En las tablas 2 y 3 se proporcionan medidas de los pichones de dos nidos a diferentes edades.

En los nidos B, C y E, durante la crianza de los pichones, se encontró un total de 36 restos de presas (Tabla 4). En el nido A se registró un total de 48 aportes de presas durante el periodo de crianza del pichón en el nido, identificándose 21 ítems. En todos los casos, la liebre europea (Lepus europaeus) fue la presa más abundante en cuanto a número y biomasa, siendo la de los mamíferos la clase más representada. Del total de liebres halladas en los nidos (n = 25), unas 10 (40%) correspondían a gazapos. Tres de las aves fueron identificadas como pichones: dos paserinos y un pichón, aun con plumón, de Oreopholus ruficollis. Todas las lagartijas encontradas correspondían al género Liolaemus.

Comportamiento

Vocalizaciones.— A diferencia de lo que ocurre en la etapa no reproductiva, las águilas vocalizaban frecuentemente y en distintas circunstancias durante el ciclo reproductivo. Se registraron cuatro voces distintas en los adultos: (1) vocalización de cópula, emitida por machos y hembras durante las cópulas (ver más abajo), que se puede representar como un agudo, repetido y metálico “kiak-kiak-kiak”; (2) vocalización de alarma, emitida por ambos sexos durante encuentros agonísticos interespecíficos y también ante la presencia humana en cercanías del nido; un repetido y agudo “ka” o “kia” (“kakakakakaka” o “kiakakikakikia”) a razón de cuatro silabas por segundo y con una duración de 2-3 s; (3) vocalización de contacto, mayormente emitida por el macho durante los encuentros con la pareja (e.g., intercambio de alimentos, reemplazo durante la incubación y aproximación al nido), y que consiste en una vocalización grave que se podría reproducir como “uagh, kagh, kuagh”; y (4) vocalización cooperativa, registrada en una
Tabla 4. Restos de presas encontrados en tres nidos de Geranonetus melanoleucus y presas aportadas por adultos a otro nido, en la Patagonia sur.

<table>
<thead>
<tr>
<th>Mamíferos</th>
<th>Restos (%)</th>
<th>Aportes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepus europaeus</td>
<td>27.8</td>
<td>0.0</td>
</tr>
<tr>
<td>No determinados</td>
<td>41.7</td>
<td>52.4</td>
</tr>
<tr>
<td>Zaedthus piche</td>
<td>5.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Roedor no identificado</td>
<td>0.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Aves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichones</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>No determinados</td>
<td>11.1</td>
<td>14.3</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liolaemus sp.</td>
<td>5.6</td>
<td>19.0</td>
</tr>
<tr>
<td>Número total de items</td>
<td>36</td>
<td>21</td>
</tr>
</tbody>
</table>

sola oportunidad y posiblemente relacionada con la caza cooperativa, que se puede describir como un repetido y agudo “kuik, kuik, kuik”. Las voces de los pichones eran de dos tipos: (1) un agudo “fiiuuuuuu” emitido aparentemente con el fin de reclamar alimento cuando los adultos se encontraban ausentes del nido; y (2) un fuerte “chip-chip” emitido durante el nacimiento o ante la presencia de los investigadores.

Cópulas.— Se registraron cópulas en cinco oportunidades, así como dos intentos fallidos de las parejas de los nidos A y B. En una oportunidad, el intervalo entre dos cópulas fue de 30 min. La duración promedio de las mismas fue de 12 s (rango 6–20; n = 3). Ambos miembros de la pareja vocalizaban (ver más arriba). Todas las cópulas e intentos de cópula fueron realizados en salientes rocosos de los nidos, en cercanías del nido. En una de las oportunidades, previamente a la cópula, la pareja realizó despliegues aéreos durante 30 min y, tras permanecer 18 min posadas, copularon. Uno de los intentos fallidos se debió a la intensidad del viento que hizo perder el equilibrio al macho recién posado sobre la hembra.

Agresión y defensa de los nidos.— La actitud de las águilas ante la presencia de aves rapaces frente a los paredones de nidificación fue, en general, de tolerancia, siendo escasos los ataque hacia individuos de otras especies. No se observaron interacciones agonísticas con los Caranchos (Polyborus plancus), Aguiluchos Comunes (Buteo polyosoma) y Halcones Peregrinos (Falco peregrinus) que volaban sobre el sitio de nidificación de la pareja del nido A. Estas rapaces fueron observadas en el área en una o dos oportunidades y no nidificaban en la misma. En el territorio de esta pareja se registraron frecuentes interacciones agonísticas con Gavilanes Cenicientos (Circus cinereus) y Halconcitos Colorados (Falco sparverius), que nidificaban en el mismo paredón y en el territorio de nidificación de las águilas, respectivamente. Principalmente se trató de ataques de individuos de estas especies a las águilas, siendo raro lo contrario. La respuesta de las águilas frente a estos ataques fue distinta según estuvieran posadas o en vuelo. En este último caso, intentaban ganar altura sobre su atacante, girando la cabeza hacia éste para defenderse con su pico. Estando posadas, se agachaban o bien intentaban defenderse por medio de sus garras. En algunas oportunidades eran obligadas a dejar su posadero. Otras especies que atacaban frecuentemente a las águilas eran Teros Comunes (Vanellus chilensis), Golondrinas Negras (Progne modesta) que nidificaban en el mismo paredón de las águilas y otros paseíformes. No se observaron ataques entre águilas. En dos oportunidades se observaron águilas volando sobre el territorio de nidificación de la pareja del nido A y solo en una oportunidad uno de los miembros se limitó a escoltar al intruso fuera del mismo.

La actitud de las Águilas frente a la presencia de humanos en las cercanías del nido fue variable. Las parejas de los nidos A, B, D y E se mantenían volando sobre el paredón, vocalizando, pero sin aproximarse a los observadores, mientras que la pareja del nido C, al descender los observadores a los nidos y retirar los pichones del mismo, realizaban ataques y vuelos rasantes en picada.

DISCUSIÓN

La densidad de nidificación del Águila Mora en la Patagonia sur fue similar a las densidades halladas por Hiraldo et al. (1995) en la Patagonia norte, tanto en general (1 pareja/19 km²) como en terrenos montañosos (1 pareja/22.7 km²), aunque menor a la observada en planicies (1 pareja/13.2 km²).

En relación con el período de incubación, tanto Housse (1945) como Jiménez y Jaksic (1990) mencionan un período de 30 días. Los resultados de este estudio difieren considerablemente de los de estos autores. Especies
relacionadas al género Geranoaetus, tales como Buteogallus anthracinus, Buteogallus meridionalis, Buteogallus aequinoctialis y Parabuteo unicinctus (Amadon 1982), así como especies del género Buteo, también presentan períodos de incubación superiores a los 30 días (Johnsgard 1990, del Hoyo et al. 1994). La incubación en las rapaces tiene un comienzo paulatino, incrementándose gradualmente el tiempo que los adultos permanecen incubando los huevos, pudiendo comenzar este incremento a partir de la puesta del primero, del segundo o de los posteriores huevos (Newton 1979) y con intervalos de postura variables, pudiendo esto explicar el amplio rango del período de incubación que esta especie presentaria.

El éxito de eclosión observado en la Patagonia sur (100% para los nidos en que pudo ser medido) y el éxito de cría (1.67 pichones por pareja) son altos para un buteónino, y mayores a los de las águilas estudiadas en la Patagonia norte por Hiraldo et al. (1995) (1.1 pichones por pareja). El tamaño de los nidos y el tamaño de la puesta observados en este estudio también fueron mayores a los mencionados por estos autores.

En cuanto a la alimentación, los datos sobre las presas aportadas durante la etapa de pichones en el nido coinciden con los hallados por Hiraldo et al. (1995), donde las liebres europeas constituyeron el mayor porcentaje de la dieta de las águilas adultas.

Los pichones permanecieron en el nido hasta las ocho semanas. Housse (1945) señala que abandonan el nido a las seis semanas, mientras que Jiménez y Jaksic (1990) mencionan que esto se produce a las siete semanas. A las 6–7 semanas los pichones no tienen su plumaje totalmente completo. En muchas rapaces los jóvenes comienzan a desplazarse por las ramas o paredones donde están ubicados los nidos antes de finalizar su desarrollo (Brown y Amadon 1968, Newton 1979). En ocasiones, estos pueden caer del nido, pero son igualmente atendidos y alimentados por sus padres. Es posible que estas referencias acerca del abandono del nido en forma temprana se correspondan con esto. En otros nidos de Águila Mora observados en Patagonia (no incluidos en este estudio), se ha constatado el abandono temprano de los nidos por parte de los pichones ante la presencia de los observadores que visitan el nido y la subsecuente alimentación de los pichones en el suelo por parte de los adultos (Saggese y De Lucca, datos no publicados).

De acuerdo con Olrog (1979b) y Jiménez y Jaksic (1990), el Águila Mora ha disminuido su tamaño poblacional en numerosas áreas en Argentina, debido a la intoxicación secundaria de estas aves con cebos envenenados con estricnina destinados a combatir a los zorros colorados. Sin embargo, Hiraldo et al. (1995) señalan que son todavía abundantes en la Patagonia norte y mencionan, además, un cambio en la actitud con respecto al uso de estricnina y un mejor conocimiento del control que ejercen estas aves sobre los roedores y lagomorfos. Estos últimos son muy abundantes en la Patagonia y son considerados plagas por los ganaderos (Bonino 1986). Estas diferencias probablemente reflejan la variabilidad local en el uso de estricnina, el estado de los campos (activos o inactivos) y la actitud de la gente frente a las águilas. En el sur patagónico son frecuentes los ataque a los nidos de las águilas por parte de los rancheros, y el uso de estricnina sigue siendo común en muchos campos, incluso en campos vecinos a El Cuadro. El relevamiento de un mayor número de áreas permitirá tener una idea más acabada del estado poblacional y del verdadero rol de las amenazas que sufren las Águilas Moras en la Patagonia.

AGRADECIMIENTOS
BIBLIOGRAFÍA CITADA

OLROG CC (1979a) Nueva lista de la avifauna argentina. Opera Lilloana 27:1–324
OLROG CC (1979b) Alarmaante escasez de rapaces en el sur argentino. Hornero 12:82–84

HOUSS R (1945) Las aves de Chile en su clasificación moderna: su vida y costumbres. Ediciones de la Universidad de Chile, Santiago
NUEVOS REGISTROS DE DISTRIBUCIÓN Y NIDIFICACIÓN DEL AGUILUCHO ANDINO (BUTEO ALBIGULA) EN LA PATAGONIA ARGENTINA

MARIANO GELAIN 1, VALERIA OJEDA 2, ANA TREJO 2,4, LORENZO SYMPSON 3, GUILLERMO AMICO 2 y ROMINA VIDAL RUSSELL 2

1 Lanín 3541, Barrio Melipal, 8400 San Carlos de Bariloche, Río Negro, Argentina.
2 Centro Regional Universitario Bariloche, Univ. Nac. del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina.
3 Sociedad Naturalista Andino Patagónica, Pasaje Juramento 190 3°1, 8400 San Carlos de Bariloche, Río Negro, Argentina.
4 strix@bariloche.com.ar

RESUMEN.— Presentamos nuevos datos acerca de la distribución del Aguilucho Andino (Buteo albigula) en el noroeste de la Patagonia y de la densidad de parejas reproductivas en las cercanías de la ciudad de San Carlos de Bariloche, Río Negro. Reportamos 15 registros nuevos con fechas de avistaje para la región. Encontramos cuatro territorios reproductivos en un área de aproximadamente 8500 ha. Todos los territorios se encontraban en bosques de Nothofagus spp. La especie siempre fue registrada entre septiembre y abril, lo que confirma su carácter migratorio.

PALABRAS CLAVE: Aguilucho Andino, Buteo albigula, distribución, nidificación, Patagonia.

ABSTRACT. NEW RECORDS ON DISTRIBUTION AND NESTING OF WHITE-THROATED HAWK (BUTEO ALBIGULA) IN ARGENTINE PATAGONIA.— We present here new data on the distribution and on the density of nesting pairs of the White-throated Hawk (Buteo albigula) in Argentine Patagonia. We report 15 new records with date for this region. We found four nesting territories in an area of approximately 8500 ha on the outskirts of the city of San Carlos de Bariloche, Río Negro. All the nesting territories were within Nothofagus spp. forests. The species was recorded between September and April, confirming its migratory status.

KEY WORDS: Buteo albigula, distribution, nesting, Patagonia, White-throated Hawk.

Recibido 26 abril 2001, aceptado 21 septiembre 2001

El Aguilucho Andino (Buteo albigula) (Fig. 1) se distribuye en América del Sur a ambos lados de la Cordillera de los Andes, desde el noroeste de Venezuela hasta el sur de Chile y de Argentina. Tanto su estatus taxonómico como el migratorio han sido confusos desde su descripción (Pavez 2000), que fue hecha a partir de ejemplares provenientes de Valdivia, Chile. Posteriormente, esta especie ha sido confundida con Buteo polyosoma (Philippi 1942) o con Buteo platypterus (Philippi 1943). Algunos autores la consideran como una subespecie de Buteo brachyurus (Rand 1960, Brown y Amadon 1989), mientras que otros la consideran como una especie válida (Goodall et al. 1951, Stresemann 1959, Johnson 1965, Olrog 1979).

En este trabajo se presentan nuevas localidades y fechas de avistaje de Buteo albigula en el noroeste de la Patagonia argentina, comple-
mentando las ya enumeradas por Casas y Gelain (1995) y aportando a laclarificación de la distribución geográfica y el estatus migratorio de esta especie. Además, se brindan datos sobre densidad poblacional y nidificación en los alrededores de la ciudad de San Carlos de Bariloche, provincia de Río Negro, en el Parque Nacional Nahuel Huapi.

Tomando en cuenta los datos del presente trabajo (Tabla 1) y los aportados por Casas y Gelain (1995), la distribución conocida de Buteo albigula hasta la fecha en la Patagonia argentina estaría comprendida entre las siguientes localidades: Lago Lolog, Neuquén (40°02’S, 71°22’O) al norte, Lago Krügger, Chubut (42°51’S, 71°48’O) al sur, y Paso Córdoba, Neuquén (40°35’S, 71°08’O) al este. El lago Krügger es también el punto extremo oeste. Todas las coordenadas fueron obtenidas con un geoposicionador satelital (Garmin 12 XL). Los ambientes donde se ha registrado esta especie son, en general, bosques dominados por Nothofagus spp. o sus periferias. Los avistajes presentados en este trabajo fueron efectuados en localidades situadas entre 330 y 1600 msnm, desde septiembre hasta abril en diferentes años. Estas fechas coinciden con las observaciones previas de Casas y Gelain (1995), y de Pavez (2000), quien observó migraciones de gran número de individuos en Chile central hacia el norte en los meses de marzo–abril y hacia el sur en octubre. Esto confirma el carácter migratorio de Buteo albigula.

