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Sobre grafos arco-circulares propios y Helly

Un modelo arco-circular es un par M = (C,A) donde C es un ćırculo y A es una familia
de arcos de C. Si ningún arco se encuentra contenido en otro arco entonces decimos que
M es propio, mientras que si A satisface la propiedad de Helly entonces decimos que
M es Helly. Un grafo G es arco-circular si es el grafo de intersección de los arcos de un
modelo arco-circular M. Si además M es propio (resp. Helly) entonces decimos que G
es un grafo arco-circular propio (resp. Helly). Los grafos arco-circulares y sus subclases
son estudiados con especial atención desde fines de la década de 1960, y al d́ıa de hoy
la literatura al respecto es muy vasta. Esto se debe a la gran cantidad de aplicaciones
que poseen en áreas tan diversas como las bases de datos, la genética, la arqueoloǵıa,
la psicoloǵıa, la economı́a, etc., y a las propiedades de su estructura combinatoria. El
problema de reconocimiento de grafos arco-circulares, y de varias de sus subclases, puede
ser resuelto en tiempo lineal. Más aún, un modelo arco-circular puede ser generado en
tiempo lineal. En esta tesis estudiamos la clase de grafos arco-circulares desde una
perspectiva estructural y algoŕıtmica, concentrándonos principalmente en las subclases
de grafos arco-circulares propios y Helly.

Palabras clave: grafos arco-circulares propios, grafos arco-circulares Helly, grafos de
intervalos, potencias de caminos, potencias de ciclos, algoritmos de reconocimiento, al-
goritmos de transformación, algoritmos de reconocimiento dinámicos, problema de iso-
morfismo, grafos clique, comportamiento del operador clique iterado.



On proper and Helly circular-arc graphs

A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of
C. If no arc is contained in any other, then M is a proper circular-arc model, and
if A satisfies the Helly Property, then M is a Helly circular-arc model. A graph G is
a circular-arc graph if it is the intersection graph of the arcs of a circular-arc model
M. If in addition M is a proper (resp. Helly) circular-arc model then G is a proper
(resp. Helly) circular-arc graph. Circular-arc graphs and their subclasses have been the
object of a great deal of attention in the literature since the late 1960’s. This is because
of their applications in areas as diverse as databases, genetics, archeology, psychology,
economics, among others, and because of their nice combinatorial structure. Linear time
recognition algorithms have been described both for the general class and for some of its
subclasses. Moreover, a circular-arc model can be obtained within the same amount of
time. In this thesis we study circular-arc graphs from a structural and algorithmic point
of view, with our focus on the proper and Helly subclasses.

Keywords: proper circular-arc graphs, Helly circular-arc graphs, interval graphs, powers
of paths, powers of cycles, recognition algorithms, transformation algorithms, dynamic
recognition algorithms, isomorphism problem, clique graphs, K-behavior.
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1 Introduction

graph G encodes a semiorder ≺ such that v ≺ w if and only if the interval corresponding
to v is completely to the left of the interval corresponding to w. For this reason, proper
interval graphs are also known by the name of indifference graphs.

It is rather easy to transform an interval model of a graph G into a proper interval model
of G, whenever possible (see e.g. [BW99]). So, we can recognize if a graph G is actually
a PIG graph with a two step procedure. First, find some interval model of the input
graph and, next, transform this model into a PIG model. This algorithm has one major
drawback because, as we mentioned before, the classic algorithms that compute the
initial interval model are hard. So, many linear-time algorithms to directly recognize if
a given graph is a proper interval graph were designed [Cor04, CKN+95, DHH96, HH05,
HdFMPdM95]. As for interval graphs, these algorithms are able to produce a proper
interval model of the input graph. Furthermore, Corneil et al. [CKN+95] also show how
to obtain a unit interval model for the input graph. On the other hand, a minimal
forbidden induced subgraph can be obtained, also in linear time, when the input graph
is not a PIG graph [HH05]. The family of such minimal forbidden induced subgraphs
was first described by Wegner [Weg67].

1.2 Circular-arc graphs

A graph is a circular-arc graph if its vertices are in a one-to-one correspondence with a
family of arcs of some circle in such a way that two vertices of the graph are adjacent
if and only if their corresponding arcs have nonempty intersection (see Figure 1.2).
The circle together with the family of arcs is called a circular-arc model or circular-
arc representation of the graph. The relation between circular-arc graphs and interval
graphs is clear from the definition. If we bend the real line into a circle, then any family
of intervals of the real line is transformed into a family of arcs of the circle. Therefore,
every interval graph is a circular-arc graph.

The appearance of circular-arc graphs in the graph theory scene is not so clear as it is
for interval graphs. The first reference to the recognition problem of circular-arc graphs
seems to be the one in the English translation of a combinatorial geometry book [HD64].
In that book there is a section by Klee, who writes (Page 54):

“Graphs are also useful in describing certain intersection properties of a
family F of sets, where we associate a node with every set in the family and
join two nodes by an edge if and only if the corresponding sets intersect. The
graph G does not describe all of the intersection properties of F , but only
those associated with pairwise intersections. However, the one-dimensional
form of Helly’s theorem (Proposition 16) shows that G does describe all
of F ’s intersection properties when F is a finite family of segments in the
line R1. The graphs that are obtainable in this way were characterized by

4



1.2 Circular-arc graphs

b
v1 b

v2

b
v3

b
v4

b
v5

A2

A1

A4

A3

A5

A circular-arc graph G A circular-arc model of G

Figure 1.2: A circular-arc graph and one of its circular-arc models, where the arc Ai

corresponds to the vertex vi for 1 ≤ i ≤ 5.

C. G. Lekkerkerker — J. C. Boland [171], but the corresponding problem is
unsolved for other classes of families of sets — arcs in a circle, circular disks
in E2, convex sets in Rn, and so forth.”

The strong relationship between interval graphs and circular-arc graphs is present in
this paragraph since, to motivate the study of circular-arc graphs (i.e., “graphs that
are obtainable” from a family of “arcs in a circle” by modeling “pairwise intersection”),
Klee briefly introduces the family of interval graphs. A few years later, Klee devotes a
research problem paper to ask what are the circular-arc graphs [Kle69].

Besides the theoretical interest that circular-arc graphs awake in the graph theory com-
munity, there are also many applications of circular-arc graphs in disciplines as diverse
as genetics, traffic light scheduling, computer networks, and allocation problems, among
others [CDG01, Gol04, Rob78, Sta67, Sto68, SE04, Tuc78]. As for interval graphs, a
lot of NP-hard problems can be efficiently solved when restricted to circular-arc graphs,
e.g. the maximum (weight) independent set problem [Spi03], the minimum dominating
set problem [HT91], the maximum (weight) clique problem [Asa91] and others. But, as
usual, there is a price to pay for the more generality of circular-arc graphs over interval
graphs. First, the algorithms for circular-arc graphs are much more complex than those
for interval graphs. Second, some problems that are easy for interval graphs, such as the
coloring problem, are hard for the class of circular-arc graphs [GJMP80].

Klee’s original question about circular-arc graphs has been answered in many ways,
by translating many of the interval graph characterizations to circular-arc graphs (see
e.g. [Gol04]). However, from an algorithmic viewpoint, these characterizations were
not strong enough to provide a polynomial-time recognition algorithm. In fact, the
tractability of the recognition problem remained open until 1980, when Tucker devised
an O(n3) time algorithm to compute a circular-arc model of a graph [Tuc80]. As usual,
n and m denote the numbers of vertices and edges of the graph, respectively. Since then,
the time complexity of the recognition problem was improved to O(nm) by Hsu [Hsu95],

5



1 Introduction

to O(n2) by Eschen and Spinrad [ES93], and finally, in 2003, the optimal O(n + m)
bound was obtained by McConnell [McC03]. Although its time complexity is optimal,
McConnell’s algorithm is really difficult to understand and implement. A simplified
version of this algorithm was developed by Kaplan and Nussbaum [KN06], but it is still
quite complex. Hence, the problem of finding a simple linear-time recognition algorithm
for circular-arc graphs remains open.

All the recognition algorithms described above produce a circular-arc model of the input
graph, when such a model exists. However, none of them is able to produce a piece
of evidence that indicates why the input graph does not admit a circular-arc model
when the algorithm fails. This has to do, in part, with the fact that the family of
forbidden induced graphs is yet unknown. Of course, some forbidden graphs are known,
such as those obtained by inserting an isolated vertex to a non-interval graph. Bonomo
et al. [BDGS09] made some partial contributions to this problem, by restricting their
analysis to some classes and showing all the forbidden subgraphs for each class.