Desde 1998 hemos localizado, al sur de la ciudad de San Carlos de Bariloche, cuatro territorios reproductivos de Buteo albigula que fueron utilizados año tras año, lo que nos ha permitido el seguimiento de siete nidos acti-

Tabla 1. Nuevos registros de Buteo albigula en el noroeste de la Patagonia.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Cantidad de individuos</th>
<th>Localidad (Departamento, Provincia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 1990</td>
<td>1 Adulto</td>
<td>Ea. Arroyo Verde (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>12 Dic 1993</td>
<td>2 Adultos</td>
<td>Ea. Arroyo Verde (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>20 Abr 1994</td>
<td>2 Adultos</td>
<td>Club Pehuenes, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>22 Mar 1997</td>
<td>1 Adulto</td>
<td>Ea. Arroyo Verde (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>16 Feb 1998</td>
<td>1 Adulto</td>
<td>Ao. Casa de Piedra, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>12 Nov 1999</td>
<td>2 Adultos</td>
<td>Ao. Casa de Piedra, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>11 Feb 2000</td>
<td>1 Adulto</td>
<td>Paso Córdoba (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>25 Mar 2000</td>
<td>1 Adulto</td>
<td>Ea. Arroyo Verde (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>20 Ene 2001</td>
<td>1 Adulto</td>
<td>Ea. Arroyo Verde (Los Lagos, Neuquén)</td>
</tr>
<tr>
<td>19–27 Mar 2001</td>
<td>1 Adulto y 1 juvenil</td>
<td>Ao. Casa de Piedra, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>14 Feb 2001</td>
<td>1 Adulto</td>
<td>Río Manso Inferior (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>Sep 1998 – Abr 2001</td>
<td>2 Parejas (y su cría cada año)</td>
<td>Valle del Challhuaco, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>Dic 2000 – Mar 2001</td>
<td>1 Pareja (y su cría)</td>
<td>SE del cerro Otto, Bariloche (Bariloche, Río Negro)</td>
</tr>
<tr>
<td>Ene-Mar 2001</td>
<td>1 Pareja (y su cría)</td>
<td>N del cerro Otto, Barrio Rancho Grande, Bariloche (Bariloche, Río Negro)</td>
</tr>
</tbody>
</table>

a, b, c, d Corresponden a los territorios aludidos en el texto y representados en la figura 2.
vos. Estos eran plataformas de ramas situadas a 13–22 m de altura sobre árboles (Trejo et al. 2001). La superficie correspondiente a un cuadrilátero arbitrario que abarca la totalidad de los territorios es de aproximadamente 8500 ha (Fig. 2). De esta superficie, un 16% corresponde a estepa y estepa altoandina y un 22% a urbanización. El 62% restante está cubierto por bosques dominados por *Nothofagus* spp., que son, en sentido amplio, el tipo de ambiente apto para la nidificación de esta especie, ya que tres de los territorios se hallaron asociados a bosques de *Nothofagus pumilio* (lenga) y el cuarto a un parche remanente de *Nothofagus dombeyi* (coihue), en los que se emplazaban los nidos. Esto significa que al menos cuatro parejas reproductivas se distribuían en una superficie boscosa de aproximadamente 5300 ha.

También observamos que las aves realizaban actividades de caza fuera del bosque, en peladeros o roqueríos cercanos. Las características de los sitios aledaños a los nidos eran desiguales. Dos de ellos (territorios 1 y 3; Fig. 2) eran sitios bastante prístinos y poco visitados por el hombre. El territorio 2 estaba en un sitio que había sido incendiado recientemente (1996) y los nidos de las dos últimas temporadas distaban sólo 15 y 80 m de una huella turística transitada por unos 40 vehículos diarios en verano, además de por gente a caballo, en motos y bicicletas. Por último, el territorio 4 se hallaba en un sitio bastante alterado; el nido estaba situado en medio de un parche arbóreo remanente inmerso en una matriz urbana, en la ladera de un cerro. En este caso, el árbol que sostenía al nido estaba al borde de una calle de tierra transitada por automóviles y peatones, y rodeado de varias casas habitadas, la más cercana, a unos 40 m de distancia.

Hasta el momento, la falta de información había conducido a pensar que *Buteo albigula* sería una especie localmente escasa y dudosa nidificación y residencia en la región patagónica. Nuestras observaciones confirman, en primer lugar, que el norte de la Patagonia andina es utilizado por la especie para reproducirse durante la primavera y el verano, migrando luego a otras latitudes climáticamente más benignas. También observamos que la especie no sería tan escasa localmente, según muestra la “densidad mínima” de territorios reproductivos que hemos detectado en un área acotada. Por último, destacamos como algo notable la tolerancia de la especie ante distintas condiciones derivadas de actividades humanas, según se desprende de su exitosa reproducción aún en sitios con un grado relativamente alto de alteración antrópica. Hasta qué punto esta tolerancia permite que la especie mantenga poblaciones exitosas es aún desconocido y de imprescindible estudio para tomar medidas que tiendan a preservar la especie.

GRADECIMIENTOS

Agradecemos a Carlos Bonilla, Mariano Costa y Roberto Orduna por su ayuda en tareas de campo.

BIBLIOGRAFÍA CITADA

Contreras JR (1977) La avifauna del valle del Río Collon-Cura, Prov. de Neuquén. *IDIA Supl. V.R.E.N.E.R.A.S.*

Figura 2. Localización de los cuatro territorios de nidificación de *Buteo albigula* (círculos numerados 1 a 4) en las cercanías de la ciudad de San Carlos de Bariloche, Río Negro, incluidos en un cuadrilátero arbitrario (en línea de puntos) de aproximadamente 8500 ha. Las líneas gruesas corresponden a caminos y rutas.

PHILIPPI B RA (1943) Notas sobre aves chilenas. Boletín del Museo Nacional de Historia Natural 21:74

RAND AL (1960) Races of the Short-tailed Hawk, Buteo brachyurus. Auk 77:448–459

DIETA DEL AGUILUCHO LANGOSTERO (*BUTEO SWAINSONI*) EN SU ÁREA DE INVERNADA (LA PAMPA, ARGENTINA)

SONIA B. CANAVELLI 1,2, JUAN J. MACEDA 2 Y ANDREA C. BOSISIO 1

1INTA, EEA Paraná, CC 128, 3100 Paraná, Entre Ríos, Argentina.
2Departamento de Ciencias Naturales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. Av. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina.
3scana@parana.inta.gov.ar

Resumen.— Se describe la composición relativa de la dieta del Aguilucho Langostero (*Buteo swainsoni*) sobre la base del análisis de egagrópilas frescas colectadas en el NE de la provincia de La Pampa, Argentina. Las orugas (larvas de Lepidoptera) constituyeron el ítem alimenticio predominante en número de individuos mientras que, en volumen, el dominio fue compartido por dichas larvas y por tucuras (Orthoptera). Se discute la versatilidad de la dieta de los aguiluchos mientras están invernando en función de las diferencias espaciales y temporales en la composición de la misma.

Palabras clave: Aguilucho Langostero, Argentina, Buteo swainsoni, dieta, La Pampa, orugas, tucuras.

Abstract. Diet of Swainson’s Hawk (*Buteo swainsoni*) in its wintering grounds (La Pampa, Argentina).—The relative composition of wintering Swainson’s Hawk’s (*Buteo swainsoni*) diet is described based on the analysis of fresh pellets collected in NE La Pampa province, Argentina. Caterpillars (Lepidoptera larvae) constituted the predominant food item based on number of individuals while, in volume, both caterpillars and grasshoppers (Orthoptera) prevailed in the samples. Hawk’s diet versatility is discussed based on spatial and temporal differences in its composition.

Key words: Argentina, Buteo swainsoni, caterpillars, diet, grasshoppers, La Pampa, Swainson’s Hawk.

En el verano de 1997, como parte de un proyecto orientado a comprender y prevenir las mortandades masivas de Aguiluchos Langosteros ocurridas en la región pampeana (Zaccagnini et al. 1996), se colectaron egagrópilas en cuatro dormideros ubicados en el departamento Realicó, al noreste de la provincia de La Pampa. El área, naturalmente ocupada por pastizales de Poa spp. y Stipa spp. y por montes de caldén (Prosopis caldenia), se caracteriza actualmente por la presencia de campos de cultivo, pastizales bajos y salinos, y montes abiertos cultivados (principalmente eucalipto, Eucalyptus spp., y otras especies introducidas; Casagrande et al. 1980). Tres de los dormideros (al norte de Embajador Martini, 35°16’S, 64°16’O; al sur de Realicó, 35°10’S, 64°14’O y al NE de Ojeda, 35°14’S, 63°56’O) estaban en montes de eucalipto. El cuarto (al NE de Falucho, 35°08’S, 64°02’O) estaba en un monte de olmos (Ulmus pumila). Todos los dormideros estaban rodeados por lotes recientemente arados o cultivados con cultivos estivales (principalmente girasol y maíz), y/o por lotes con pasturas.

Las egagrópilas se colectaron frescas, en grupos de 10–25 egagrópilas por dormidero, y fueron secadas a temperatura ambiente, almacenándose secas. Los ítems de las distintas egagrópilas de cada dormidero fueron reunidos en una misma muestra. Cada muestra fue pesada y luego tamizada (a fin de eliminar material triturado no identificable), analizándose un 30% seleccionado al azar del total de la muestra. Con la ayuda de una lupa binocular, el material resultante se analizó cualitativa y cuantitativamente, determinándose el porcentaje del número de individuos totales y el porcentaje del volumen del total correspondiente a los distintos ítems. La estimación del número de individuos se realizó contabilizando el número de cabezas y mandíbulas (en el caso de larvas de lepidópteros) y el número de patas (para ortópteros y coleópteros) presentes en cada muestra. Con la colaboración experta de una entomóloga, los ítems hallados en las cuatro muestras se identificaron taxonómicamente hasta el nivel de orden y familia, cuando fue posible.

Se hallaron individuos correspondientes a los órdenes Lepidoptera, Orthoptera (familia Acrididae) y Coleoptera. El aporte principal en número de individuos, para todas las muestras, estuvo dado por el orden Lepidoptera (Fig. 1). No obstante, analizando el aporte en volumen de la muestra, se halló un mayor aporte relativo de ortópteros en las muestras correspondientes a los dormideros 1 y 3, mientras que en los dormideros 2 y 4 el mayor volumen relativo lo constituuyeron las orugas (Fig. 1).

Considerando las condiciones que enmarcaron el muestreo a campo y el análisis de las egagrópilas, los resultados deberían ser tomados solo como orientadores (y no absolutos) de la composición relativa de la dieta. La falta de replicación en el muestreo de cada dormidero, el muestreo no sistemático, el método utilizado para la recolección de las egagrópilas (en grupo) y su posterior análisis (fraccionando la muestra grupal) podrían producir una sobre o subestimación del aporte de los distintos ítems alimenticios a la dieta total, por lo que las relaciones entre los mismos podrían variar. No obstante, a pesar de estas limitaciones, se puede especular acerca de las diferencias espaciales y temporales que podían hallarse en la dieta de los aguiluchos mientras estén invernando, así como la importancia que cobrarían los distintos ítems de acuerdo a las variaciones en su disponibilidad.

Aunque la disponibilidad de los distintos ítems alimenticios no fue cuantificada en este estudio, es posible que los aguiluchos dependan de ciclos explosivos de disponibilidad de insectos típicos de las zonas templadas, tal como ocurre con otras aves rapaces diurnas migratorias (Newton 1979, Alerstam 1990). En particular, observaciones directas realizadas sobre grupos de aguiluchos alimentándose en la vecindad de los dormideros 2 y 4 permitirían explicar la predominancia extraordinaria de orugas sobre los otros ítems. El Aguilucho Langostero se caracteriza por utilizar lotes próximos a los dormideros para posarse en el suelo antes de entrar al dormidero y luego de la salida del mismo, a la mañana siguiente (Goldstein 1997, Canavelli 2000). El dormidero 2 estaba ubicado en una cortina de eucaliptos lindante con un lote de maíz infectado con la maleza “verdolaga” (Portulaca oleracea) y con orugas (Celerio lineata) que infectaban dicha maleza. Las plantas de maíz, de unos 60 cm de altura, estaban ampliamente dispersas en el lote debido a problemas con el nivel del agua, lo que generaba amplios manchones ocupados por la maleza. En estos manchones, el 23 de enero de 1997 se observaron (entre
las 10:40 y las 15:20 h) entre 100 y 300 aguiluchos que descendían y ascendían libremente del lote. Este comportamiento se observó nuevamente al día siguiente, luego del cual los aguiluchos abandonaron el lote y el dormidero lindante. Recorridas realizadas en el lote mostraron una ausencia total de orugas al cabo de dichos días.

El dormidero 4, en tanto, estaba ubicado en un monte de olmos lindante con un lote recién arado. En dicho lote, entre las 10:40 y las 12:00 h del 7 de marzo de 1997, se observaron entre 200 y 300 aguiluchos posados, acicalándose y también alimentándose de insectos mediante cortas caminatas y carreras (tipo “gallinácea”, como es mencionado en England et al. [1997]). Los aguiluchos utilizaron el dormidero durante tres días seguidos y luego lo abandonaron.

En el caso de los dormideros 1 y 3, el consumo abundante de tucuras registrado (en volumen) en las egagrópilas colectadas se correspondería con la dieta habitual de los aguiluchos cuando están invernando (que incluye a las tucuras como la principal presa, ver más arriba), no hallándose una relación evidente entre el uso de lotes lindantes al dormidero (determinado por observaciones directas) y la composición de las egagrópilas. De allí que, a diferencia de los casos anteriores, no sea posible inferir de manera directa el aprovechamiento de un aumento explosivo en la disponibilidad de insectos.

Los resultados de este estudio, además de constituir la primera referencia cuantitativa del aporte de las larvas de lepidóptera a la dieta de los aguiluchos en su área de invernada en Argentina, ofrecen información complementaria a la ya existente con relación a la versatilidad de la dieta de los aguiluchos cuando están invernando, dieta que incorporaría una amplia variedad de items alimenticios en función de su disponibilidad espacial y temporal. Como se observó en este trabajo, egagrópilas frescas colectadas el mismo día en dos dormideros diferentes, distantes aproximadamente 12 km en línea recta, estuvieron constituidas por items similares, pero con predominancia de tucuras en un caso (dormidero 3) y orugas en otro (dormidero 4). Esta observación coincide con lo observado por J Frana (com. pers.) en áreas agrícolas cercanas a Rafaela, Santa Fe.

Un análisis del uso de hábitat de los aguiluchos en su área de invernada (Canavelli 2000)

plantea que la flexibilidad en los hábitos de alimentación estaría reflejando la adaptación del Aguilucho Langostero a presas tempora-riamente abundantes, fácilmente capturables e impredecibles en espacio y tiempo, tal como ha sido demostrado para otras aves migratorias (Alerstam 1990, Sherry y Holmes 1995).

AGRADECIMIENTOS
A Scott Baker por la ayuda en la recolección de egagrópilas, a Brian Woodbridge y Mike Goldstein por información sobre el tratamiento de las egagrópilas, a Cristina González por el asesora-miento en el manejo de datos, a Adriana Ríos de Saluso por la identificación de insectos y a María Elena Zaccagnini por la colaboración en la ejecuc-ción de este estudio y la revisión del artículo. El mismo fue enriquecido gracias al aporte de Javier Lopez de Casenave y de dos revisores anónimos. El trabajo se desarrolló dentro del proyecto finan-ciado por el U. S. Fish and Wildlife Service, EEUU. El trabajo se desarrolló dentro del proyecto finan-ciado por el U. S. Fish and Wildlife Service, EEUU. El trabajo se desarrolló dentro del proyecto finan-ciado por el U. S. Fish and Wildlife Service, EEUU. El trabajo se desarrolló dentro del proyecto finan-ciado por el U. S. Fish and Wildlife Service, EEUU.

BIBLIOGRAFÍA CITADA
LITTLEFIELD CD (1973) Swainson’s hawks preying on fall armyworms. Southwestern Naturalist 17:433
MOUCHARD A (1996) Información básica sobre el aguilucho langostero y su conservación. Informe inédito, Asociación Ornitológica del Plata, Buenos Aires
CONFIRMACIÓN DE LA PRESENCIA DEL COLIBRÍ RUBÍ
(CHRYSOLAMPIS MOSQUITUS) EN ARGENTINA

GERMÁN PUGNALI 1 Y MARK PEARMAN 2

1 Aves Argentinas/Asociación Ornitológica del Plata. 25 de Mayo 749 2°6, C1002ABO Buenos Aires, Argentina. gpugnali@yahoo.com
2 San Blas 3985 3°7, 1407 Buenos Aires, Argentina.

RESUMEN.— Un macho juvenil del Colibrí Rubí (Chrysolampis mosquitus) fue descubierto en un jardín en Puerto Iguazú, Misiones, Argentina, el 11 de abril de 2001. Allí permaneció hasta el 1 de mayo de 2001, alimentándose en bebederos junto a otras ocho especies de picaflor. Durante este período, el individuo fue fotografiado y observado por varias personas. La especie es migrante en el estado de Paraná, Brasil. La presente observación constituye el primer registro confirmado de la especie para Argentina y para la provincia de Misiones, donde solo era conocida por un registro histórico vago, que involucraba a un espécimen perdido. Se describe la identificación y el comportamiento, y se discuten posibles razones de su presencia en Iguazú.

PALABRAS CLAVE: Argentina, Chrysolampis mosquitus, Misiones, Colibrí Rubí.

ABSTRACT. CONFIRMED PRESENCE OF RUBY-TOPAZ HUMMINGBIRD (CHRYSOLAMPIS MOSQUITUS) IN ARGENTINA.— A juvenile male Ruby-topaz Hummingbird (Chrysolampis mosquitus) was discovered in a garden of Puerto Iguazú, Misiones province, Argentina, on April 11, 2001, where it remained until May 1, feeding alongside other eight hummingbird species at well maintained feeders. During this period, the individual was photographed and watched by numerous observers. The species is a migrant in adjacent Paraná state, Brazil. The present sighting constitutes the first confirmed record for the species in Argentina and in Misiones province, where it was known only from a vague historical record involving a lost specimen. We describe the identification and behaviour, and discuss possible reasons of its occurrence at Iguazú.

KEY WORDS: Argentina, Chrysolampis mosquitus, Misiones, Ruby-topaz Hummingbird.

Durante la tarde del 11 de abril de 2001 (aproximadamente a las 18:00 h) se observó un ejemplar de Chrysolampis mosquitus (Linné 1758) en un jardín particular de la ciudad de Puerto Iguazú (25°35’S, 54°35’O), Departamento Iguazú, provincia de Misiones, Argentina. El lugar está ubicado en la periferia de la ciudad, en una zona residencial, rodeada de otras casas con jardines, y presenta en las cercanías tanto áreas abiertas como zonas de selva secundaria. Posee varias plantas con flores y bebederos para picaflor, donde es común que se convoquen varias especies de troquildos y otras aves nectarívoras. Se regresó a la zona en las mañanas del 12 y el 15 de abril junto a otros observadores, a distintas horas, y se encontró al individuo en todas las oportunidades, pudiendo ser fotografiado. El picaflor fue avistado nuevamente el 28 de abril de 2001 por N Bolzón, R Güller, R Castillo y JC Chébez en el mismo jardín (JC Chebez, com. pers.), siendo fotografiado por los dos primeros (Fig. 1). Fue observado por última vez el 1 de mayo de 2001 (R Castillo, com. pers.).

El tamaño del individuo observado era intermedio entre el de Amazilia versicolor y el de Hylocharis chrysura; su pico era corto (un poco más largo que la cabeza), levemente decurvo en la punta, de color negro. La frente y la corona eran parduscas en el centro, más pálidas en los laterales, y se levantaba dando una forma ligeramente triangular a la cabeza. Las plumas de la frente crecían hacia adelante del culmen, formando una extensión de plumas muy notable. El dorso era verde mate pardusco, con algunos reflejos verdes más brillantes en la nuca. La cara presentaba un punto blanuzco detrás del ojo, poco definido. Los auriculares eran parduscos y un lado de la cara sugería una línea malar oscura, que separaba...
un bigote blancuzco. La barba poseía algunas plumas color rubí, que formaban una punta que aparecía negra (salvo en luz favorable). Todo el resto ventral era de un color blanco sucio, casi grisáceo. En el pecho poseía dos entradas laterales de color verde (poco visibles), emergiendo como cuñas desde el frente de las alas, y sugiriendo la formación de un babero. La cola presentaba una forma redondeada al expandirla, mostrando ápices blancos en cada una de las tres rectrices externas (más pequeñas hacia el centro). Estas luego se hacían púrpura, formando una banda; la mitad basal era de color castaño. Las timoneras centrales eran verdes, más brillantes y cortas.

El individuo observado acudía a beber a intervalos regulares y luego se posaba en los arbustos cercanos a los bebederos, abriendo la cola en abanico. Al volar y alimentarse también abría la cola ampliamente, exhibiendo las notables puntas blancas en las rectrices externas. Se lo escuchó vocalizar en una oportunidad, aunque no se lo pudo grabar. Emitió una serie de notas cortas de alta frecuencia, con timbre y cadencia de insecto (“trríí trríí trríí”), entremezcladas con algunas notas más cortas. También se observaron interacciones (picoteos) con Chlorostilbon aureoventris y con Amazilia versicolor, algo común en muchas especies de picaflor.

Las características señaladas coinciden con las descripciones del juvenil de Chrysolampis mosquitus (Schuchmann 1999). La mancha gular, las entradas laterales del pecho y la asimetría en la coloración de la cara, sumado al hecho de que se lo escuchó cantar, sugirieron que se trataba de un macho comenzando a desarrollar la librea de adulto. El ave más parecida con la que se lo podría confundir es la hembra del Picaflor Copetón (Stephanoxis lalandi), de la cual se lo puede diferenciar por su pico levemente curvado, por las plumas que crecen sobre el culmen y, especialmente, por el hábito de volar y posarse con la cola bien abierta en abanico.

Chrysolampis mosquitus habita en regiones con vegetación de tipo sabana o arbustiva, en claros, zonas abiertas, jardines y áreas cultivadas (Schuchmann 1999). Es un especie marcadamente migratoria, ya que individuos anillados en el estado de Paraná (Brasil) fueron luego capturados en Espírito Santo y sur de Bahía (Sick 1993). Su distribución geográfica abarca desde el este de Panamá, Colombia, Venezuela, las Guyanas, el noreste y centro de Brasil y el este de Bolivia (Schuchmann 1999). En Brasil, Scherer Neto y Straube (1995) citan a la especie para Curitiba, Rolanda e Ilha do Mel, en el estado de Paraná, y Santa Catarina también cuenta con menciones en la literatura (do Rosário 1996). En Argentina, Dabbene (1910) menciona que la especie fue obtenida en Misiones por C Berg, sin mención de localidad, fecha u otro detalle. Esta cita es repetida por Chébez (1996), quien la lista entre las especies hipotéticas para Misiones. La piel no se ha hallado en el Museo Argentino de Ciencias Naturales (Buenos Aires) ni en ninguna otra colección en el país (Mazar Barnett y Pearman 2001).

El hecho de que las observaciones fueron en otoño (época post-reproductiva) y que se trataba de un individuo juvenil sugiere que el individuo era un vagante. No se descarta la posibilidad de que su llegada a estas latitudes se deba a la continua deforestación que sufre la selva paranaense, que favorece a especies de ambientes abiertos. Apoyando esta última hipótesis se puede sumar un registro novedoso para la provincia de Misiones de una especie de hábitos similares, Colibri serrirostris, efectuada en el mismo sitio (G Pugnali, obs. pers.).
Dado que a la especie *Sephanoides sephaniodes* se le ha asignado el nombre común Picaflor rubí (Navas et al. 1995), y la similitud de éste con el nombre vulgar de *Chrysolampis mosquitus*, se sugiere revisar esta nomenclatura en función de la presencia de esta última especie en el país.

AGRADECIMIENTOS

A la familia Castillo, propietaria del jardín, por su tradicional hospitalidad y simpatía hacia los observadores de aves. A Alberto Gurni, Roberto Güller y Herbert Schulz, quienes aportaron fotografías útiles para el registro. A Juan Mazar Barnett y Juan Carlos Chebez, por la revisión de la nota.

BIBLIOGRAFÍA CITADA

Do Rosário LA (1996) As aves em Santa Catarina: distribuição geográfica e meio ambiente. FATMA, Florianópolis

NUEVOS REGISTROS DEL AGUILUCHO COLA ROJIZA (BUTEO VENTRALIS) EN LA PATAGONIA ARGENTINA

MARIANO A. GELAIN 1 Y ANA TREJO 2

1 Lanín 3541, Barrio Melipal, 8400 Bariloche, Río Negro, Argentina.
2 Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, 8400 Bariloche, Río Negro, Argentina. strix@bariloche.com.ar

RESUMEN.— Presentamos nuevos datos acerca de la distribución del Aguilucho Cola Rojiza (Buteo ventralis) en el oeste de la Patagonia argentina. Se describe un avistaje en la provincia de Río Negro. Se señalan nuevas localidades en las provincias de Neuquén, Río Negro y Chubut, en las que la especie ha sido observada. La especie está asociada a ambientes boscosos, especialmente bosques puros o mixtos de Nothofagus spp.

PALABRAS CLAVE: Aguilucho Cola Rojiza, Buteo ventralis, distribución, Patagonia.

ABSTRACT. NEW RECORDS OF THE RUFOUS-TAILED HAWK (BUTEO VENTRALIS) IN ARGENTINE PATAGONIA.— We present new data on the distribution of the Rufous-tailed Hawk (Buteo ventralis) in western Argentine Patagonia. We describe a sighting in Río Negro province. We report new sites in Neuquén, Río Negro and Chubut provinces where this hawk has been observed. The species is associated to forests, especially pure or mixed Nothofagus spp. forests.

KEY WORDS: Buteo ventralis, distribution, Patagonia, Rufous-tailed Hawk.

El Aguilucho Cola Rojiza (Buteo ventralis) es una especie endémica de los ambientes cordilleranos del sur de América del Sur, tanto de Chile (Goodall et al. 1951, Johnson 1965) como de Argentina (Olrog 1979). Es considerada rara en todo su rango de distribución (Jaksic y Jiménez 1986, Úbeda y Grigera 1995) y, posiblemente debido a esto, su biología se desconoce casi por completo (Bierregaard 1998). Solo se han descubierto cuatro nidos, todos en Chile (Goodall et al. 1951, Johnson 1965, Figueroa et al. 2000). Se ha realizado una descripción bastante completa del plumaje de juveniles y adultos (Navas y Manghi 1991), y recientemente se publicó información sobre su alimentación (Figueroa et al. 2000).

El rango de distribución de este aguilucho en la Patagonia argentina no está claramente delimitado. Olrog (1979) lo cita para las provincias de Río Negro, Chubut, Santa Cruz y Tierra del Fuego. Otros autores (Narosky e Yzurieta 1987, Canevari et al. 1991, de la Peña y Rumboll 1998) incluyen a la provincia de Neuquén dentro de dicha distribución. Sin embargo, existen pocos registros, tanto de colección como de observación, y los ejemplares con localidad conocida mencionados en la literatura provienen de El Bolsón (41°56’S, 71°31’O) y Mallín Ahogado (41°50’S, 71°33’O), ambos al sudoeste de Río Negro, y de Epuyén (42°13’S, 71°22’O), en el noroeste de Chubut (Navas y Manghi 1991). La especie es mencionada para la zona sudoeste de la provincia de Río Negro (cuenca del río Manso superior y orilla sur del lago Mascardi, sin especificar el sitio) por Contreras et al. (1980), quienes la señalan como residente permanente y probablemente nidificante. Lamentablemente, en ninguno de estos registros se especifica el tipo de ambiente donde se observó el ave.

Dadas las escasas referencias publicadas de esta especie, detallamos observaciones realizadas en un sitio (41°37’S, 71°27’O) situado en cercanías del río Villegas, provincia de Río Negro, sobre la ruta Nacional 258 que une las ciudades de Bariloche y El Bolsón. Este sitio se encuentra en un valle de origen glacio-fluvial paralelo a la cordillera de los Andes, con orientación norte-sur, de ancho variable, flanqueado por montañas de pendientes abruptas. La altitud varía entre 450 msnm (en el fondo del valle) y 1800 msnm (cumbres). Las
laderas vegetadas alternan con promontorios rocosos. La vegetación dominante está formada por densos bosques secundarios monoespecíficos de ñire (Nothofagus antarctica), con una altura máxima de 8 m, y con individuos aislados y parches con otras plantas arbóreas como ciprés de la cordillera (Austrocedrus chilensis), maitén (Maytenus boaria), radal (Lomatia hirsuta) y notro (Embothrium coccineum), y plantas arbustivas como maqui (Aristotelia chilensis) y Berberis spp.