As for interval graphs, many subclasses of circular-arc graphs can be obtained by re-
stricting the way in which arcs can intersect in a circular-arc model. By restricting the
containment of arcs, we obtain the generalizations of PIG and UIG graphs. A circular-
arc graph is a proper circular-arc (PCA) graph if it admits a circular-arc model in which
no arc is properly contained in any other arc. If in addition all the arcs in the model have
the same length, then the graph is a unit circular-arc (UCA) graph. Proper circular-arc
models and unit circular-arc models are defined as usual. As before, every UCA graph
is a PCA graph by definition. But in this case, not all the PCA graphs admit a UCA
model, thus UCA graphs form a proper subclass of PCA graphs. Both the PCA and
UCA classes were characterized by Tucker, who showed their lists of minimal induced
forbidden subgraphs [Tuc74].

A graph can be tested to be a PCA graph in linear time. The first linear-time recognition
algorithm for PCA graphs is due to Deng et al. [DHH96], and it relies on an incremental
PIG recognition algorithm. This algorithm exploits an important similarity between PIG
and PCA graphs, namely, PIG graphs admit a straight orientation while PCA graphs
admit a round orientation. Deng et al. show how to obtain such a round orientation of
the input PCA graph, which can then be transformed into a PCA model in O(n) time.
Recently, Kaplan and Nussbaum [KN09] devised an algorithm that provides an evidence
of failure when the input graph admits no PCA model. Such an evidence is either a
forbidden induced subgraph or an odd cycle of an incompatibility graph. Also recently,
Nussbaum [Nus08] showed a new recognition algorithm whose input is a circular-arc
model M of a graph G. This algorithm works in O(n) time and it provides either a
PCA model of G or a forbidden induced submodel of M. The problem of finding a
forbidden induced subgraph of G is still open when the input graph is not known to be
a circular-arc graph.
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1.2 Circular-arc graphs

A graph can also be tested to be a UCA graph in linear time. The first algorithm to
recognize UCA graphs is due to Tucker [Tuc74]. This algorithm works by shrinking and
lengthening the arcs of an input PCA model, and it can be proved that the number of
operations is polynomial. However, as it was noted in [DGM+06, Spi03], the integers
involved in such shrinks and lengthens are not of polynomial size with respect to the
input PCA model, thus the algorithm cannot be claimed to terminate in polynomial time.
The first polynomial-time algorithm for the recognition of UCA graphs was devised by
Durán et al. [DGM+06] and it runs in O(n2) time. The major inconvenience of this
algorithm is that it provides no evidence for its claims, so there is no way to obtain a
UCA model even when the graph is known to be UCA. Lin and Szwarcfiter [LS08] gave
the first efficient algorithm to actually build a UCA model from a PCA model, whenever
possible. Their algorithm runs in O(n) time and the extremes of the arcs are values
bounded by O(n2), which is asymptotically the best possible. Concurrently, Kaplan and
Nussbaum [KN09] improved the algorithm by Durán et al. so as to find, in O(n) time, a
forbidden induced subgraph when the input graph is not UCA.

Only two types of intersections are feasible on interval models: overlap and containment.
When we study the intersections between intervals, it makes sense to define those interval
models in which one of the intersection types is not possible. By doing so, we obtain
the class of proper interval graphs. (Restricting overlaps is not a clever thing to do.)
Circular-arc models allow two other types of intersections that define two other subclasses
of circular-arc graphs. A graph is a normal circular-arc (NCA) graph if it admits a
circular-arc model in which no two arcs together cover the circle. As usual, such a model
is called a normal circular-arc model of the graph. In other words, an NCA model is
a model in which no pair of intersecting arcs share two maximal overlapping segments.
As we already said, this type of intersection is not possible on interval models, thus all
interval graphs are NCA graphs.

Normal circular-arc graphs play an important role in the recognition of UCA graphs.
Their importance is due to the following results proven by Tucker in [Tuc74]. First,
every PCA model admits a normal PCA model, i.e., every PCA graph is also an NCA
graph. Second, every normal PCA model of a UCA graph can be transformed into a UCA
model without affecting the order of its extremes. All the UCA recognition algorithms
that we mentioned before depend on these two properties. Despite their importance in
the recognition of UCA graphs, NCA graphs were ignored for many years as an important
class by itself. In the last years, NCA graphs gained more status thanks to Hell and
Huang [HH04], who proved that interval bigraphs are precisely those bipartite graphs
whose complement is an NCA graph. In [LS09], Lin and Szwarcfiter ask for a forbidden
induced subgraph characterization and a polynomial-time recognition algorithm for this
class.

The last type of restriction on the intersections of the arcs that we shall consider in this
document has to do with the Helly property. The Helly Theorem for intervals asserts that
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for every family I of pairwise intersecting intervals there is a point of the real line that
belongs to all the intervals in I. When Klee writes in [HD64] that “the one-dimensional
form of Helly’s theorem” for an interval graph G with a model F “describes all of F ’s
intersection properties”, he actually states that by knowing pairwise intersections we can
find out the global intersection of a family of intervals. In terms of graphs, every clique
K of G can be associated with a point p on the real line such that p belongs to all the
intervals of F corresponding to K. The Helly property is present, at least implicitly, in
a great number of algorithms that deal with interval graphs. Just to name an example,
the PQ-tree data structure maintains all the feasible permutations of the cliques of an
interval graph as if these cliques were points of the real line.

The Helly property is completely lost when the intervals of the real line are generalized
to the arcs of a circle. It is not hard to generate a circular-arc model with three pairwise
intersecting arcs that share no common point. A graph is a Helly circular-arc (HCA)
graph if it admits a circular-arc model in which every family of pairwise intersecting arcs
share a common point. Such a circular-arc model is called a Helly circular-arc model.
As the class of HCA graphs lies between the classes of interval and circular-arc graphs,
there are many properties that can be generalized from interval graphs to HCA graphs,
but that cannot be generalized to general circular-arc graphs. These properties usually
involve the cliques of the graphs, i.e., the sets of vertices that correspond to families of
pairwise intersecting arcs of the graph.

Helly circular-arc graphs can also be recognized in linear time. The first polynomial-
time recognition algorithm runs in O(n3) time and is due to Gavril [Gav74]. Lin and
Szwarcfiter [LS06] developed an O(n+m) time algorithm that transforms every circular-
arc model of an HCA graph into an HCA model. They also described all those circular-
arc graphs that are not HCA, and showed how to find a forbidden induced subgraph
in O(n + m) time for these graphs. This algorithm was recently improved by Joeris
et al. [JLM+09] so as to run in O(n) time. A complete characterization by forbidden
induced subgraphs, i.e. the family of graphs that are neither circular-arc nor HCA, is
still not known for this class.

1.3 Our contributions

Circular-arc graphs are a natural generalization of interval graphs, where the intersection
of segments of a line (i.e. intervals) is replaced with the intersection of segments of a circle
(i.e. arcs). Despite the replacement of a line with a circle can seem like a petty modi-
fication, circular-arc graphs have a much more complex structure than interval graphs.
One of the main reasons behind this complexity is that arcs can intersect in different
ways than intervals do. In an interval model, each family I of pairwise intersecting
intervals is associated with a unique nonempty segment (s, t) of the real line such that
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(s, t) is contained in every interval of I, and (s, t) is inclusion-maximal. The situation for
circular-arc models is quite different since for some families of pairwise intersecting arcs
there could be zero or more than one of such segments. Let C be the class of circular-arc
models such that every family A of arcs is associated with a unique nonempty segment
(s, t) of the circle such that (s, t) is contained in every arc of A, and (s, t) is inclusion-
maximal. It is not hard to prove that C is precisely the class of circular-arc models that
are simultaneously normal and Helly. In this thesis, we define the normal Helly circular
arc (NHCA) graphs as those graphs that admit a model in C. If in addition the model
is proper (resp. unit), then the graph is a proper (resp. unit) Helly circular-arc (PHCA,
UHCA) graph. There are many properties of (proper) interval graphs that do not hold
for general circular-arc graphs, but that can be generalized to (PHCA) NHCA graphs.
In Chapters 3 and 8 we prove some of these properties that show the importance of
these subclasses of circular-arc graphs. Also, throughout this thesis we show some al-
gorithms that work on interval graphs and can be easily generalized so as to work on
NHCA graphs. These algorithms are non-trivial (or unknown) for the general class of
circular-arc graphs. So, there is a motivation to generalize those algorithms that work
only for interval graphs to the more general class of NHCA graphs.