El 17 de marzo de 2001 observamos un individuo adulto alimentándose sobre una rama seca de ñire. Cuando la detectamos, el ave estaba consumiendo a la presa, que no pudimos identificar (aunque se trataba de un animal grande), de la que arrancaba trozos de carne muy roja. Gritó dos veces y luego voló hacia el oeste perdiéndose de vista. El plumaje de las partes dorsales era pardo oscuro, con una notable mancha blanca en la frente, cara acanalada con los lados del cuello pardos, garganta y pecho color ante, con estrías gruesas pardo oscuro más o menos dispersas en el resto de las partes ventrales, pero más nutritas en los flancos. Los calzones eran acanalados y las patas pardo amarillentas. Cuando el ave voló, pudimos ver las subalares pardas con notables manchas blanquecinas y la porción distal de las remígenes blanquecinas con el extremo pardo oscuro. Las alas eran largas y anchas, con las secundarias anchas y largas. La cola era larga y ancha, de color blanco sin bandas en su vista ventral.

El 20 de marzo, en el mismo sitio, observamos un adulto posado a media altura sobre una rama muy gruesa y seca, en un nire que crecía junto a un barranco, sobre la ladera de un cerro. Desde allí gritaba muy fuerte, emitiendo un “eeeeeiiiih”. Otro individuo, al que no pudimos ver, contestaba los gritos del primero. Tanto en esta oportunidad como en la anterior, observamos un Aguilucho Común (Buteo polyosoma) en las cercanías, pero no detectamos ninguna interacción interespecífica.

El 26 de marzo observamos, en el mismo sitio, a un individuo planeando silenciosamente a menos de 50 m de altura, de sur a norte. Al alejarse de nosotros batía las alas en forma pausada y profunda. El 7 de abril, en las cercanías, realizamos dos nuevos avistajes de un individuo volando a media altura, por debajo de las elevaciones que se encuentran al oeste de la ruta 258. En ambas ocasiones el ejemplar volaba en dirección norte-sur.

Con el fin de ampliar la distribución conocida en la Patagonia argentina, recopilamos las nuevas observaciones de la especie (Tabla 1). El ejemplar de Isla Victoria fue encontrado moribundo y su piel se perdió por mal estado de conservación (E Ramilo, com. pers.). Los datos registrados de este ejemplar (un adulto) son: 560 mm de longitud total, 235 mm de longitud de cola, y 1130 mm de envergadura. Este sería, en consecuencia, el primer individuo capturado en la provincia de Neuquén. Los registros conocidos hasta el momento confirman la presencia del Aguilucho Cola Roja-
za en Neuquén y establecen su distribución entre los 39°33’S, 71°27’O y los 42°53’S, 71°34’O. Si bien no conocemos ningún registro en Santa Cruz, la presencia de esta especie en Tierra del Fuego (Humphrey et al. 1970) hace suponer que está presente allí.

El Aguilucho Cola Rojiza está relacionado con ambientes boscosos y bordes de bosque, especialmente con bosques puros o mixtos de Nothofagus spp. (Ferguson-Lees y Christie 2001). Nuestros registros confirman este hecho e indican que se trata de una especie asociada, en general, a ambientes boscosos, aunque algo más plástica que la otra especie diagnosticada, en particular, a ambientes boscosos, sumada al desconocimiento sobre su biología, indican que esta especie puede ser particularmente sensible a las presiones que se ejercen sobre los ambientes que frecuentan.

AGRADECIMIENTOS

Los autores agradecen los datos aportados por Bernardita Bielsa, Mariano Costa, Carlos Ferrari, Ana Pérez, Eduardo Ramilo, Lorenzo Sympson y Félix Vidozo. También agradecemos a Ricardo Figueroa por sus valiosos comentarios.

BIBLIOGRAFÍA CITADA

FIGUEROA R, CORALES S Y LÓPEZ R (2001) Records of the White-throated Hawk (Buteo albigula), and notes on its hunting methods and movements in the Andes of Central-southern Chile. International Hawkwatcher 4:3–9
GOODALL JD, JOHNSON AW Y PHILLIPI RA (1951) Las aves de Chile, su conocimiento y sus costumbres. Volumen 2. Platt Establecimientos Gráficos, Buenos Aires
Este volumen continúa la serie de una obra de primera importancia en la ornitología mundial, conocida familiarmente como el HBW. Al igual que en los tomos anteriores, se discuten en él varias familias de aves, en este caso 10 familias ubicadas en los órdenes Strigiformes, Caprimulgiformes y Apodiformes. Los textos de las familias fueron redactados por conocidos especialistas y todas las especies tratadas están representadas en color en numerosas láminas de buena y pareja calidad. Además, enriquecen el texto numerosas fotografías de notable interés estético (pág. 101) o biológico (pág. 498). La bibliografía es exhaustiva, aunque no es sencillo rastrear cada una de las referencias.

Para casi todas las familias tratadas en este volumen del HBW existen ya monografías especiales, como para Caprimulgiformes 1 o Strigiformes 2. La familia Caprimulgidae, en particular, fue redactada en el HBW por el mismo Nigel Cleere. En lo que hace a bibliografía e información general, encuentro que el capítulo sobre caprimulgidos del HBW es mejor que la monografía, en particular en lo que hace a especies neotropicales. La monografía de König y colaboradores sobre lechu- zas ha sido bastante controvertida en su tratamiento sistemático, por lo que el capítulo del HBW, escrito por un equipo de tres especialistas, puede considerarse como una alternativa en este tema.

Para los picaflores Trochilidae no existe ninguna monografía reciente. Mientras subsista este vacío, el HBW puede ser la obra de referencia moderna más importante. Debe notarse, sin embargo, que la taxonomía de los troquilidos en el HBW está a veces alejada de la tradicional, con la división de extensos gé- neros como Amazilia en taxas menores. Desafortunadamente, los argumentos para justificar estos cambios no siempre se mencionan en el texto. La parte general de la familia fue escrita por un solo especialista (K. Schuchmann) pero las fichas para cada género y especie pertene- cen a nada menos que 18 autores. ¿Habrán concordado todos entre sí? Para esta familia no todas las fallas o errores en especies que conozco. Para Sephanoides sephanoides, por ejemplo, se menciona como principal área de inverna- ada al centro de Argentina. Tratándose de un ave conspicua y, además, abundante en su área de cría, la escasez de citas y especímenes invernales para esa región hacen presumir que estamos ante un error de información o de apreciación del autor de la ficha. En mi opinión, la principal área de inverna- da está en Chile. También para el dimorfismo sexual en esta especie existe una contradicción entre el texto de la ficha específica (correcto) y la leyenda (incorrecta) de la foto en la página 497.

Pero, obviamente, estas críticas son muy menores. El HBW sigue siendo una obra de referencia y consulta obligada.

Rosendo M. Fraga
Guýrá Paraguay, Cte. R. Franco 381, Asunción, Paraguay
“Aves amenazadas del mundo” (“Threatened birds of the world”) es sin lugar a dudas la versión más completa de un Libro Rojo publicada hasta el día de hoy. Los libros rojos fueron concebidos en 1963 por Peter Scott como un registro de la vida silvestre amenazada y sus grados de amenaza. Durante más de 15 años, la Unión Internacional para la Conservación de la Naturaleza y los Recursos Naturales (IUCN) publicó los libros rojos bajo la forma de cuadernillos o volúmenes anillados que no llegaban a ser, estrictamente hablando, libros. En el año 1980 apareció “Endangered birds of the world: the ICBP bird red data book”, que puede considerarse como el primer Libro Rojo de las aves. Este libro fue publicado por el International Council for Bird Preservation (ICBP), organización precursora de BirdLife International, e incluía información sobre 437 especies amenazadas. Este primer Libro Rojo fue seguido en 1988 por “Birds to watch: the ICBP world check-list of threatened birds”. En esta versión el número de especies bajo distintos grados de amenaza ya trepaba a 1029.

Uno de los problemas que surgieron a partir de la aparición de los libros rojos de distintos taxas fue la subjetividad de los criterios utilizados por los distintos autores al momento de asignar especies a las categorías de riesgo. El comienzo de la solución de este problema fue el trabajo de Mace y Lande. Estos autores propusieron una forma más objetiva para definir el riesgo de extinción que tenían las especies amenazadas. Para ello utilizaban criterios numéricos, aplicables a diferentes grupos, como el tamaño poblacional, la tasa a la cual la población declinaba y el rango de distribución de la especie. Estos criterios fueron rápidamente aceptados por numerosos grupos de especialistas y, luego de algunas revisiones, fueron adoptados en 1994 por la Asamblea General de IUCN. La clasificación de grados de amenaza adoptada por IUCN considera las siguientes categorías: especies extintas y extintas en estado silvestre, tres categorías de amenaza (en peligro crítico, en peligro y vulnerable), tres categorías de bajo riesgo (dependiente de la conservación, casi amenazado y de preocupación menor), una categoría para especies con datos insuficientes para su evaluación y una categoría para especies no evaluadas.

Casi simultáneamente con la adopción de aquellos criterios por la IUCN apareció “Birds to watch II: the world list of threatened birds”. Este nuevo Libro Rojo de las aves, publicado por BirdLife International, ya incorporaba los criterios para evaluar el riesgo de extinción de especies que recientemente había adoptado la IUCN e incluía una lista de 1111 especies amenazadas.

La nueva versión del Libro Rojo de las aves, recientemente publicada por BirdLife International, también ha sido elaborada teniendo en cuenta los últimos criterios adoptados por la IUCN y constituye, por la cantidad y calidad de su información, un avance sustancial respecto de las versiones anteriores. Este libro presenta información recolectada por una extensa red mundial de especialistas, que fue compilada y editada por un numeroso equipo dirigido por Alison Stattersfield y David Capper, y volcada en un manual (tapa dura, formato A4) de más de 850 páginas. El libro está dividido en dos partes: en la primera se describen sintéticamente los distintos riesgos de extinción, la forma de documentarlos, los criterios utilizados para asignar especies a distintas categorías de riesgo y cómo utilizar el libro; y en la segunda se analizan, caso por caso, tanto las especies globalmente amenazadas (1186 especies) como las de bajo riesgo (727 especies). También incluye una pequeña sección con información de especies con datos insuficientes para ser evaluadas y de especies extintas. Una diferencia cualitativa
respecto a ediciones anteriores es que cada una de las especies globalmente amenazadas (182 en peligro crítico, 321 en peligro y 680 vulnerables) posee una ficha de media página de extensión. En esta ficha se presenta en forma muy clara información básica de la especie en cuestión, como: nombre científico y común, categoría de riesgo, criterios por los que la especie fue asignada a esa categoría y su justificación, detalles de canto o morfología que permiten diferenciarla de otras especies similares, tendencias poblacionales, hábitats ocupados, principales amenazas, medidas a adoptar para mejorar su estado de conservación y bibliografía relevante. Además de esta información, cada ficha incluye una ilustración en colores de la especie y un mapa con su distribución (extensión de ocurrencia) durante la temporada reproductiva y no reproductiva.

Otra sección de utilidad en este libro es la de especies amenazadas por país o territorio. En esta sección se presenta una lista de las especies en cada categoría de riesgo para los distintos países y territorios. Allí, uno puede rápidamente encontrar que para Argentina figuran 4 especies en peligro crítico (el Pato Serrucho Mergus octosetaceus, el Playero Esquimal Numenius borealis, el Guacamayo Azul Anodorhynchus glaucus y el Capuchino de Collar Sporophila zelichi), 4 en peligro (la Palomita Morada Claravis godefrida, el Loro Vinoso Amazona vinacea, el Cardenal Amarillo Gubernatrix cristata y el Capuchino Pecho Blanco Sporophila palustris), 31 vulnerables y 53 cercanas a la amenaza. Resulta interesante comparar las especies que figuran como amenazadas para Argentina según este libro y aquellas que fueron identificadas como amenazadas en el Libro Rojo de las Aves y Mammíferos de Argentina (1 especie extinta, 6 en peligro crítico, 23 en peligro y 41 vulnerables 6). Si bien algunas de estas diferencias pueden deberse a que los criterios de inclusión en el libro de BirdLife fueron que la especie estuviese amenazada a nivel global, mientras que para el de Argentina fue que estuviese amenazada a nivel del país, las diferencias también reflejan el carácter dinámico que tienen los libros rojos y cómo la información que continuamente se está generandoproduce cambios en nuestra percepción del nivel de riesgo de extinción de las distintas especies.

“Aves amenazadas del mundo” será (muy probablemente por solo unos pocos años) uno de los principales libros de referencia para todos aquellos que están interesados en la conservación de las aves. También, muy probablemente, será el último o uno de los últimos libros rojos de aves que se editen en formato tradicional. La velocidad con que se modifica la situación de muchas especies amenazadas o cercanas a la amenaza y la cantidad de información disponible para cada una de ellas hace que sea muy difícil producir libros de esta envergadura que contengan información actualizada. Tal vez los futuros libros rojos serán bases de datos actualizadas en forma continua por una red mundial de especialistas y accesibles a través de Internet.

JUAN CARLOS REBOREDA
Depto. Ecología, Genética y Evolución, Fac. de Cs. Exactas y Naturales, Univ. de Buenos Aires
Piso 4, Pab. 2, Ciudad Universitaria, C1428EHA
Buenos Aires, Argentina
reboresa@bg.fcen.uba.ar
Las aves de pastizal conforman un grupo heterogéneo de especies pertenecientes a diversas familias de aves. El Choique (Pterocnemia pennata), las cachirlas (Anthus spp.) y los coludos (Emberizoides spp.) son algunas de las especies más representativas de este grupo. En las últimas décadas, ornitólogos y ecólogos —especialmente de América del Norte— han mostrado un creciente interés en estudiar diversos aspectos de la ecología de estas especies. Una de las razones de este interés ha sido la notoria disminución de las poblaciones de varias aves de pastizal. El factor que ha contribuido mayormente en la declinación de estas poblaciones es la transformación de los ambientes de pastizal, como consecuencia de la progresiva expansión e intensificación de la agricultura. Estos cambios en el hábitat han producido importantes problemas de conservación para numerosas especies de aves. En nuestro país, uno de los casos más conocidos es la reducción de la población del Tordo Amarillo (Xanthopsar flavus). En tanto, las tendencias poblacionales de la mayoría de las especies de aves de pastizal de América del Norte se encuentran mejor documentadas.