In Chapter 3 we present partial characterizations of NHCA, PHCA, and UHCA graphs
by forbidden induced subgraphs. Such characterizations always state that a graph that
belongs to a class of circular-arc graphs also belongs to a restricted class of circular-arc
graphs if and only if it contains no graph from a family F as an induced subgraph. For
instance, we prove which circular-arc graphs are also NHCA, which proper (resp. Helly)
circular-arc graphs are also PHCA, and so on. As a corollary of these characterizations
we obtain an important property of NHCA, PHCA, and UHCA graphs: every circular-
arc model of a non-interval NHCA (resp. PHCA, UHCA) graph is an NHCA (resp. a
PHCA, a UHCA) model of the graph. Consequently, we obtain O(n+m) time algorithms
to test if a graph is NHCA, PHCA, or UHCA. In Chapter 5 we improve many of these
algorithms so as to run in O(n) time (see below).

Interval and proper circular-arc graphs are also studied from the point of view of oriented
graphs. For instance, PCA graphs are precisely those graphs that can be oriented in
such a way that the outset and the inset of every vertex is a transitive tournament. In
Chapter 3 we study NCA, NHCA, and PHCA graphs from this perspective as well. In
particular, we prove that there is a strong relationship between (proper) interval graphs
and (PHCA) NHCA graphs in the sense that (PHCA) NHCA graphs are those locally
(proper) interval graphs.

In the process of finding an independent set of a circular-arc graph, Golumbic and
Hammer [GH88] proved that non-complete powers of cycles are precisely those circular-
arc graphs that contain no dominated vertices. In Chapter 4 we review this equivalence
and prove, similarly, that non-complete powers of paths are those interval graphs that
contain no dominated “interior” vertices. Furthermore, we prove that every UCA (resp.
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UIG) graph is an induced subgraph of a powers of a cycle (resp. path). In Chapter 4
we also give yet another constructive proof of Roberts’ “proper = unit” theorem, that
says that every PIG graph admits a UIG model. The idea for our proof is to generate a
power of path supergraph H of a PIG graph G, then compute a UIG model of H, and,
finally, remove all the intervals corresponding to vertices in H \G. Our proof is harder
than previous ones, but it comes with the guaranty that the obtained model has linear
size. This proof is also interesting because it shows an example of how to use the power
of a path characterization of UIG graphs.

In [Gar07], Gardi asks for a “linear-time and space” algorithm to transform a PIG model
into a UIG model, without building a tree. Our “proper = unit” proof yields a linear
space and quadratic time algorithm to solve this problem without using any tree. In
Chapter 5, we show how to improve this algorithm so that it runs in linear time, solving
Gardi’s problem. In the same chapter we also improve the algorithms of Chapter 3 that
transform, whenever possible, a circular-arc model into a restricted circular-arc model
of some class. When such transformations are not possible, we show how to obtain a
forbidden induced submodel of the input model.

The first linear-time algorithm for the recognition of PCA graphs is due to Deng et
al. [DHH96]. As a part of their algorithm, Deng et al. have to decide whether a con-
nected graph is a PIG graph or not. To solve this problem, they propose a linear-time
incremental recognition algorithm for connected PIG graphs. That is, they show how to
augment a connected PIG model in O(d) time so as to insert a new interval that repre-
sents a new vertex with degree d. Later, Hell et al. [HSS01] generalized this algorithm
to allow insertions and removals of both vertices and edges, even when the graph is not
connected. In [DHH96], Deng et al. remark that they “believe there is an incremen-
tal linear time algorithm to directly compute” a PCA model of an input PCA graph,
“along the lines” of their PIG recognition algorithm. In Chapter 6 we confirm this belief
by further generalizing the algorithm by Hell et al. so as to insert vertices into a PCA
graph. Our algorithm runs in O(d) time, where d is the degree of the inserted vertex.
We also show an algorithm that allows both insertions and removals of vertices from a
PCA graph, and an algorithm that allows the insertion and removal of edges when the
graph is PHCA. The former runs in O(d + log n) time while the latter runs in O(log n)
time. It is worth to mention that the time complexities of all our algorithms are the
same as those for the algorithms by Hell et al.

Huang proved in [Hua92] that connected and co-connected PCA graphs admit a unique
PCA model up to full reversal. As a part of our dynamic PCA recognition algorithm, we
have to compute all the co-components of a PCA graph. When a PCA model is given, we
can find the unique PCA models of all its co-components in O(n) time. In Chapter 7 we
develop a simple linear-time algorithm for the isomorphism problem of PCA graphs that
exploits the uniqueness of these models. The idea is to compute a canonical PCA model
of the input graphs, and then test the equality of these representations. To compute
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such a canonical representation of a graph G, we first compute all the co-components
of G. After that, we sort the co-components and we compute a canonical machine
representation of the unique model of each co-component. Finally, we combine these
representations into a canonical representation of G. This chapter is a good example of
how a divide and conquer algorithm can be designed for PCA graphs.

The clique graph K(G) of a graph G has the cliques of G as its vertices and two vertices
of K(G) are adjacent when their corresponding cliques intersect. In other words, K(G) is
the intersection graph of the cliques of G. Deogun and Gopalakrishnan proved in [DG99]
that there is a strong relationship between clique graphs of interval graphs and the
consecutive retrieval property. In [Hed84], Hedman characterized the clique graphs of
interval and proper interval graphs. He proved that the clique graph of an interval graph
is always a PIG graph, and that every PIG graph is the clique graph of some PIG graph.
These characterizations yield linear-time algorithms for the recognition of clique graphs
of interval and PIG graphs. Clique graphs of HCA graphs were studied by Durán and
Lin [DL01]. They proved that the clique graph of an HCA graph is always a PCA graph.
Also, they showed some characterizations of clique graphs of HCA graphs, but these
characterizations are not strong enough to directly yield a polynomial-time algorithm
for the recognition problem. In Chapter 8 we provide such a characterization, and we
also show a series of characterizations for clique graphs of NHCA and PHCA graphs that
resemble the results by Hedman. Specifically, we prove that: 1) the clique graph of an
HCA is either a PHCA graph or is obtained by inserting at least two universal vertices
to a co-bipartite PHCA graph, 2) the clique graph of an NHCA graph is a PHCA graph,
and 3) every PHCA graph is the clique graph of some PHCA graph. As a consequence,
we obtain linear-time algorithms for the associated recognition problems.

In Chapter 8 we also show an O(n) time algorithm to find all the cliques of an HCA
graph. The first algorithm to solve this problem is due to Durán et al. [DLMS06], and
it runs in O(n2) time.

Finally, we also consider the K-behavior of circular-arc graphs. Define the iterated clique
graph as K0(G) = G and Ki+1(G) = K(Ki(G)). A graph G is K-null if Ki(G) has only
one vertex, for some i ≥ 0. Say that G is K-periodic if Ki(G) = G, for some i > 0.
A graph is K-convergent when it is K-null or Ki(G) is K-periodic for some i ≥ 0. If
G is not K-convergent, then |V (Ki(G))| is unbounded when i −→ ∞; in this case G
is K-divergent. To determine the K-behavior of a graph G means to decide if G is K-
null, K-convergent, or K-divergent. No algorithm is known to decide the K-behavior
of a general graph. In Chapter 8 we combine some known results to show when does a
circular-arc graph K-converge. Moreover, we show a linear-time algorithm to compute
the unique graph to which a circular-arc graph K-converges, when it does. In the process
of proving the correctness of the algorithm, we show that non-interval NHCA graphs are
precisely those graphs that are K-convergent but not K-null.

In the last chapter we discuss some research problems and present further remarks.
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2 Preliminaries

2.1 Basic graph notions

A graph is an ordered pair G = (V (G), E(G)), where V (G) is a nonempty finite set and
E(G) is a set of unordered pairs vw with v, w ∈ V (G) and v 6= w. The set V (G) is the
vertex set of G and its elements are the vertices of G, while the set E(G) is the edge set
of G and its elements are the edges of G. The number of vertices of G is called the order
of G. As it is usual in the literature, we denote n = |V (G)| and m = |E(G)|, unless
otherwise stated. The unique graph of order 1 is called the trivial graph. Observe that
in our graph definition, vv 6∈ E(G) for v ∈ V (G), vw ∈ E(G) if and only if wv ∈ E(G),
and |{vw ∈ E(G) | v, w ∈ V (G)}| ≤ 1. In the literature, these conditions on graphs are
referred to as loopless, undirected, and simple, respectively.

A vertex v is adjacent to a vertex w when vw is an edge of the graph. We also say that
v is a neighbor of w when v is adjacent to w. The neighborhood of v is the set NG(v)
of all the neighbors of v, and the complement neighborhood of v is the set NG(v) of all
the non-neighbors of v. The cardinality of NG(v) is the degree of v and is denoted by
dG(v). The minimum and maximum values among the degrees of all the vertices are
respectively denoted by δ(G) and ∆(G). If δ(G) = ∆(G) then G is a regular graph.
The closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. If NG[v] = V (G) then v
is a universal vertex while if NG(v) = ∅ then v is an isolated vertex. We will omit the
subscripts in N and d when there is no ambiguity about G.