Esta publicación surge a raíz de la preocupación de muchos especialistas de América por la declinación de varias especies de aves de pastizal. Peter Vickery y James Herkert adoptaron la tarea de editar los trabajos presentados en la "Conferencia sobre Ecología, Estatus y Conservación de Aves de Pastizal en el Hemisferio Occidental", llevado a cabo en Tulsa, EEUU, en el año 1995. El libro tiene una introducción general y tres secciones con afinidad temática que incluyen 33 trabajos originales.

En la introducción, investigadores de América del Norte y del Sur (Vickery y otros) avanzan sobre una definición operativa de los ambientes de pastizal. De esta manera, consideran los ambientes de pastizal en un sentido bastante amplio, incluyendo los pastizales de sabanas arbustivas de zonas subtropicales y templadas y las sabanas tropicales y, además, ciertos ambientes boscosos que poseen un estrato herbáceo con especies de aves adaptadas exclusivamente a dicho estrato. También proponen una definición de las aves de pastizal desde un punto de vista ecológico: "son todas aquellas especies que se han adaptado a y dependen de cierta variedad de ambientes de pastizal en parte o en todo su ciclo de vida". Bajo esta definición, estas especies son agrupadas en especies de pastizal obligadas, las cuales están completamente adaptadas a y son dependientes de ambientes de pastizal y utilizan poco o nada otros ambientes; y especies facultativas, las cuales utilizan los pastizales tanto como otros ambientes. Si bien dicha definición resulta interesante, da la impresión que las listas de aves de América del Norte y de América del Sur no fueron confeccionadas con la misma rigurosidad.

Por otro lado, los autores plantean que la conservación del pastizal requiere de planes en las escalas regional y hemisférica, más allá de los límites geográficos y políticos. Este es el caso de muchas especies que migran anualmente desde las áreas de nidificación hasta las áreas de invernada a lo largo de varios países de América. Por tal motivo, la conservación de estas especies también requiere del entendimiento de los requerimientos de hábitat en las áreas de invernada. También proponen lineamientos para futuras investigaciones en estos temas.

La primera sección temática ("Ecología") reúne ocho trabajos enfocados en la distribución temporal y espacial de varias aves de pastizal en América del Norte. En general, los trabajos evalúan las tendencias poblacionales de especies de EEUU y Canadá utilizando información histórica y actual. También hay algunos estudios de asociación entre aves de pastizal y variables ambientales a diferentes escalas.
Las estrategias de conservación de las aves de pastizal y sus hábitats requieren del reconocimiento de los procesos evolutivos que moldearon a estas especies para adaptarse a su ambiente y de la incorporación de estos procesos naturales en las áreas de conservación. La segunda sección (“Ecología de la Reproducción”) reúne 18 trabajos subdivididos en cinco temas. El primero, “Selección de Hábitat”, incluye trabajos enfocados en las relaciones entre los hábitats y la nidificación de las aves de pastizal. El siguiente, “Fuego”, agrupa cinco trabajos sobre la ocurrencia de incendios y el éxito reproductivo y abundancia de las especies. El tercero, “Programa de Reservas de Conservación”, incluye dos trabajos en este tipo de reservas. El cuarto tema, “Manejo”, agrupa tres trabajos sobre los efectos de factores como pastoreo o áreas cultivadas sobre la nidificación o abundancia de ciertas especies. Finalmente, el tema “Obtención de Información y Análisis” incluye tres trabajos sobre metodología aplicada a este tipo de estudios.

Desde una perspectiva hemisférica, los autores resaltan la urgencia de una mayor investigación y conservación en América Central y del Sur. Las principales razones se centran en que en los países de esas regiones la pérdida y la degradación del hábitat y la disminución de poblaciones de aves de pastizal son agudas. En este sentido, la última sección de este libro, denominada “América Latina”, pretende abordar este tema reuniendo siete trabajos de autores de México, Venezuela, Brasil y Argentina. Brevemente, los trabajos de esta sección discuten los siguientes temas: Cavalcanti realiza una revisión de la riqueza de aves del Cerrado (Brasil) y discute las necesidades de conservación para la avifauna de la región; Tubaro y Gabelli evalúan el estado de conservación de la población de Sturnella defilippi en Argentina; Peterson y Robbins realizan una evaluación preliminar de la distribución de aves en tres biomas principales de pastizal de México; Manzano-Fischer y colaboradores estudian la composición, la distribución, la estacionalidad y la abundancia de aves de pastizal en colonias de perros de las praderas en el norte de México; Cardoso da Silva identifica, en forma preliminar, el patrón general de los movimientos estacionales en América del Sur de las especies de Sporophila spp.; y, finalmente, dos trabajos de Basili y Temple ponen a prueba —en primer lugar— la hipótesis de muerte diferencial por dominancia entre sexos, y —luego— proveen información de historia natural, dieta y alimentación y uso de hábitat de Spiza americana en sitios de invernada en Venezuela.

Es interesante el esfuerzo de los editores por integrar a toda América en la conservación de aves de pastizal, pero es evidente el escaso número de trabajos realizados en América del Sur y la ausencia de autores de países con áreas importantes de pastizal. De cualquier manera, esta publicación resulta de gran utilidad para aquellos ornitólogos o ecólogos que trabajan en temas de conservación y ecología de estas aves, ya que brinda un panorama general y una perspectiva regional de su estado de conservación y proporciona una muestra interesante de trabajos realizados a diferentes escalas y con distintos enfoques.

Fabian L. Rabuffetti
Lab. de Ecología y Comportamiento Animal, Depto. Ecología, Genética y Evolución, Fac. de Cs. Exactas y Naturales, Univ. de Buenos Aires. Pab. 2, Piso 4, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina. rabu@bg.fcen.uba.ar
Un recuerdo para nuestro querido Pablo

Resulta difícil contar en unas pocas líneas las cualidades humanas y profesionales de Pablo Canevari, con quien tuve la suerte de trabajar durante muchos años hasta su trágica partida el 22 de marzo de 2000.

Además de viajar de un lado para el otro como las aves migratorias, cosechando amistades en todo el mundo, Pablo fue un gran trabajador por la conservación de los humedales y las aves acuáticas de las Américas. Entre otras cosas, fue Director para América del Sur de Humedales para las Américas y trabajó para el Manomet Observatory for Conservation Sciences de EEUU, desde donde impulsó con éxito la implementación de la “Red Hemisférica de Reservas para Aves Playeras” en América del Sur, siendo además coordinador de los talleres para el estudio y conservación de aves playeras migratorias que se realizaron en varios países de la región, y que sentaron las bases para el nacimiento de una comunidad sudamericana activa en la investigación y conservación de estas aves.

En los comienzos de su carrera Pablo trabajó en el Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” y en la Administración de Parques Nacionales, desde donde contribuyó significativamente a la creación de nuevas áreas protegidas en nuestro país. Su visión creativa sentó las bases para los censos neotropicales de aves acuáticas, el primer programa de conteos de aves acuáticas a escala regional organizado en América del Sur. Su vasta experiencia de campo y su amplio conocimiento de la fauna silvestre de nuestro país, y en particular de las aves migratorias, lo llevaron en 1996 a trabajar para la Convención de Especies Migratorias de Animales Silvestres (CMS), en la sede de las Naciones Unidas en Bonn, Alemania. Su paso de tres años por la CMS sirvió para fortalecer el funcionamiento de la Convención en América del Sur.

Su legado es inmenso, destacándose los trabajos sobre humedales, cauquenes y aves playeras migratorias. Entre sus principales publicaciones se pueden nombrar al “Libro de los Parques Nacionales de la Argentina”, la “Nueva guía de las aves de la Argentina”, “Los humedales de la Argentina”, “La evaluación de los humedales de América del Sur”, “Los beneficios de los humedales de la Argentina” y la “Guía de chorlos y playeros de la Región Neotropical”, esta última publicada por un grupo de amigos luego de su muerte, como un sensible homenaje a su continuo trabajo en favor de las aves playeras migratorias.

A casi dos años de su trágica partida, Pablo sigue muy presente entre nosotros, en los gratos recuerdos, en su valioso legado conservacionista y en sus dibujos y acuarelas, que siguen revelando una gran sensibilidad y disfrute por la naturaleza que lo rodeaba.

A vos Pablo, todo mi agradecimiento.

Daniel Blanco
Wetlands International
dblanco@wamani.apc.org
OBITUARIO

Mariano Manuel Martínez (1956-1998)

El fallecimiento de Mariano deja un profundo vacío entre todos los que compartimos diferentes momentos de su vida: en la Facultad de Ciencias Naturales y Museo de La Plata, donde iniciara su profesión, en la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de Mar del Plata, donde se desempeñara como docente e investigador, e inevitablemente en la región pampeana con sus entrañables aves. Poseedor de una personalidad única, los que lo conocimos y tuvimos el privilegio de trabajar a su lado disfrutamos cada momento de su enriquecedora compañía.

Mariano nació el 13 de mayo de 1956 en Mar del Plata y falleció el 12 de marzo de 1998 en esa misma ciudad. Ya desde muy pequeño manifestó una gran pasión por la naturaleza. De la mano de su padre, según contaba él, comenzó a recorrer el campo y a descubrir fósiles en las barrancas marplatenses; a disfrutar de un ambiente muy particular, como las vías del tren vecinas a su casa, las que actuaban como corredores por donde transitaban numerosos animales que animaban su curiosidad.

Su vocación ya estaba signada y es así que decidió comenzar a estudiar la Licenciatura en Zoología en el Museo de Ciencias Naturales de La Plata, donde se graduó en 1981. Comenzó a ejercer como auxiliar docente en 1977, en la Cátedra de Zoología de Vertebrados, donde permaneció hasta 1987, y allí empezó su tarea de investigación estudiando las aves de la Laguna Llancanelo en Mendoza junto con Carlos Darrieu y Guillermo Soave, bajo la dirección de Raúl H. Arámburu. En esa época ya comenzaba a frecuentar la Laguna Mar Chiquita (en la provincia de Buenos Aires), donde realizó el fantástico hallazgo de la Golondrina Tijerita (Hirundo rustica) nidificando, primer registro para América del Sur y dato de sumo interés desde el punto de vista ornitológico.

Entre 1981 y 1986, como becario, desarrolló un proyecto sobre las aves de Mar Chiquita bajo la dirección de Jorge Navas. Su arribo a la laguna recién recibido, un lugar con múltiples ambientes y una gran diversidad de aves, debe haberle generado una incontenible emoción, que se vio reflejada posteriormente en su inagotable producción y contagio de las virtudes de este lugar.

La necesidad de transmitir sus conocimientos e ideas se puso de manifiesto en dos actividades a las que Mariano dedicó un esfuerzo único: la docencia y la conservación de la naturaleza. En 1987 se radicó nuevamente en Mar del Plata y se casó con Laura Ferrero, bióloga con quién compartió su pasión por la naturaleza. Ingresó en la Cátedra de Vertebrados en la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de Mar del Plata, donde —primero como ayudante, luego como Jefe de Trabajos Prácticos y finalmente como Profesor— desplegó una vocación por transmitir conocimientos y experiencias que fue admirada y respetada por sus alumnos y colegas. Sus clases y salidas al campo fueron inolvidables… y aún hoy son recordadas con inmensa nostalgia. Cómo no disfrutar de la entrega de una persona que, en su afán de facilitar la comprensión de sus explicaciones, era capaz de ejercitar los bailes rituales de las aves durante su cortejo, o emitir sonidos guturales...
imitando alguna especie inmersa en un tupido pastizal. Todo cobraba un particular sentido a través de sus palabras: los infinitos huesos de los peces, la variedad de nombres de dinosaurios, sólo por nombrar algunos.

La pasión que transmitía al recorrer y mostrar la naturaleza, hacían de él un compañero ideal para salir al campo. Una de las cosas que más extrañamos es la posibilidad que teníamos de encontrar siempre un oído atento y lleno de expectativa cuando regresábamos de nuestras campañas sin él, ya que cada hallazgo tenía una relevancia especial en la compañía de Mariano. De cada observación desplegaba cantidad de experiencias vividas que generaban, posteriormente, interesantes proyectos para estudiar.

Ya asumido su rol de profesor, empezó su labor como director de tesistas de grado, de doctorandos, becarios e investigadores. En 1992 comenzó a dirigir el grupo de investigación Vertebrados, con un proyecto sobre la Ecología de Vertebrados del Sudeste Bonaerense.

También le dedicó parte de su tiempo a las actividades de gestión dentro del ámbito de la facultad; entre 1994–1998 fue Consejero del Departamento de Biología, y siempre con un objetivo claro: mejorar la calidad de la enseñanza y de la investigación dentro de nuestra facultad.

Otra actividad en la que Mariano depositó una entrega inagotable fue la defensa del medio ambiente, siendo Mar Chiquita y sus aves el ámbito de su lucha. Aún cuando sabía que atender a la infinidad de reclamos de vecinos y funcionarios le llevaba un tiempo que no era reconocido en los ámbitos académicos, él no cesó de transmitir —a través de informes, charlas, sugerencias informales y múltiples reuniones— la necesidad y la importancia de conservar un lugar como Mar Chiquita.

Su proyecto de tesis doctoral fue una extraordinaria descripción de la avifauna de Mar Chiquita. Sus continuas visitas a Mar Chiquita, en las cuales siempre encontraba nuevos registros, sumado a su perfeccionismo, un nivel de detalle que lo hacían rever sus manuscritos en forma reiterada y el buscar hasta la última cita bibliográfica, posiblemente contribuyeron a hacer interminable una tesis por muchos años.

Finalmente, luego de unos años de su muerte, Oscar Irbarne, colega y amigo de Mariano, decidió recopilar todo el conocimiento existente de Mar Chiquita en el libro “Reserva de Biósfera Mar Chiquita: características físicas, biológicas y ecológicas”, dedicado a su memoria. En él, Marcelo Zárate, geólogo y amigo de Mariano, escribió “Excursión a Mar Chiquita con el profesor Martínez”, en su homenaje, donde destaca su labor como docente y su generosa personalidad. En este mismo libro se publicó un capítulo en el que se resume una parte importante de su inconclusa tesis, que fue recopilado por su esposa con la colaboración de María Susana Bó y Juan P. Isacch, y que sin duda será una referencia imprescindible de la región y de la provincia.