Two vertices v and w are true twins, or simply twins, when N [v] = N [w]. We refer to v
and w as false twins when N(v) = N(w). Vertex v is a dominator of w if N [w] ⊆ N [v].
In this case we also say that w is dominated by v. If in addition N [w] ⊂ N [v], then v
is a proper dominator of w and w is properly dominated by v. A dominator sequence is
a maximal sequence of vertices v1, . . . , vk such that vi is a proper dominator of vi+1, for
1 ≤ i < k.

A graph H is a subgraph of the graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If also
E(H) = {vw ∈ E(G) | v, w ∈ V (H)}, then H is an induced subgraph of G. For each
V ⊆ V (G), the subgraph of G induced by V is the unique induced subgraph of G whose
vertex set is V . We denote by G[V ] the subgraph of G induced by V . A subgraph of G
whose vertex set is V (G) is called a spanning subgraph. For each V ⊂ V (G), we denote
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by G \ V the subgraph of G induced by V (G) \ V . Similarly, for each E ⊆ E(G), we
denote by G \ E the spanning subgraph of G with edge set E(G) \ E.

Two graphs G and H are isomorphic if there is a one-to-one mapping f between V (G)
and V (H) such that vw ∈ E(G) if and only if f(v)f(w) ∈ E(H). The mapping f is
referred to as an isomorphism between G and H. We say that G and H are disjoint
graphs when V (G) ∩ V (H) = ∅. Graph G is a copy of H when G and H are disjoint
and isomorphic. For each graph H, the graph G is H-free if no induced subgraph of G
is isomorphic to H.

The complement of a graph G, denoted by G, is the graph that has the same vertices
as G and such that two vertices are adjacent in G if and only if they are not adjacent
in G. The disjoint union of two graphs G and H is the graph G ∪H whose vertex set
is V (G′) ∪ V (H) and whose edge set is E(G′) ∪ E(H), where G′ is a copy of G disjoint

from H. The disjoint join of G and H is the graph G+H = G ∪H. Note that if G and
H are disjoint graphs then G+H is the graph obtained from G∪H by inserting all the
edges vw, for v ∈ V (G) and w ∈ V (H). For each k ∈ N>0, we will denote by kG the
graph

⋃k

i=1G.

A walk in a graph G is a sequence v1, . . . , vk of vertices such that vi is adjacent to vi+1,
for every 1 ≤ i < k. Such a walk is said to be a walk between v1 and vk (or joining
v1 with vk). The vertices vi and vi+1 are said to be consecutive in the walk and vivi+1

is said to be an edge of the walk. The length of the walk is the number k − 1 of edges
of the walk. A closed walk is a walk that joins a vertex with itself. A path is a walk
formed by pairwise distinct vertices. A cycle is a closed walk v1, . . . , vk, v1 where k ≥ 2
and v1, . . . , vk is a path. For simplicity, we will say that v1, . . . , vk is a cycle for v1 6= vk

when v1, . . . , vk, v1 is a cycle.

A graph is connected if it contains a path between any two of its vertices. A disconnected
graph is a graph that is not connected while a co-connected graph is a graph whose
complement is connected. A connected component, or simply a component, is a maximal
connected subgraph. Similarly, a co-connected component, or simply a co-component, is
a maximal co-connected subgraph.

The distance of two vertices v and w in a graph G, denoted by dG(v, w), is the minimum
among the lengths of all the paths between v and w. The distance of v and w is infinity
when there is no path joining v with w. As before, we omit the subscript when there
is no ambiguity about G. For each k ∈ N0, the k-th power of G, denoted by Gk, is the
graph that has the same vertices as G and such that two vertices are adjacent in Gk if
and only if their distance in G is at most k.

A chord of a path or cycle is an edge that joins two non-consecutive vertices of the path
or cycle. Those paths and cycles that have no chords are called chordless. The chordless
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path of order n is denoted by Pn and the chordless cycle of order n is denoted by Cn. A
hole is a chordless cycle of order at least 4.

A complete set in a graph G is a set of pairwise adjacent vertices and a clique is a
maximal complete set. (Note that this definition is not standard; many authors use the
term clique to refer to complete sets.) We also use the terms complete and clique to refer
to the subgraphs induced by a complete set and a clique, respectively. An independent
set is a set of pairwise non-adjacent vertices. The complete graph of order n is denoted
by Kn and K3 is referred to as a triangle.

A graph G is bipartite when there is a partition V1, V2 of V (G) such that both V1 and
V2 are independent sets. Contrary to the usual definition of a partition, we allow one of
the sets V1 and V2 to be empty. So, the trivial graph is bipartite for us. The partition
V1, V2 is called a bipartition of V (G), and we denote it by 〈V1, V2〉. If each vertex in V1

is adjacent to all the vertices in V2, then G is a complete bipartite graph. The complete
bipartite graph with bipartition 〈V1, V2〉 is denoted by K|V1|,|V2|. We call G co-bipartite
when G is bipartite, and we refer to each bipartition of G as a co-bipartition of G.

Let S = {S1, . . . , Sn} be a family of sets. The intersection graph of S is the graph G with
vertices v1, . . . , vn such that vi is adjacent to vj if and only if Si and Sj have nonempty
intersection, for 1 ≤ i < j ≤ n. The family S is called a model or representation of G.
The global intersection of S is the set S1 ∩ . . . ∩ Sn. We say that S is intersecting if its
intersection graph is a complete graph. Family S satisfies the Helly property, or simply
S is Helly, when every intersecting subfamily of S has nonempty global intersection. For
instance, {{1, 2}, {2, 3}, {1, 3}} is not Helly.

A class of graphs is a family C whose members are graphs. The class C is hereditary if,
for every G ∈ C, all the induced subgraphs of G also belong to C.

2.2 Digraphs

A digraph is an ordered pair D = (V (D), E(D)) where V (D) is a nonempty finite set and
E(D) is a set of ordered pairs (v, w) with v, w ∈ V (G) and v 6= w. The set V (D) is the
vertex set of D and its elements are the vertices of D, while the set E(D) is the edge set
of D and its elements are the directed edges of D. As for graphs, we denote n = |V (D)|
and m = |E(D)| unless otherwise stated. In our definition, digraphs are loopless and
simple, i.e., (v, v) 6∈ E(D) for v ∈ V (D) and |{(v, w) ∈ E(D) | v, w ∈ V (D)}| ≤ 1.

We write v −→ w to indicate that (v, w) is an edge of a digraph D. When (v, w) is not
an edge of D, we write v −→6 w. A vertex v is adjacent to a vertex w in D if either
v −→ w or w −→ v. The underlying graph of D is the graph G(D) with vertex set V (D)
such that v is adjacent to w in G if and only if v is adjacent to w in D. When v −→ w
we say that v is an in-neighbor of w and that w is an out-neighbor of v. The inset of v
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is the set N−
D (v) of all the in-neighbors of v, and the outset of v is the set N+

D (v) of all
the out-neighbors of v. The closed inset is N−

D [v] = N−
D (v) ∪ {v}, and the closed outset

is N+
D [v] = N+

D (v)∪ {v}. The cardinality of N−
D (v), denoted by d−D(v), is the indegree of

v and the cardinality of N+
D (v), denoted by d+

D(v), is the outdegree of v. As for graphs,
we omit the subscripts in N and d when there is no ambiguity about D.

A digraph D is an oriented graph when either v −→6 w or w −→6 v, for every v, w ∈ V (D).
In other words, D is an oriented graph if it can be obtained from a graph G by choosing
an orientation for each edge vw of G. In such case, we call D an orientation of G, i.e.,
D is an orientation of G if D is an oriented graph whose underlying graph is isomorphic
to G.

2.3 Circular-arc models

A circular-arc model M is an ordered pair (C(M),A(M)) where C(M) is a circle and
A(M) is a finite family of open arcs of C. The arcs in A(M) are said to be arcs of M,
and C(M) is said to be the circle of M. Unless explicitly stated, we always choose the
clockwise direction for traversing C(M). For s, t ∈ C(M), write (s, t) to mean the open
arc of C(M) defined by traversing the circle from s to t. Call s, t the extremes of (s, t),
while s is the beginning point and t is the ending point of the arc. For each A ∈ A(M),
represent by s(A) the beginning point of A and by t(A) the ending point of A. The
extremes of M are those of all the arcs A ∈ A(M).

A circular-arc model is well-formed when no two extremes of distinct arcs of M coincide
and no single arc entirely covers the circle of M. Throughout this thesis we will assume
that every circular-arc model is well-formed (see Proposition 2.4.3). The complement of
A ∈ A(M) is the arc A = (t(A), s(A)). The complement of M is the circular-arc model
M = (C(M), {A | A ∈ A(M)}). Note that M is well-formed when M is well-formed.

Two extremes e1 and e2 of a circular-arc model M are consecutive if there is no extreme
of M in (e1, e2). In this case, the arc (e1, e2) is called a segment of C(M), and e1 and
e2 are respectively called the left and right extremes of the segment. We also say that
e1 immediately precedes (or is immediately to the left of) e2 and that e2 immediately
succeeds (or is immediately to the right of) e2. More generally, a sequence e1, . . . , ek of
extremes is consecutive if ei+1 immediately succeeds ei, for every 1 ≤ i ≤ k. Say that
ǫ > 0 is small enough if ǫ < 1

4
ℓ, where ℓ is the minimum among the lengths of all the

segments of M. Duplicating the arc A means inserting the arc (s(A) + ǫ, t(A) + ǫ) into
M, for some small enough ǫ.

We classify the segments (e1, e2) of M into four types according to the nature of e1 and
e2. If both e1 and e2 are beginning points (respectively ending points) of M then the
segment is of type s-s (respectively t-t), while if e1 is a beginning point (respectively
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an ending point) of M and e2 is an ending point (respectively a beginning point) of
M then the segment is of type s-t (respectively t-s). An s-sequence is a maximal
sequence of consecutive beginning points. Similarly, a t-sequence is a maximal sequence
of consecutive ending points. In general, an extreme sequence means either an s-sequence
or a t-sequence.

There are five elementary classes of circular-arc models that are of special interest
(see [LS09]). Let M be a circular-arc model. If A(M) is a Helly family, then M is
a Helly circular-arc (HCA) model. That is, M is an HCA model if every family of
pairwise intersecting arcs share a common point. If M has no pair of arcs that together
cover the circle, then M is a normal circular-arc (NCA) model. When there is no arc
contained in any other arc, we say that M is a proper circular-arc (PCA) model. If in
addition all the arcs have the same length, then M is a unit circular-arc (UCA) model.
Finally, M is an interval circular-arc (ICA) model when some point of C(M) is covered
by no arcs.

An interval model is a finite family I of finite open intervals on the real line. Every
interval circular-arc model M is in correspondence with an interval model I as follows.
Take the point p of C(M) that is not crossed by any arc. By removing the arc [p−ǫ, p+ǫ]
from C(M) (for some appropriate value of ǫ), we obtain a segment of the circle that
contains all the arcs of M. This segment can be put into the real line so as to obtain
an interval model I. Similarly, every interval model I can be transformed into M as
follows. Take two points ℓ and r of the real line such that all the intervals of I lie in the
segment (ℓ, r). Extract the segment (ℓ, r) from the real line and bend this segment into
a circle in such a way that ℓ gets identified with r. Consequently, ICA models can be put
in a one-to-one correspondence with interval models. Furthermore, two arcs of an ICA
model intersect if and only if the corresponding intervals intersect in the interval model.
For this reason we will use interval models instead of ICA models, and every definition
on circular-arc models translates to interval models with the above correspondence.

The five elementary classes of circular-arc models can be combined so as to generate a
total of 32 classes of circular-arc models, as follows. Let X ⊆ {N, P, U, H, I}. Say
that M is an XCA model if M is an xCA model, for every x ∈ X. For instance,
M is an {N,H}CA model if M is both an NCA and an HCA model. Clearly, if M is
an XCA model then M is also an Y CA for every Y ⊆ X. Not all the 32 classes of
circular-arc models are different, because some of the properties are implied by others.
For example, every UCA model is proper, thus every UCA model is a {U,P}CA model
as well. Similarly, every interval model is Helly and normal. This leaves us with 15
different classes of circular-arc models that are listed in Table 2.1. To avoid the ugly
set notation to name a class of circular-arc models, we choose a better acronym for each
class of circular-arc models.
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Name of the model Acronym I U P H N
Unit interval UIG 1 1 1 1 1
Proper interval PIG 1 0 1 1 1
Interval IG 1 0 0 1 1
Normal unit Helly circular-arc NUHCA 0 1 1 1 1
Unit Helly circular-arc UHCA 0 1 1 1 0
Normal unit circular-arc NUCA 0 1 1 0 1
Unit circular-arc UCA 0 1 1 0 0
Normal proper Helly circular-arc NPHCA 0 0 1 1 1
Proper Helly circular-arc PHCA 0 0 1 1 0
Normal proper circular-arc PNCA 0 0 1 0 1
Proper circular-arc PCA 0 0 1 0 0
Normal Helly circular-arc NHCA 0 0 0 1 1
Helly circular-arc HCA 0 0 0 1 0
Normal circular-arc NCA 0 0 0 0 1
Circular-arc CA 0 0 0 0 0

Table 2.1: Subclasses of circular-arc models. The five columns on the right show the
properties that each class of model satisfies.

2.4 Circular-arc graphs

A graph G is a circular-arc graph if there is a one-to-one correspondence between the
vertices of G and a family A of arcs of a circle C such that two vertices are adjacent if
and only if their corresponding arcs have nonempty intersection. The circular-arc model
(C,A) is called a model or representation of G, and G is said to admit the model (C,A).
In other words, G is a circular-arc graph if it is isomorphic to the intersection graph of
A. For simplicity, we also say that G is an intersection graph of (C,A). Say that two
circular-arc models are equivalent when their intersection graphs are isomorphic.

By restricting the attention to a subclass of circular-arc models, we obtain a special class
of circular-arc graphs, formed by those graphs that admit a model of the subclass. For
X ⊆ {N, P, U, H, I}, say that G is an XCA graph when G admits an XCA model. As
before, these 32 classes of circular-arc graphs are not all different. Not even the fifteen
classes defined by the special models in Table 2.1 are all different, because graphs may
admit many circular-arc models.

Theorem 2.4.1 ([Rob69], see Theorem 3.1.1). Every PIG model is equivalent to a UIG
model.

Theorem 2.4.2 ([Tuc74], see Theorem 2.4.8). Every PCA model is equivalent to an
NPCA model.
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Name of the class Acronyms Admitted models
Proper interval (unit interval) PIG (UIG) UIG and PIG
Interval IG interval
Unit Helly circular-arc UHCA UHCA and NUHCA
Unit circular-arc UCA UCA and NUCA
Proper Helly circular-arc PHCA PHCA and NPHCA
Proper circular-arc PCA PCA and NPCA
Normal Helly circular-arc NHCA NHCA
Helly circular-arc HCA HCA
Normal circular-arc NCA NCA
Circular-arc CA CA

Table 2.2: Subclasses of circular-arc graphs, according to the class of models that they
admit.

In total, ten different subclasses of circular-arc graphs are obtained by combining the
normal, proper, unit, Helly, and interval properties of a circular-arc model. (In Chapter 3
we prove that these classes are all pairwise different.) These classes are enumerated in
Table 2.2. As before, we avoid the ugly set notation by defining appropriate acronyms
for each subclass. For historic reasons, proper interval graphs are also called unit interval
graphs and the acronym UIG is also used for PIG graphs.

In view of Table 2.2, we say that a PIG model is strong if it is a UIG model, and that
a PCA model is strong if it is an NPCA model. Non-strong models are referred to as
weak. The following proposition shows that there is no loss of generality in considering
only well-formed circular-arc models.

Proposition 2.4.3 (see e.g. [Gol04]). Every XCA graph admits a well-formed XCA
model, for X ⊆ {N, P, U, H, I}.

Let ǫ be a small enough value for a circular-arc model M. If we replace an arc A ∈ A(M)
with the arc (s(A) + ǫ, t(A) + ǫ), we obtain a model M′ equivalent to M. This implies
that any circular-arc graph admits an infinite number of equivalent models. However,
M and M′ are essentially the same model, since all we are interested in is in how do the
arcs of M intersect. Say that two circular-arc models M and M′ have equal extremes, or
simply that M and M′ are equal, if there is a one-to-one mapping f from the extremes
of M to the extremes of M′ such that:

(i) (e, e′) is a segment of M if and only if (f(e), f(e′)) is a segment of M′ and

(ii) (s, t) is an arc of M if and only if (f(s), f(t)) is an arc of M′.

In other words, M and M′ are equal if their extremes appear in the same order. (An
alternative definition of equality using strings is given in Chapter 7.) With this definition,
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every circular-arc graph admits a finite number of non-equal models. When we informally
say that a graph G admits k models, we mean that G admits k non-equal models.