Su temprana partida deja a compañeros y discípulos con una tremenda impotencia. Desde el punto de vista puramente científico, se fue en un momento fundamental de su carrera, cuando comenzaba a cosechar los frutos de años de esfuerzo. Esto se puede ver reflejado en la gran cantidad de trabajos publicados, en los cuales tuvo un rol fundamental. Pero, más allá de sus logros académicos, es inevitable destacar a Mariano como ser humano, con su eterna sonrisa y enorme generosidad. Y, tal vez, un buen momento para recordarlo sea en una mateada debajo de unos talas en el atardecer, observando el arribo de las aves a una laguna, luego de un fructífero día de campo, como a él le gustaba disfrutar. Hoy, a sus más cercanos discípulos nos queda, a manera de resignación, invocar y dejar su impronta en nuestra tarea, recoger y sembrar su ejemplo de pasión y honestidad.

MARÍA SUSANA BÓ Y JUAN PABLO ISACCH
Depto. de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata
Funes 3250, 7600 Mar del Plata, Argentina

Publicaciones de Mariano Martínez

MARTÍNEZ MM, DARIEU CA y SOAVE G (1997) The avifauna of Laguna Llancanelo (Mendoza, Argentina), a South American wetland of international importance. Freshwater Forum 9:35–45

BÓ MS, ISAACH JP, MALIZIA AI y MARTÍNEZ MM (en prensa) Mamíferos de la Reserva de Biósfera Mar Chiquita, provincia de Buenos Aires, Argentina. Mastozoología Neotropical.
GENERAL INFORMATION

El Hornero publishes original results from research on the biology of birds. Articles may be theoretical or empirical, with field or laboratory data, methodological developments, or papers reviewing information or ideas, referred to any ornithological area. The journal is oriented—but not restricted—to Neotropical birds. Manuscripts should be in Spanish or English. Manuscripts submitted to *El Hornero* must not have been published or currently be under consideration for publication elsewhere.

Articles are peer reviewed at least by two referees. Names (and address) of two to four potential reviewers may be included, but the decision of work with such reviewers is at the discretion of the Editor. Reviewers will remain confidential, unless a referee decides otherwise. The Editor may reject, before submission to referees, those manuscripts that do not conform the *Instructions for Authors*, or that are not within the scope of subjects and purposes of *El Hornero*. A first decision on the manuscript may generally be expected within three months of submission.

The Editor of *El Hornero* works in co-ordination with the Editor of the sister journal *Nuestras Aves*, where field records are published. Manuscripts can be transferred between journals, previous notification to the author. *El Hornero* retains the following kind of information, observations and/or findings: (1) extensive (i.e., no local) revisions of the distribution of a species or a group of species; (2) new records for Argentina, including records of little known birds (i.e., without recent citations); and (3) new nesting records for Argentina (i.e., first descriptions of nests). *Nuestras Aves* publishes instead: (1) records of little known birds (but with recent citations); (2) new records (or records of little known birds) for Argentinean provinces; and (3) nesting records for little known species.

El Hornero publishes a colour illustration of a bird species treated in some article. Authors are encouraged to submit suitable colour illustrations.

Contributions may be published in four sections: (1) articles, papers of normal extension that conforms the principal body of the journal; (2) communications, short papers, usually of less than three printed pages; (3) point of view, articles on selected topics of ornithological interest, usually written by invited authors from whom detailed reviews that summarize the present knowledge of a topic or a creative or provocative approach on controversial issues are expected; and (4) book reviews, critical evaluations of recent books and monographs of general interest for ornithologists.

SUBMISSION OF MANUSCRIPTS

Manuscripts should be submitted in paper or via electronic mail. Electronic submissions are strongly recommended; in this case, manuscripts will be sent to reviewers electronically to shorten review time. For both kinds of submissions, include a cover letter (or electronic message) with a statement indicating that the manuscript reports on original research not published before and that it is not being considered for publication elsewhere. The Editorial Office of *El Hornero* is at Universidad de Buenos Aires, Argentina. Direct all queries and comments related with the manuscript or with editorial topics to the Editor: Javier Lopez de Casenave, Depto. Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires, Piso 4, Pab. 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina. Electronic mail: hornero@bg.fcen.uba.ar

In paper submissions, include three copies of all material, including text, tables, and figures. It is not necessary to submit original photographs; good quality photocopies are adequate until the manuscript has been accepted, when originals will be requested. Provide an e-mail address for the corresponding author.

Electronic submissions should be as attached files. Manuscripts should be in a word-processor (preferably MS Word) file. It should be in RTF format (*Rich Text Format*, available in the “Save as” option of most word processors).
Name your files with short and easily identifiable words (e.g., name of the first author), avoiding accents and "ñ". Figures and tables should be constructed, inserted or pasted at the end of the document, each on a different page and with its legend (see details in “Tables and figures” below). If there is more than one file for the manuscript, add at the end of the file name any necessary identification.

PREPARATION OF MANUSCRIPTS

Authors should read these instructions carefully before preparing a manuscript for submission to *El Hornero*. Submit manuscript in A4 paper size (210 x 297 mm); for electronic submissions format the electronic document for A4 paper size. Leave at least 2.5 cm for all margins, and print on only one side of good quality paper. Use an ordinary 12-points serif typeset (Courier New, Times New Roman or similar) and double line spacing (including abstract, tables, legends and bibliography). Number all pages, including text, tables and figures. Headings and footnotes should be avoided. Do not indent paragraphs or titles. Use left alignment and do not hyphenate. Do not use the carriage return (enter or return) at the end of lines within a paragraph. Use two returns at the end of paragraphs (i.e., one empty line between paragraphs). Use consistent punctuation; insert only a single space between words and after punctuation. If possible, number the lines of text (in the left margin) to facilitate the work of reviewers and Editor.

Assemble the parts of the manuscript in this order: (1) cover page (page 1), (2) abstract in the paper’s language (pg. 2), (3) abstract in the alternative language (English or Spanish) (pg. 3), (4) text, (5) literature cited, (6) tables, (7) figure legends, (8) figures.

Cover page

Number as page 1. Cover page must contain (in this order): (1) the complete title (do not use all capital letters and make it as short as possible) in the paper’s language and in the alternative language; (2) complete names of authors; (3) institutional affiliation and postal address of each author during the period when the research was carried out, identifying the corresponding author; (4) electronic mail of the corresponding author; (5) present address of each author if it is different from (3); (6) short title (not longer than 50 characters including spaces).

Abstract and resumen

Number the abstract in the paper’s language as page 2, and the abstract in the alternative language as page 3. The abstract should be concise and informative rather than descriptive, and intelligible without reference to the manuscript’s text. The abstract often is the most widely read part of a paper; as such, it should be prepared with care and dedication. Include the purpose of the study, the major findings and main conclusions. The abstract should be in a single paragraph (no longer than 250 words for articles; no longer than 100 in communications). Do not include statistical information or bibliographic citations in the abstract. The abstract in the alternative language should be an accurate translation of the abstract in the paper’s language. Include four to eight key words in alphabetical order after the abstract (and its own palabras claves in Spanish). Choose key words carefully; a good election will be useful as an entry point for a search in the journal’s index.

Text — general

Begin text on page 4. Write with precision, clarity, and economy. Use the active voice and first person where appropriate. Give the Latin names of the species in full at their first mention (in the abstract as well as in the text), even after a full mention in the title. Genera names may be abbreviated to a single letter thereafter (or two, if needed) if no confusion will result. Do not give subspecific identification unless it is pertinent and has been critically determined. Scientific names should follow the usage of the *Handbook of the birds of the world* (Del Hoyo, Elliott y Sargatal; Lynx Edicions, Barcelona), or the *Annotated checklist of the birds of Argentina* (Mazar Barnett y Pearnman; 2001, Lynx Edicions, Barcelona) for families still uncovered by the *Handbook*. When using other source, the election should be justified in the text and cited in the references. Common names of Argentinean birds should follow the usage of the *Lista patrón de los nombres comunes de las aves argentinas* (Navas et al.; 1995, Asociación Ornitológica del Plata, Buenos
Aires). Common names of birds are capitalized (e.g., Burrowing Parrot), whereas generic mentions are not (e.g., “the parrot flew”).

Italics should be used exclusively for scientific names (never underlined), to refer to other sections of the manuscript (e.g., “see Methods” or “is shown in Results”), and for the following Latin terms: *in vivo, in vitro, in situ, ad libitum, a priori and a posteriori*. Use “e.g.,” (for example), “i.e.,” (that is) and “et al.” (and others) without italics. Do not use bold fonts.

Use “.” (period) as decimal symbol. Insert a space to separate thousands digits in numbers greater than 9999. Use leading zeroes (at the left) with all number lesser than 1, including probability values (e.g., *P* < 0.001). Numbers from zero to nine should be spelled out in the text, except when used with units or in percentages (e.g., two thrushes, 12 penguins, 4 g, 5 days, 3.5%). If number is in a series with at least one number being 10 or more, then use all numerals (e.g., 6 males and 13 females). At the beginning of a phrase always spell out numbers (e.g., “Thirty-two coots…”). Use 24 hours time format, with “:” as separator (e.g., 15:45 h). Use day, month and year as date format (e.g., 22 June 1996). English names of months are capitalized; these may be abbreviated with their first three letters and capitalized (e.g., May, Aug) if needed in tables or figures. Give years in full (e.g., 1994–1999). Always indicate geographic coordinates of study area; these should be indicated as: 34°03’S, 67°54’W.

Define all symbols, abbreviations and acronyms the first time they are used. However, minimize their use: the reader must memorize it in order to follow your paper. In the text, when only one unit appears in a denominator, use the solidus or slash “/” (e.g., g/m²); for two or more units in a denominator, use negative exponents (e.g., g m⁻² h⁻¹). Use the International System of Units (SI). Use “L” instead of “l” for liter. Use “h” for hours, “min” for minutes, “s” for seconds, and do not abbreviate “day.” “Meters above sea level” should be abbreviated as “masl.” Designate temperature in Celsius (e.g., 46°C). Mathematical expressions should be carefully represented. If possible, please format formulae in their final version (for example, you may use the equations editor included in MS Word or in WordPerfect); otherwise, make them understandable enough to be formatted during typesetting (e.g., use underlining for fractions and type numerator and denominator in different lines).

Use the following statistical abbreviations italicized: *n*, *x*, *y*, *P*, *r*, *R²*, *F*, *G*, *t*, *Z* and *U* (and, in general, all symbols for variables and constants). Symbols should be italicized in the illustrations to match the text. Use the following statistical and mathematical abbreviations without italics: ln, exp, max, min, lim, SD, SE, CV, df, ANOVA, ns, *χ²* (and, in general, all Greek letters). Names of statistical tests usually are capitalized.

Each table and figure must be referenced in the text, and numbered in the order in which they appear in the manuscript. Use “Fig.”, “Figs.”, “Table” or “Tables” when quoted in parentheses (e.g., Fig. 2, Tables 1 y 2), but the colloquial forms “figure”, “figures”, “table” or “tables” in the main text (e.g., “in the figure 2”, “as in tables 1 and 2”). Avoid repeating information among tables, figures, and text. Nomenclature, abbreviations, symbols, and units used in a figure should match those used in the text.

Cite references in the text without comma between author and year when quoted in parentheses, using “and” between two authors, “et al.” for citations with three or more authors (“al.” always with period), and comma between citations by the same or different authors (e.g., Wiens 1989, 1999, Wiens and Rotenberry 1991, Wiens et al. 1993). List multiple citations in chronological, not alphabetical, order; when more than one paper from the same author are cited, it should be together (as shown above). Use lower-case letters to distinguish between two papers by the same authors in the same year (e.g., Wiens and Rotenberry 1980a, 1980b). This distinction must be also present in the “Literature Cited” list. You may refer to specific pages in a work by putting, in the text, the page numbers after the year (e.g., Wiens 1983:400); in the “Literature Cited” list, the reference should be to the entire work. The expressions “in litt.” and “op. cit.” should be avoided. The following form should be used: (Holmes 1981, cited in Wiens 1989); both should appear in full in the reference list. Manuscripts that are accepted for publication but not yet published must be
cited as “in press”, and unpublished materials as “unpublished data”, “pers. obs.” (personal observation) or “pers. com.” (personal communication), always attributed to its author.

Text — organization

Organize your manuscript with internal headings, using up to three hierarchical levels. Type first-order headings (in capital letters) and second-order headings (in lower-case letters) in separate lines. Try to keep them short so that they will fit within a single column (approx. 30 characters, including spaces, for first-order headings, and 40 characters for second-order ones). Third-order headings must be in italics, with period and followed by a dash, in the same paragraph as the following text. Preferred first-order headings are (in order): Methods, Results, Discussion, Acknowledgements, and Literature Cited. Note that there is no heading for the introduction. Communications may not require internal headings.

The first section of the manuscript (introduction), without heading (see above), should provide the aims and significance of the research and place it within the framework of existing knowledge on the subject. State explicitly your objectives. Including your data in a theoretical background and/or in a hypothetical–deductive scheme usually will redound in a more appealing article.

Methods.— This section should provide enough information for the reader to be able to critically evaluate the research. Study area may be described within this section. Describe data-collection procedures as well as statistical analyses used. Avoid the development of test’s features and the operational steps; usually only the reasons for the election and the relevant literature citations are necessary.

Results.— This section should include only results pertinent to the objectives, questions or hypotheses raised in the introductory section and treated later in the discussion. The text must not duplicate information presented in tables or figures. The text should make clear the sample sizes, degrees of freedom, values of statistical tests, and P-values. Be clear when describing the variables under consideration. If possible, include mean values with the corresponding dispersion measures (SE or SD).

Discussion.— It is useful to start this section with one or two brief sentences that summarize the main results of the study. Then, the discussion should develop the significance and importance of these results, especially in relation to previous researches. The discussion should follow the same logical scheme of the objectives, questions or hypotheses raised in the introductory section and the results presented. Additional results and analysis are usually inappropriate in this section; they should be treated in the section of results. In the elaboration of the discussion, you should consider the use of a good dose of both healthy scepticism and critical attitude.

Acknowledgements.— Keep them short and specific to direct contributions to the paper and the research involved. Use the name of the people you acknowledge, but do not include their institutional affiliation.

References

Before submitting the manuscript, check each citation in the text against the literature cited to see that they match exactly (authors and date) and that they conform the required format. All publications cited in the text must be included in the list of references and vice versa. Verify all entries against original sources, especially journal titles, volume and page numbers, and year of publication. Include authors’ complete names in the list of references.