We will use the same terminology used for graphs and vertices when talking about
circular-arc models and arcs. For example, we say that an arc is universal to mean that
its corresponding vertex is universal in the intersection graph. Similarly, we call a model
connected when its intersection graph is connected.

For each circular-arc model M, we will represent by M−1 the reverse model of M.
That is, M−1 is the model (C,A) where C is obtained by reflecting C(M) with respect
to some chord and A = {(t, s) | (s, t) ∈ A(M)}. Note that M and M−1 are always
equivalent. For k ∈ N0, define Uk(M) to be the model obtained from M by removing
all but k of its universal arcs, if existing. Clearly, M = Uk(M) if and only if M has at
most k universal arcs.

In a circular-arc model, all the arcs that cover some point p of the circle form a complete
set. If this complete set is also a clique Q, then we call p a clique point and we say that
Q is represented by p. Recall that, by definition, a circular-arc model is Helly precisely
when every family of pairwise intersecting arcs share a common point. In other words,
an HCA model is a circular-arc model in which every clique is represented by a clique
point.

A family of arcs A of a circular-arc model M is twin-consecutive when both the set of
beginning points and the set of ending points of A correspond to consecutive sequences.
Clearly, every family of twin-consecutive arcs is formed by twin arcs, but the converse is
not necessarily true. We say that M is twin-consecutive if every maximal family of twin
arcs is twin-consecutive. The following lemma shows that every XCA graph admits a
twin-consecutive XCA model.

Lemma 2.4.4. Let M be an XCA model for X ⊂ {I, U, P, H, N}, and A be an arc of
M. Then the model M′ that is obtained by duplicating the arc A is an XCA model.

Corollary 2.4.5. Let v and w be two twin vertices of a graph G. Then G is an XCA
graph if and only if G \ {v} is an XCA graph, for every X ⊂ {I, U, P, H, N}. Further-
more, M is an XCA model of G \ {v} where the arc A corresponds to w if and only if
the model obtained by duplicating A in M is an XCA model of G.

Tucker [Tuc74] defined the class of CI(n, k) graphs so as to characterize those PCA
graphs that are not UCA. For relative prime values n and k such that n > 2k, define
CI(n, k) as circular-arc model that is built as follows (see also Figure 2.1). Let C be a
circle of length 4n. Draw n arcs A0, . . . , An−1 of length 4k+1 such that each Ai begins at
4ki and ends at 4k(i+1)+1. Afterwards, draw n arcs B0, . . . , Bn−1 of length 4k−1 such
that each Bi begins at 4ki+ 2k + 1 and ends at 4k(i+ 1) + 2k. The intersection graph
of the model CI(n, k) is called the CI(n, k) graph. Note that every CI(n, k) model is
an NPCA model by definition.
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Figure 2.1: The circular-arc model CI(3, 1) and its intersection graph.

Theorem 2.4.6 ([Tuc74]). Let G be a PCA graph. Then G is a UCA graph if and
only if it contains no CI(n, k) as an induced subgraph, with n and k relative primes and
n > 2k.

As we already mentioned, Tucker [Tuc74] (see also [Gol04]) proved that every PCA graph
admits an NPCA model. We now give a rather elementary proof of this fact which, we
believe, is much simpler than the one in [Gol04]. For this, we need to use the following
simple lemma.

Lemma 2.4.7. Let M be a PCA model of a graph G. If A1, A2 are two arcs of M that
together cover the circle, then both A1 and A2 are universal.

Proof. The order in which the extremes of A1 and A2 appear in a traversal of C(M)
is s(A1), t(A2), s(A2), t(A1) because A1 and A2 cover the circle. If some arc A has its
ending point t(A) outside A1, then t(A) ∈ A2. If in addition s(A) ∈ A2 \A1, then either
A ⊂ A2 or A ⊃ A1, which contradicts the fact that M is a PCA model. Consequently,
every arc has either its ending or its beginning point inside A1, i.e., A1 is universal. The
proof for A2 is analogous.

Tucker’s theorem is now a simple corollary.

Theorem 2.4.8 ([Gol04, Tuc74]). Every PCA model is equivalent to an NPCA model.

Proof. Let M be a PCA model with k universal arcs. By Lemma 2.4.7, U1(M) is an
NPCA model because it has only one universal arc. If k > 1 then duplicate k − 1 times
the universal arc of U1(M) so as to include all the universal arcs that were possibly
removed from M in the process of building U1(M). The resulting model is NPCA by
Lemma 2.4.4.
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Figure 2.2: Complements of the forbidden induced subgraphs for PCA graphs

The strength of Lemma 2.4.7 lies not only on its simplicity and the fact that it implies
Theorem 2.4.8. It also helps us to transform a PCA model of a graph G into an NPCA
model of G, in O(n) time (see Chapter 3). And, it can be used to find all the universal
arcs of M as follows.

Lemma 2.4.9. An arc A of a PCA model M is universal if and only if A contains at
least n− 1 extremes of M, where n = |A(M)|.

Proof. Let k be the number of extremes that appear inside A. If k < n − 1 then there
is at least one arc A′ that has both of its extremes outside A. Since A is not contained
in any other arc, then it follows that A ∩ A′ = ∅, i.e., A is not universal. If k ≥ n − 1
then either all the arcs have at least one extreme inside A or there is one arc whose both
extremes lie inside A. In the first case A is universal by definition, while in the second
case A is universal by Lemma 2.4.7.

For a graph G, denote by G∗ the graph that is obtained from G by inserting an isolated
vertex. PCA graphs were also characterized by forbidden subgraphs by Tucker [Tuc74],
as follows.

Theorem 2.4.10 ([Tuc74]). A graph G is a PCA graph if and only if it does not contain
as induced subgraphs any of the following graphs: C∗

n for n ≥ 4, C2n for n ≥ 3, C∗
2n+1

for n ≥ 1, and the graphs H1, H2, H3, H4, H5 and H∗
1 (see Figure 2.2).

2.5 Orderings

For a linear ordering X = x1, . . . , xn, we will say that xi is before (or to the left) of xj,
for every 1 ≤ i < j ≤ n. The elements x1 and xn are respectively called the first (or
leftmost) and last (or rightmost) of X. If Y = y1, . . . , ym is a linear ordering, we denote
by X, Y the linear ordering x1, . . . , xn, y1, . . . , ym. We also consider each single element
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y a linear ordering, thus X, y is the linear ordering x1, . . . , xn, y, and y,X is the linear
ordering y, x1, . . . , xn.

In this thesis we deal with a lot of collections that are of a circular (cyclic) nature, such
as circles (viewed as a collection of points), circular lists, etc. Generally, the objects in
a collection are labeled with some kind of index that identifies the position of the object
inside the collection. Unless otherwise stated, we assume that all the operations on
these indices are taken modulo the length of the collection. Furthermore, we may refer
to negative indices and to indices greater than the length of the collection. In these cases,
indices should also be understood modulo the length of the collection. For instance, if
C is a circle of length 1, then the point at the position 2 is the same as the point at
position 0. Similarly, if x1, . . . , xn is a circular ordering of objects, then xn+1 = x1.

Let X = x1, . . . , xn be a finite ordering of objects (it is not important whether X is
a linear or circular ordering). For xi, xj ∈ X, the range [xi, xj] is defined as the lin-
ear ordering xi, xi+1, . . . , xj−1, xj where, as said before, all the operations are calculated
modulo n. Similarly, the range [xi, xj) is obtained by removing the last element from
[xi, xj], the range (xi, xj] is obtained by removing the first element from [xi, xj], and
(xi, xj) is obtained by removing both the first and last elements from [xi, xj]. We intro-
duce a new notation to work with linear orderings. For 1 ≤ i ≤ j ≤ n, define the linear
range Lin[xi, xj] as [xi, xj], while for i > j define Lin[xi, xj] as the empty ordering. The
linear ranges Lin[xi, xj), Lin(xi, xj] and Lin(xi, xj) are defined analogously.

Sometimes we want to traverse all the elements in [xi, xj] but going through xi twice
when xi = xj. Note that with our range notation this is impossible since [xi, xi] = xi,
while [xi, xi), (xi, xi] and (xi, xi) are all empty. We introduce a new notation for these
cases. For xi, xj ∈ X, define the ◦-range as

[xi ◦ xj] =

{

[xi, xi−1], xi if xi = xj

[xi, xj] otherwise

As before, the ◦-range (xi ◦ xj] is obtained by removing the first element from [xi ◦ xj],
the ◦-range [xi ◦ xj) is obtained by removing the last element from [xi ◦ xj], and the
◦-range (xi ◦xj) is obtained by removing both the first and last elements from [xi ◦xj].