References should be ordered alphabetically. For complicated surnames, the capital letter usually indicates the alphabetical order (e.g., A Di GiACOMO under “D”, but M De la Peña under “P”). Where several references correspond to the same authors, they should be placed in chronological order in the list. If there is more than one reference by the same series of authors they should be listed in alphabetical order of the subsequent authors, and then chronologically.

Citations must follow the format below:

Books, chapters, proceedings, theses (and other material) must follow the format below:

Type authors’ names with small caps (do not use capital letters), without period after each initial of an author’s name. These initials must be always following the author’s surname.

Use “and” (or “y” for manuscripts in Spanish) before the last author, irrespective of the language of the cited article. Type the year of publication in parentheses. For papers still in press, use “in press” to replace the date, and consider them as the latest in the chronological order, with the name of journal included. Journal titles should be written in full and not abbreviated, in italics. Cite articles in edited journals (e.g., *Current Ornithology, Studies in Avian Biology*) as journals rather than edited volumes (as shown above). Type volume number, but do not include issue number. Avoid the full stop (period) in references.

Do not include in the references abstracts, unpublished material or reports not widely distributed and easily available.

All book titles should be spelled out completely, in lower-case letters, in italics. Provide the publisher’s name and location, both in lower-case letters without italics; separate them with comma and without full stop (period). Do not include total number of pages. Use “in” (or “en” for manuscripts in Spanish) after pages in book chapters, irrespective of the language of the cited chapter. Book Editors’ names should be cited in the same format as the names of articles’ authors. Titles of theses and dissertations must be in lower-case letters, in italics. Provide name and city of the university, both in lower-case letters without italics; separate them with comma and without full stop (period). Do not include total number of pages.

Tables and figures

Make tables and figures understandable without reference to the text. Do not include any type of information in tables that is not discussed in the text of the manuscript. Never repeat the same material in figures and tables; when either is equally clear, a figure is preferable. Check numbers of tables and figures (Arabic numerals) against their references in the text. Legends should be exhaustive; include information about the location where data were obtained or the referred taxa. All legends should use a similar style.

Each table must start on a separate numbered page, after its legend. The table should be typed double-spaced throughout (as the rest of the manuscript, including legends). Keep tables as simple as possible. Do not use an excessive number of digits when writing a decimal number; they should reflect the precision of the measurements. Do not divide tables in two or more parts. Do not use vertical lines and try to minimize the horizontal ones. Include horizontal lines above and below headings, and at end of table. You should use tables in recent issues of *El Hornero* as a guideline. Tables should be prepared in table format with the word-processor. If this is not possible, separate each field or data with tabs (never with spaces). Tables structured for column width (70 mm) is preferred over those for page width (145 mm).

Each figure must occupy a separate numbered page, after a page grouping all figures’ legends (“Figure legends”). Figures should not be boxed; try to minimize the number of lines (e.g., do not draw top and right lines in an ordinary scatterplot). Do not use titles on the graphs. Refer to keys and other explanations by name in the figure legend (i.e., do not include symbols themselves in the legend, only their reference), except when the description
becomes difficult. Do not send colour figures. Use black, white (open) and bold hatching for bars and symbols. Try to avoid grey shades or use them as distinctly as possible (only 50%, or 25%, 50% and 75%). Use of tones and shades, especially within boxes, make the design and printing difficult. Preferred symbols are open or closed black circles, squares and triangles. Symbols should be of approximately 1.5 mm in their final size. Nomenclature, abbreviations, symbols, and units used in a figure should match those used in the text (including use of italics). All figures should use a similar style. Do not use three-dimensional graphs. Include north, graphic scale and co-ordinates in maps. Figures prepared for column width (70 mm) are preferred over page width (145 mm). Figures can be submitted in a larger format, but they should be designed at final size in their original software. Use a letter size of 8 points in axes and for units, with Arial typography capitalizing only the initial letters. Avoid the use of too many values in axes.

In paper submissions, it is not necessary to submit a final-quality version of the figures; good quality photocopies are adequate until the manuscript has been accepted, when originals will be requested. Each figure should have the number written in pencil on the page.

In electronic submissions, if possible, include the figures in your word-processed file, pasting them (by using the clipboard) as “image” or Windows Metafile Format (WMF) on different pages of the document. For example, in MS Word for Windows you can (1) copy the image from the original application and then paste it in the word-processor, using the “Edit/Paste special…” command, and selecting “Image” as the format to paste, or (2) create a WMF file with the image, available as “Export” or “Save as…” options in most graphic packages, and then insert it in the word–processor file using “Insert/Image/From file…” command. As detailed above, the image must be at its final size (70 mm wide preferred). Do make sure that the image in the word-processor file adjusts to what you expect (e.g., texts and symbols sizes); it helps to design the figures at final size in the original software. If made in Excel, Corel Draw, Statistica for Windows, Sigma Plot or KyPlot, in addition to the figures in the word-processor file, please also send the original file/s.

If you cannot follow these procedures, you can paste or insert the figures in the word-processed file as a bitmap (TIFF format is preferred; GIF, PCX or BMP are also acceptable) of 600 dpi, in greyscale depth (8 bits) and the final estimated size (better for one column wide of 70 mm, not more than 145 mm wide). You may get the bitmap from the original application (graphics and drawing packages usually provide an export option) or by scanning a good quality print of your figure. Please also send the original file/s. Supplying uncompressed TIFFs is preferable but, if the image size is very large, compressed versions are acceptable (LZW, ZIP, ARJ).

For figures consisting of more than one element (e.g., parts a, b and c), please supply the different parts separately (i.e., paste or insert them separately on the same word-processor page). The reason for this is that the components of the figure may require some modification of their layout. Each figure should be centred on a different page and at final size with the correct orientation.

If you find any problems in applying the above methods, you can contact the Editor by e-mail for help and/or specifications.

Photographs should only be included if they convey information that is essential to the understanding of the article. They should be “clear” and have high contrast. Name and number them as figures. In electronic submissions, they should be sent as files, scanned at greyscale (8 bits) depth at least at 300 dpi, preferably for a final size of one column (70 mm wide). They should be saved as TIFF (.tif) or GIF (.gif) files, available as exporting formats in most graphic and scanning packages. Supplying uncompressed TIFFs is preferable but, if the image size is very large, compression softwares are acceptable (LZW, ZIP, ARJ).

EDITORIAL PROCESS

After the first revision, the manuscript will be returned to the corresponding author for the requested changes. The corrected manuscript must be returned to the Editor within 30 days, preferably via electronic mail (see specifications above). If not possible, submit a paper version along with a 3.5 inches diskette containing the word-processor version of the manuscript. Accepted manuscripts will be published directly from a word-processor file.
Revised manuscripts require a cover letter (or message) indicating how and where the reviewers’ commentaries were incorporated. The corrected manuscript will be evaluated by the Editor, who will correct the text himself to conform to scientific, technical, stylistic or grammatical standards, and will notify to the corresponding author of the final acceptance.

Page proofs will be sent to the main author, shortly before printing, as an “Adobe Acrobat portable document” format (PDF) file. The Acrobat file retains font, page layout and graphics information; it can be delivered across networks, viewed on screen and printed from most PC platforms. You will need the “Adobe Acrobat Reader” in order to view these files; if you do not have one, you may download a free copy from http://www.adobe.com/products/acrobat/readermain.html. Typeset proofs, which include final corrections by the Editor, are checked before they are sent to the authors; however, it is the exclusive responsibility of the authors to review page proofs carefully and check for omissions or errors. Special attention should be given to bibliographical citations, formulae, results of statistical tests, data in tables, and scientific names. Authors should not expect to make major modifications at this stage. Authors should return their corrections via electronic mail to the Editor before a week since the page proofs were sent; if not, the manuscript will be printed as in the page proofs.

Ten reprints are given free to the corresponding author of each article, after publication.

Véanse Instrucciones para Autores en Hornero 16(1):58–64
ÍNDICES

VOLUMEN 16

2001
CONTENIDOS

Editorial ... 1–2

Punto de vista
¿Qué es y para qué sirve una revista de ornitología?
MARIO DÍAZ .. 3–6

Artículos
Tasas de captura y dietas de aves del sotobosque en el Parque Biológico Sierra de San Javier, Tucumán
Capture rates and diets of understory birds in Parque Biológico Sierra de San Javier, Tucumán
MERCEDES ROUGÈS Y JOHN G. BLAKE .. 7–15

Nidificación de algunas especies de aves en el este de la Provincia de Catamarca, Argentina
Nesting of some bird species in eastern Catamarca Province, Argentina
MARTÍN R. DE LA PEÑA .. 17–21

La reproducción de algunas especies de Dendrocolaptidae y Furnariidae en el desierto del Monte central, Argentina
The breeding of some species of Dendrocolaptidae and Furnariidae in the central Monte desert, Argentina
EDUARDO T. MEZQUIDA .. 23–30

Aportes al conocimiento de la distribución, la cría y el peso de aves de las provincias de Mendoza y San Juan, República Argentina. Segunda parte (Aves: Falconidae, Scolopacidae, Thinocoridae, Columbidae, Psittacidae, Caprimulgidae, Apodidae, Furnariidae, Rhinocryptidae y Tyrannidae)
Notes on the distribution, breeding and weight of birds from Mendoza and San Juan provinces, Argentina. Part two (Aves: Falconidae, Scolopacidae, Thinocoridae, Columbidae, Psittacidae, Caprimulgidae, Apodidae, Furnariidae, Rhinocryptidae and Tyrannidae)
Jorge R. NAVAS Y NELLY A. BÓ .. 31–37

Comunicaciones
Hallazgo de una nueva colonia de la Gaviota de Olrog (Larus atlanticus) en la ría de Bahía Blanca, Argentina
A new colony of Olrog’s Gull (Larus atlanticus) in the Bahía Blanca estuary, Argentina
J. KASPAR V. DELHEY, PABLO F. PETRACCI Y CARLOS M. GRASSINI .. 39–42

Observaciones sobre la biología reproductiva de Asio clamator en el centro de Argentina
Observations on the reproductive biology of Asio clamator in central Argentina
ANDRÉS A. PAUTASSO Y MARTÍN R. DE LA PEÑA .. 43–46

Descripción del nido, huevo y pichón de la Monjita Salinera (Neoxolmis salinarum)
Description of the nest, egg, and chick of the Salinas Monjita (Neoxolmis salinarum)
VÍCTOR COBOS Y RODOLFO MIATELLO .. 47–48

Todirostrum cinereum (Tyrannidae), una nueva especie para la avifauna argentina
The Common Tody-Flycatcher Todirostrum cinereum, a new species for the Argentine avifauna
ANDRÉS BOSSO ... 49–50

Libros
Aves de Nepal (GRIMMETT ET AL.: Birds of Nepal)
MARK PEARMAN .. 51–52

Ecología de aves migratorias “en route” (MOORE: Stopover ecology of Nearctic-Neotropical landbird migrants: habitat relations and conservation implications)
VÍCTOR CUETO .. 53–54

Estatus y conservación de crácidos (BROOKS Y STRAH: Curassows, guans and chachalacas. Status survey and conservation action plan for cracids)
EMILIO WHITE (H) .. 55–56
Artículos

“Two-egg clutches” in Cory’s Shearwater (Calonectris diomedea)

Puestas “de dos huevos” en la Pardela Grande (Calonectris diomedea)

Un equipo electromecánico económico para identificar depredadores de huevos en nidos artificiales

An inexpensive electromechanical setup to identify egg predators at artificial nests

Comunicaciones

Nuevos registros de distribución y nidificación del Aguilucho Andino (Buteo albigula) en la Patagonia argentina

Diet of Swainson’s Hawk (Buteo swainsoni) in its wintering grounds (La Pampa, Argentina)

Dieta del Aguilucho Langostero (Buteo swainsoni) en su área de invernada (La Pampa, Argentina)

Nuevos registros del Aguilucho Cola Rojiza (Buteo ventralis) en la Patagonia argentina

Nuevos registros del Aguilucho Cola Rojiza (Buteo ventralis) en la Patagonia sur, Argentina

Nuevos registros del Aguilucho Cola Rojiza (Buteo ventralis) en Argentina

Libros

Instructions for authors

Índices del volumen
Abundancia de presas 44,45,81,92
Acarinae 81
Ambiente de nidificación 43-46
Artrópodos 7-15
Bahía Blanca 39-42
Biología reproductiva 23-30,43-46,65-70,77-84
Bosque abierto 23-30
Bosque andino-patagónico 85-88,97-99
Bosque maduro 7-15
Bosque secundario 7-15,98
Buenos Aires (provincia) 39-42
Cambios estacionales 7-15
Capturas 7-15
Catamarca 17-21
Chubut 98
Colección Partridge 31-37
Colonia de nidificación 39-42
Colonia de nidificación 66
Competencia por sitios de nidificación 68
Comportamiento 81,82,93-95
Conservación 3-5,39-42
Cópula 81,82
Córdoba (provincia) 43-48
Cría (véase nidificación; reproducción)
Dendrocolapidae 24
Densidad 79,82,85-88
Depredación (véase predación)
Deserción de nido 66,68
Desierto del Monte (véase Monte)
Despliegue nupcial 48
Dieta 7-15,45,77-84,89-92
Dimorfismo sexual 81
Disponibilidad de alimento 90,91
Distribución 31-37,85-88,97-99
Egagrópila 45,80,89-92
El Alamito 17-21
El Cuadro 77-84
Equipo electromecánico 71-75
Espinal 40
Estatus migratorio 85-88
Éxito reproductivo 28,65-70,77-84
Fertilización 68
Fraticidio 80
Frugívoros 7-15
Frutos 7-15
Furnariidae 24
Hipótesis 4
Homosexualidad 68
Hydrobatidae 65
Identificación de depredadores 71-75
Incubación 66,68,78-80,82,83
Intoxicación 83
Invernada 89-92
La Pampa 89-92
Mamíferos 71-75
Mendoza (provincia) 23-37,71-75
Método científico 4
Microhábitat de nidificación 24,27,28
Migración 86,87,89
Misiones 49,50,93-95
Monte 23-30,71-75
Monumento Natural Bosques Petrificados 78
Ñacuñán 23-30,71-75
Neuquén (provincia) 86,98,99
Nidos 17-21,23-30,40,41,43-48,66-68,71-75,79,80,83,87
Nidos artificiales 71-75
Oportunismo 45
Orugas 89-92
Parque Biológico Sierra de San Javier 7-15
Parque Nacional El Rey 8,12-14
Parque Nacional Nahuel Huapi 86
Patagonia 77-88,97-99
Periodo de incubación 27,44,80,82,83
Periodo de puesta 24,25,28
Peso corporal 31-37
Pollos (véase pichones)
Predación 48,71-75
Predación de nidada 28,29,40,71-75
Precipitación 17,18
Primer registro 49,50,93-95
Procellariidae 67
Procellariiformes 65,68,69
Puerto Iguazú 49,50,93-95
Puesta “de dos huevos” 65-70
Puestas de reemplazo 65
Rarefacción 13
Redes 7-15
Reproducción 17-21,23-37,39-48,65-70,77-84
Reserva de Telteca 28
Revistas de ornitología 3-6
Río Negro 85-88,97-99
San Carlos de Bariloche 85-88
San Juan (provincia) 31-37
Santa Cruz 77-84
Santa Fe (provincia) 43-46
Selva de montaña 7-15
Selvagem Grande 65-70
Selva Paranaense 94
Sociedades ornitológicas 5
Sotobosque 7-15
Spheniscidae 69
Tamaño de puesta 18-21,27,29,43-46,65-70,77-84
Temporada reproductiva 43-46,48,79