2.6 Certifying algorithms

Recall that a decision problem Π consists of determining whether some instance I of
Π satisfies a given property. The possible outputs for Π are YES, if I satisfies the
property, or NO, otherwise. Thus, Π partitions the set of instances into YES-instances
and NO-instances. A positive certificate for a YES-instance I is a piece of evidence
proving that I is a YES-instance, while a negative certificate for a NO-instance I is a
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piece of evidence proving that I is a NO-instance. In general, a certificate for I is either
a positive or negative certificate. A certifying algorithm for Π is an algorithm that, for
every instance I, outputs the result of Π on I together with a certificate for I. An
algorithm that tests the validity of a certificate is called an authentication algorithm.
That is, an authentication algorithm takes the instance and a certificate as its input,
and outputs YES if and only if the certificate is correct for the instance.

There are many reasons why certifying algorithms are preferred over decision algorithms.
From an end user perspective, accepting a YES-NO answer with no evidence from a black
box seems like an act of faith. Moreover, the YES-NO answer is sometimes not enough
for solving the user problems, e.g. when the user requires a UIG model of a graph.
From a software engineering point of view, certificates can be used for debugging and
testing purposes because an algorithm’s implementation may hide bugs even though the
algorithm is proven correct. In [KMMS06] there is a much deeper analysis about the
importance of having certifying algorithms. We will follow the principles described in
that paper for our certifying algorithms.
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circular-arc graphs

One of the most important algorithmic properties about interval models is the fact that
they are Helly. The first linear-time recognition algorithm [BL76] is based on this fact, as
well as are some of the newer recognition algorithms [HMPV00]. When interval models
are generalized to circular-arc models, the Helly property is completely lost. The class of
Helly circular-arc graphs lies between the CA and IG classes and, for this reason, HCA
graphs preserve a lot of nice properties of interval graphs that are lost even for UCA
graphs. Usually, these properties involve the cliques of the graphs. Just to give one of
the many examples, consider the two theorems below.

Theorem 3.0.1 ([GH64, FG65]). Let G be a graph. Then G is an interval graph if and
only if there is a linear ordering of the cliques of G such that, for every vertex v, the
cliques containing v appear consecutively in the ordering.

Theorem 3.0.2 ([Gav74]). Let G be a graph. Then G is an HCA graph if and only if
there is a circular ordering of the cliques of G such that, for every vertex v, the cliques
containing v appear consecutively in the ordering.

It is not hard to find a counterexample to Theorem 3.0.2 when HCA graphs are replaced
with circular-arc graphs. Even if we restrict ourselves to UCA graphs, we can still
find counterexamples, as the 3K2 graph whose only circular-arc model is depicted in
Figure 3.1. Since UCA graphs are not Helly, we can expect the jump from UIG graphs
to UCA graphs to be as big as it is the jump from interval graphs to circular-arc graphs.
The same can be said about the jump from UIG graphs to PCA graphs. To see how
far are UIG graphs from UCA and PCA graphs, we can study the classes of UHCA and
PHCA graphs.

There is a second property of interval graphs that is lost for circular-arc graphs. This
property has to do with the neighborhood of each vertex v. In an interval model I,
the submodel of I induced by the closed neighborhood of I is an interval model, for
every I ∈ I. This property holds neither for general HCA nor for general PCA models.
Even more, there are some graphs, such as the 4-wheel graph (see Figure 3.3), for which
no HCA model and no PCA model satisfies this property. However, if we restrict our
attention to an NHCA model M, we can see that the submodel of M induced by the
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Figure 3.1: The unique circular-arc model of 3K2. There is no circular ordering of the

cliques of 3K2 such that all the vertices belong to consecutive cliques in the
ordering

closed neighborhood of A is an interval model for every A ∈ A(M). Hence, NHCA
graphs will retain many properties of interval graphs that deal with the “intervality” of
the neighborhood of a vertex. The local intervality property of NHCA graphs follows
from the next theorem by Lin and Szwarcfiter.

Theorem 3.0.3 ([JLM+09, LS06]). A circular-arc model M is HCA if and only if

(i) if three arcs of M cover C(M), then two of them also cover it, and

(ii) the intersection graph of M contains no induced hole.

Corollary 3.0.4. If an NCA model M is not HCA then three arcs of M cover C(M).

Proof. Suppose that no three arcs of M cover C(M) and yet M is not HCA. Then,
by Theorem 3.0.3, the intersection graph of M has an induced hole v1, . . . , vk, for some
k ≥ 4. Thus, the arcs A1, A3 ∈ A(M) corresponding to vertices v1 and v3 do not
intersect and, therefore, A1 and A3 are arcs of A(M) that cover C(M), i.e., M is not
NCA.

As a corollary we obtain Theorem 3.0.5. For the sake of simplicity, we will take this prop-
erty as an alternative definition of NHCA, PHCA and UHCA graphs. Hence, sometimes
we omit the reference to this theorem.

Theorem 3.0.5. A graph is an XHCA graph if and only if it admits an XCA model in
which there are no two nor three arcs covering the circle, for X ∈ {N,P, U}.

In this chapter we study these HCA subclasses. We first present a summary, without
all the proofs, of many nice properties of interval and UIG graphs that are preserved
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for NHCA and PHCA graphs, respectively. This summary is presented in Section 3.1
as a motivation for the study of these HCA subclasses. Of course, there is a completely
theoretical motivation, which is to study all the circular-arc subclasses that are obtained
by the intersection of the most well known subclasses of circular-arc models. Next, in
Section 3.2, we show forbidden induced subgraphs characterizations of NHCA, PHCA
and UHCA graphs. For the class of NHCA graphs this characterization is partial, we
only show which HCA graphs are not NHCA. These characterizations immediately imply
O(n +m) time recognition algorithms for the three classes. We postpone the improve-
ments of these algorithms until Chapter 5. Finally, in Section 3.3, we prove some of the
results that are used as motivation in Section 3.1, and we study the HCA subclasses
from the point of view of vertex enumerations and graph orientations.

3.1 Why study subclasses of NHCA graphs?

In this section we motivate the study of the Helly subclasses that are defined in this thesis.
For this purpose, we show several properties that hold in these subclasses and are not
easy to generalize to the more general classes of circular-arc graphs. These properties
are generalizations or slight modifications of properties that hold for the interval graph
subclasses. Some of these properties have algorithmic implications that can perhaps be
used to generalize some of the algorithms for interval graphs.

We begin studying the forbidden induced subgraph structure of NHCA graphs and its re-
lation with the structure of interval graphs. For interval graphs the structure is described
by the following theorem by Roberts.

Theorem 3.1.1 ([Rob69]). Let G be an interval graph. Then the following are equiva-
lent:

(i) G does not contain K1,3 as an induced subgraph.

(ii) G is a proper interval graph.

(iii) G is a unit interval graph.

For NHCA graphs we obtain a similar result.

Theorem 3.1.2. Let G be an NHCA graph. Then G is a PHCA graph if and only if G
contains no K1,3 as an induced subgraph.

Proof. Clearly, the K1,3 graph is not PCA, so it is neither PHCA. For the converse,
suppose that G is an NHCA graph with an NHCA model M. Sort every extreme
sequence of M in such a way that no arc with an extreme in the sequence is properly
contained in some other arc with an extreme in the sequence. This sorting does not

27



3 Subclasses of normal Helly circular-arc graphs

s(R)t(A2)s(A2)t(L)
t(A1)s(A1)

Figure 3.2: The submodel of M′ induced by A1, L, A2, R in Theorem 3.1.2. From left to
right, we show each case according to whether L = R, L 6= R and L∩R 6= ∅,
and L ∩R = ∅

change the intersections between the arcs of M, thus the sorted model M′ is also an
NHCA model of G. Now, if some arc A1 ∈ A(M′) is contained in some other arc
A2 ∈ A(M′), it is because there is some ending point between s(A1) and s(A2), and
there is some beginning point between t(A2) and t(A1). In other words, there are two
arcs L and R of M′ such that s(A1), t(L), s(A2), t(A2), s(R) and t(A1) appear in this
order in M′ (see Figure 3.2). Since M′ is NHCA then L 6= R and L ∩ R = ∅, i.e., the
intersection graph of A1, L, A2, R is isomorphic to K1,3.

Implication (ii) =⇒ (iii) of Theorem 3.1.1 is lost, because the graph CI(n, k) is PHCA
but not UHCA for every n > 3k. Indeed, by definition, every CI(n, k) graph admits a
PCA model in which no family with at most ⌈n/k⌉ > 3 arcs cover the circle. To retain
the “proper=unit” property with a similar definition as the one in Theorem 3.0.5, we
should ask that no set of arcs cover the circle. This is because the unit length property of
UIG graphs is global, and it does not depend only on the neighborhood of each vertex.