Índices

Territorio 48,79,82,85-88
Tucumán 7-15
Tucuras 89-92
Uso de hábitat 91
Versatilidad de dieta 89-92
Vocalización 81,82,94,98
Yungas 12-14,17,18
Aeronautes andecolus 31,33
Águila Mora (véase Geranoaetus melanoleucus)
Aguilucho Andino (véase Buteo albigula)
Aguilucho Cola Rojiza (véase Buteo ventralis)
Aguilucho Común (véase Buteo polyosoma)
Aguilucho Langostero (véase Buteo swainsoni)
Amazilia 101
Amazilia chionogaster 18
Amazilia versicolor 93,94
Amazona rhodocorytha 56
Amazona vinacea 103
Anairetes flavirostris 17,18,19
Anodorhynchus glaucus 103
Anodorhynchus leari 56
Anthus 104
Anumbius annumbi 43
Arremon flavirostris 7,10,11,12,13
Asio clamator 43,44,45
Asio flammeus 44
Asthenes baeri 23,24,25,26,27,28,29
Asthenes pyrrholeuca 31,34
Athene cunicularia 31,33,45,73
Atlapetes citrinellus 10,12,13
Attagis gayi 31,32
Basileuterus culicivorus 10,11,12,13
Bolborhynchus aurifrons 31,33
Bolborhynchus aymara 31,33
Buteo 83
Buteo albigula 85,86,87,99
Buteo brachyurus 85
Buteo platypterus 85
Buteo polyosoma 82,85,98
Buteo swainsoni 89,90,91,92
Buteo ventralis 97,98,99
Buteogallus aequinoctialis 83
Buteogallus antrhacinus 83
Buteogallus meridionalis 83
Calonectris diomedea 65,66,67,68,69
Cape Petrel (véase Daption capense)
Capuchino de Collar (véase Sporophila zelichi)
Capuchino Pecho Blanco (véase Sporophila palustris)
Carancho (véase Polyborus plancus)
Cardenal Amarillo (véase Gubernatrix cristata)
Catamenia analis 18,20
Catharus ustulatus 10,11,12,13
Chlorospingus ophthalmicus 10,11,12,13
Chlorostilbon anerythraeus 94
Choique (véase Pterocnemia pennata)
Chrysolampis mosquitos 93,94
Circus cinereus 77,82
Clarinis godefrida 103
Coereba flaveola 49
Colibri coruscans 18
Colibri Rubi (véase Chrysolampis mosquitos)
Colibri serrirostris 94
Cóndor de California (véase Gymnogyps californianus)
Coniostrum speciosum 49
Copsychus malabaricus 52
Copsychus salaris 52
Cory’s Shearwater (véase Calonectris diomedea)
Cotiornis 73
Craneoeca ryphophia 23,24,25,26,27,28,29
Crypturellus lataupa 9,10
Cyanea xiphius 56
Cyclarhis gujanensis 9,10,12
Daption capense 65
Drymornis bridgesii 23,24,25,26,27,28,29
Elaenia obscura 9,10,11,12,13,17,18,19
Elaenia strepera 54
Emberizoides 104
Empidonax eustler 9,10
Empidonax aurantiactrocrisatus 31,36
Eudyptes chrysolophus 69
European Storm-petrel (véase Hydrobates pelagicus)
Falco femoralis 48
Falco peregrinus 48,82
Falco sparverius 77,82
Fork-tailed Storm-petrel (véase Oceanodroma furcata)
Furnarius rufus 28
Galictis cuja 73
Gallinago gallinago 31,32
Garrodia nereis 65
Gaviota Cocinera (véase Larus dominicanus)
Gaviota de Olrog (= Gaviota Cangrejera; véase Larus atlanticus)
Gemporion 57
Geranoaetus melanoleucus 77,78,79,80,81,82,83
Giant Petrel (véase Macronectes)
Golondrina Negra (véase Progne modesta)
Golondrina Tijerita (véase Hirundo rustica)
Gorrion (= Gorrión Común; véase Passer domesticus)
Graumys 26
Grey-backed Storm-petrel (véase Garrodia nereis)
Guacamayo Azul (véase Anodorhynchus glaucus)
Gubernatrix cristata 103
Gymnogyps californianus 4
Halcón Peregrino (véase Falco peregrinus)
Halcón Plomizo (véase Falco femoralis)
Halconito Colorado (véase Falco sparverius)
Hemitriccus 49
Hirundo rustica 108
Hydrobates pelagicus 65
Hydrobasalis brasiliuna 31,33
Hyetornis 56
Hylocharis chrysura 93
Hymenops perspicillata 31,35
Knipolegus aterrimus 31,35
ÍNDICES

Knipolegus cabanisi 9,10
Knipolegus hudsoni 31,35
Knipolegus signatus 18,19
Larus atlanticus 39,40,41
Larus dominicanus 39,40,41
Leptasthenura platensis 23,24,25,26,27,28,29
Leptotila melagalis 9,10,12,13
Leptotila verreauxi 9,10
Lepus europaeus 77,80,81,82,83
Liebre Europea (véase Lepus europaeus)
Liolaemus 81,82
Loriculus 57
Loro Vinoso (véase Amazona vinacea)
Macaroni Penguin (véase Eudyptes chrysolophus)
Macronectes 68
Madeiran Storm-petrel (véase Oceanodroma castro)
Manx Shearwater (véase Puffinus puffinus)
Mergus octosetaceus 103
Metriopelia 57
Metriopelia aymara 31,32
Metriopelia melanoptera 31,32
Microstilbon burmeisteri 17,18
Milvago chimango 23,29,31,32,73,74
Molothrus bonariensis 20,21,29
Monjita Castaña (véase Neoxolmis rubetra)
Monjita Salinera (véase Neoxolmis salinarum)
Mosqueta Cucharona (véase Todirostrum cinereum)
Mosqueta Pico Pala (véase Todirostrum cinereum)
Myiarchus swainsoni 31,36
Myioborus brunniceps 10,12,13
Myiopsitta luchsi 57
Myiotheretes striaticollis 17,18,19
Neomorphus 56
Neoxolmis rubetra 47,48
Neoxolmis salinarum 47,48
Nesofregetta albigularis 65
Numenius borealis 103
Oceanodroma castro 69
Oceanodroma furcata 65
Oreopholus ruficollis 81
Palomita Morada (véase Claravis godefrida)
Parabuteo unicinctus 83
Pardela Grande (véase Calonecritis diomedea)
Parula pitiayumi 50
Passer domesticus 3
Pato Serruco (véase Mergus octosetaceus)
Pelegadroma marina 65
Phaethon lepturus 18,19
Phaethon striaticeps 18
Philectus aureonitens 18,20
Phylloscartes ventralis 10,11,12,13
Picaflor Rubí (véase Sephanoides sephaniodes)
Picirolus rubiginosus 9,10
Pipra 57
Pipraeidea melanonota 9,10,12,13
Piranga rubra 53
Pitangus sulphuratus 31,36
Playero Esquimal (véase Numenius borealis)
Polyborus planucus 82
Poospiza erythropryns 10,12,13,18,21
Progne modesta 82
Pseudocolopteryx flaviventris 31,35
Pseudoseisura lophotes 24,25,27,29,73,74
Pterocnemia pennata 104
Puffinus bulleri 69
Puffinus griseus 69
Puffinus puffinus 65,69
Pyrocephalus rubinus 31,35
Pyrrhura pfrimeri (= Pyrrhura leucotis)
Ramphastos 57
Rhinocrypta lanceolata 23,25,26,28,29
Saura 56
Sephanoides sephaniodes 101,95
Sittasomus griseicapillus 10
Slender-billed Prion (véase Pachyptila belcheri)
Speotyto cunicularia (= Athene cunicularia)
Spiza americana 105
Spizapteryx circumcinctus 29
Spodoptera frugiperda 89
Sporophila 105
Sporophila palustris 103
Sporophila felchii 103
Stephanaxis lalandi 94
Stigmatura budytoides 31,34
Sturnella defilippi 105
Sublegatus modestus 31,34
Synallaxis albecens 23,24,25,26,27,28,29
Synallaxis azarae 10,12,13
Synallaxis frontalis 10
Synallaxis spixii 26
Syndactyla rufusperulata 10,11,12,13
Tanysiptera 57
Tapera naevia 29
Teledromas fuscus 31,34
Tero Común (véase Vanellus chilensis)
Thlypopsis ruficeps 17,18,19,20
Thlypopsis sordida 9,10,12,13
Thraupis sayaca 10,11,12,13,50
Thylamys pusilla 26
Todirostrum cinereum 49,50
Tolmomyias sulphurescens 9,10,12,13
Tordo Amarillo (véase Xanthopsar flavus)
Troglodytes solstitialis 9,10,12,13
Turdus leucomelas 50
Turdus nigriceps 9,10,12,13
Tyrannus savana 7,10,11,12,13
Upucerthia certhioides 24,25,28,71,73,74
Vaneus 82
White-faced Storm-petrel (véase Pelagodroma marina)
White-throated Storm-petrel (véase Nesofregetta albigularis)
Xanthopsar flavus 104
Zaedius piche 82
Zonotrichia capensis 9,10,12,13
<table>
<thead>
<tr>
<th>Autor</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amico G</td>
<td>85–88</td>
</tr>
<tr>
<td>Blake JG</td>
<td>7–15</td>
</tr>
<tr>
<td>Blanco D</td>
<td>107</td>
</tr>
<tr>
<td>Bó MS</td>
<td>108-111</td>
</tr>
<tr>
<td>Bó NA</td>
<td>31–37</td>
</tr>
<tr>
<td>Bosisio AC</td>
<td>89–92</td>
</tr>
<tr>
<td>Bosso A</td>
<td>49–50</td>
</tr>
<tr>
<td>Canavelli SB</td>
<td>89–92</td>
</tr>
<tr>
<td>Cobos V</td>
<td>47–48</td>
</tr>
<tr>
<td>Cueto VR</td>
<td>53–54,71–75</td>
</tr>
<tr>
<td>Delhey JKV</td>
<td>39–42</td>
</tr>
<tr>
<td>De Lucca ER</td>
<td>77–84</td>
</tr>
<tr>
<td>Díaz M</td>
<td>3–6</td>
</tr>
<tr>
<td>Fraga RM</td>
<td>101</td>
</tr>
<tr>
<td>Gelain MA</td>
<td>85–88,97–99</td>
</tr>
<tr>
<td>Grassini CM</td>
<td>39–42</td>
</tr>
<tr>
<td>Isacch JP</td>
<td>108-111</td>
</tr>
<tr>
<td>Maceda JJ</td>
<td>89–92</td>
</tr>
<tr>
<td>Mazar Barnett J</td>
<td>56–57</td>
</tr>
<tr>
<td>Mezquida ET</td>
<td>23–30,71–75</td>
</tr>
<tr>
<td>Miatello R</td>
<td>47–48</td>
</tr>
<tr>
<td>Mougin J-L</td>
<td>65–70</td>
</tr>
<tr>
<td>Navas JR</td>
<td>31–37</td>
</tr>
<tr>
<td>Ojeda V</td>
<td>85–88</td>
</tr>
<tr>
<td>Pautasso AA</td>
<td>43–46</td>
</tr>
<tr>
<td>Pearman M</td>
<td>51–52,93–95</td>
</tr>
<tr>
<td>de la Peña MR</td>
<td>17–21,43–46</td>
</tr>
<tr>
<td>Petracci PF</td>
<td>39–42</td>
</tr>
<tr>
<td>Pugnali G</td>
<td>93–95</td>
</tr>
<tr>
<td>Rabuffetti FL</td>
<td>104-105</td>
</tr>
<tr>
<td>Reboreda JC</td>
<td>102-103</td>
</tr>
<tr>
<td>Rougès M</td>
<td>7–15</td>
</tr>
<tr>
<td>Saggese MD</td>
<td>77–84</td>
</tr>
<tr>
<td>Sympon L</td>
<td>85–88</td>
</tr>
<tr>
<td>Trejo A</td>
<td>85–88,97–99</td>
</tr>
<tr>
<td>Vidal Russell R</td>
<td>85–88</td>
</tr>
<tr>
<td>White EE (h)</td>
<td>55–56</td>
</tr>
</tbody>
</table>
El equipo editorial de *El Hornero* agradece a los colegas que han evaluado los manuscritos enviados a la revista. Su labor desinteresada permite mantener el rigor y la relevancia en los artículos publicados. Abajo está la lista completa de los revisores que actuaron en este volumen. Los asteriscos señalan a aquellos revisores que evaluaron más de un manuscrito.

Martha Argel
María Isabel Bellocq
Adolfo Beltzer
María Susana Bó
P. Dee Boersma
Susana Bravo
Juan Carlos Chébez *
Víctor R. Cueto
Adrián S. Di Giacomo
Alejandro Di Giacomo *
Ricardo Figueroa R.
Rosendo Fraga *
Esteban Frere
Norberto P. Gianini
Eduardo Haene
Jesús Herranz Barrera
Fernando Hiraldo
Juan Pablo Isacch
Jaime E. Jiménez
Santiago Krapovickas
James Lowen
Miguel A. Marini
Juan Mazar Barnett *
Eduardo T. Mezquida
Norberto H. Montaldo
Jorge Navas *
Eduardo Pavez
Martín R. de la Peña
Flavio Quintana
Fabian Rabuffetti
Adrián Schiavini
Roberto J. Straneck
Alejandro Travaini
Pablo Yorio