Next, we consider clique graphs of HCA graphs and NHCA graphs. The clique graph
K(G) of a graph G is the intersection graph of the cliques of G, and for a class C of
graphs we denote K(C) = {K(G) | G ∈ C}. Clique graphs of interval graphs were
studied by Hedman in [Hed84], where he proved that the PIG and K(IG) classes are
equal. On the other hand, clique graphs of HCA graphs were first studied by Durán and
Lin in [DL01], where they proved that clique graphs of HCA graphs are both PCA and
HCA. The question that motivated us to study PHCA graphs first, and NHCA graphs
later, was the following: is the class of PHCA graphs equal to the K(HCA) class?. The
answer is no, but almost, as it is shown in the next theorem. The proof of this theorem
is postponed to Theorem 8.1.6.

Theorem 3.1.3 (Theorem 8.1.6). Let H be a graph and U the set of universal vertices
of H. Then H is the clique graph of some HCA graph G if and only if:

(i) H is a PHCA graph or

(ii) H \ U is a co-bipartite PHCA graph and |U | ≥ 2.
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However, an analogous result to the one obtained by Hedman holds for NHCA graphs
(see Theorem 8.1.7). That is, the K(NHCA) and the PHCA classes of graphs are equal.
Hedman [Hed84] proved also that for every PIG graph G there is a PIG graph H such
that K(H) is isomorphic to G. That is, the PIG and the K(PIG) classes are also equal.
The same result holds for PHCA graphs, i.e., for every PHCA graph G there is a PHCA
graph H such that K(H) and G are isomorphic (see Theorem 8.1.5).

Now we move into the third property that can be preserved by restricting the attention
to PHCA graphs. A classic characterization of interval graphs is that interval graphs are
those graphs whose clique matrix has the consecutive-ones property for columns [GH64].
Similarly, a graph is HCA if and only if its clique matrix has the circular-ones property
for columns [Gav74]. The definitions of clique matrix, consecutive and circular-ones
properties are given in Section 3.3. We can think that the consecutive and circular-ones
properties for columns are due to the Helly property of the interval and HCA graphs,
respectively. On the other hand, it is well known that a graph is a proper interval graph
if and only if its clique matrix has the consecutive-ones property for both its rows and
its columns (see e.g. [DG99, Fis85, Gar07]). An analogous theorem for the circular-ones
property can be proved for PHCA graphs, as we shall see in Section 3.3. That is, the
clique matrix of a graph has the circular-ones properties for both rows and columns if
and only if the graph is a PHCA graph.

Finally, the “local interval” property of NHCA graphs implies that a lot of simple algo-
rithms that work for interval graphs also work for NHCA graphs. Consider for example
the problem of finding every clique of an interval graph. A clique segment in an interval
model M is a segment (s, t) where s is a beginning point and t is an ending point. In
M, every clique point belongs to a clique segment, and all the points in a clique segment
are clique points. Thus, the set of intervals that contain a given clique segment induce a
clique and each clique is represented by exactly one clique segment. It is trivial to find
every clique of an interval graph by computing the clique segments in one of its interval
models. For HCA graphs the situation is quite different. First, not every segment of
the form (s, t) is formed by clique points (with s and t being two consecutive beginning
and ending point, respectively). Second, not every clique of the model is represented by
exactly one clique segment, i.e., there are several clique segments whose containing arcs
induce the same clique. Thus, the algorithm to find every clique point is not so trivial
(see Section 8.2). However, NHCA graphs share the same property as interval graphs:
every segment (s, t) represents a clique, and every clique is represented by exactly one
of such clique segments. Thus, the same algorithm for interval graphs works as well for
NHCA graphs, after some minor changes. Another example for which the local interval
property has some advantages is the dynamic recognition. It is somehow easy to insert
a new edge into a PHCA graph, but it is not so easy for PCA graphs (see Section 6.6).
In Section 3.3.3 we further develop these intervality concepts for NHCA and PHCA
graphs.
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3 Subclasses of normal Helly circular-arc graphs

3.2 The structure of the HCA subclasses

In this section we present characterizations by forbidden induced subgraphs for the
classes of NHCA, PHCA, and UHCA graphs. These characterizations follow the same
spirit of Theorem 3.1.2, in the sense that they show when a graph from some class
belongs to a subclass of it. The characterizations shown in this section immediately
yield O(n +m) time recognition algorithms for all the classes. In Chapter 5 we further
discuss the algorithmic implications of these characterizations.

The following proposition is used several times throughout this section. We include it
here for this reason.

Proposition 3.2.1. Let M be a circular-arc model and B1, . . . , Bk be a hole in M. If
A ∈ A(M) is an arc which is not contained in any other arc, then either:

(i) A and Bi cover the circle for some 1 ≤ i ≤ k,

(ii) A,Bi and Bi+1 cover the circle for some 1 ≤ i ≤ k,

(iii) A ⊂ (Bi ∪Bi+1) \ (Bi+2 ∪ . . . ∪Bi−1) for some 1 ≤ i ≤ k, or

(iv) A,Bi, . . . , Bj is an induced hole of M, for some 1 ≤ i, j ≤ k.

Proof. If A = Bi for some 1 ≤ i ≤ n, then iv follows. Suppose then that A is not
an arc of the hole. Traverse C(M) from t(A) and let Bi be the arc whose beginning
point appears first. If s(Bi) ∈ A then A and Bi−1 must cover the circle. Otherwise,
if t(Bi) ∈ A then A,Bi−1 and Bi cover the circle. Finally, suppose that neither s(Bi)
nor t(Bi) are points of A, and let Bj be the arc whose ending point appears first in a
counterclockwise traversal of C(M) from s(A). If i − 1 = j + 1, then it follows that
A ⊂ Bi−1, which is a contradiction to the fact that A is not properly contained in
any other arc. Otherwise, A,Bi−1, . . . , Bj+1 induce a hole whenever i − 1 6= j + 2 or
A ⊂ (Bi−2 ∪Bi−1) \ (Bi ∪ . . . ∪Bi−3) whenever i− 1 = j + 2.

3.2.1 Normal Helly circular-arc graphs

We begin with the problem of determining when does an HCA graph admit an NHCA
model. Wheels, 3-suns, rising suns, and umbrellas are the forbidden subgraphs involved
in the characterization. The 3-sun and the umbrella are the graphs depicted in Figure 3.3
(a) and (b), respectively. The n-wheel, for n ≥ 4, is the graph obtained by inserting one
universal vertex into a hole of length n (see Figure 3.3 (c)). Finally, the n-rising sun,
for n ≥ 4, is the graph that is obtained from a path v2, . . . , vn−1 by first adding two
universal vertices v1 and vn, and then inserting three vertices w1, wn−1, wn such that wi

is adjacent only to vi and to vi+1, for i ∈ {1, n − 1, n} (see Figure 3.3 (d)). The 3-sun
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3.2 The structure of the HCA subclasses

graph is denoted by S3, the umbrella is denoted by U , the n-wheel is denoted by Wn,
and the n-rising sun is denoted by Rn.
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(a) 3-sun (b) Umbrella (c) Wheels (d) Rising suns

Figure 3.3: HCA graphs that are not NHCA. Wheels have at least 5 vertices and rising
suns have at least 7 vertices.
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Figure 3.4: HCA models of the graphs in Figure 3.3. Points in the circles are used to
mark the clique points.

Interval graphs can be partially characterized as HCA graphs using the following result
by Lekkerkerker and Boland.

Theorem 3.2.2 ([LB63]). An HCA graph is an interval graph if and only if it does not
contain holes, 3-suns, rising suns, nor umbrellas as induced subgraphs.

The only difference between the characterization by Lekkerkerker and Boland and the
characterization of NHCA graphs is that holes are replaced by wheels. We analyze first
how do HCA models of NHCA graphs look like.

Theorem 3.2.3. Let M be an HCA model of a graph G. Then M is equivalent to an
NHCA model if and only if M contains no wheels, 3-suns, rising suns, nor umbrellas as
induced submodels.

Proof. Let M′ be any HCA model of a wheel Wk, for k ≥ 4. Such a model exists as it
is depicted in Figure 3.4 (c). Model M′ has at least one clique point for each clique of
Wk; the universal arc covers all of these clique points, while each of the other arcs of the
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3 Subclasses of normal Helly circular-arc graphs

submodel covers exactly two of them. Consequently, there are two arcs covering C(M′),
i.e., M′ is not normal. Thus, whenever M is equivalent to an NHCA model, M does
not contain an induced submodel of Wk. The proofs for the 3-sun, the umbrella and the
rising suns follow analogously.

For the converse, suppose that M contains none of the forbidden submodels and yet M
has two arcs A1 and A2 that cover the circle which, w.l.o.g., are not contained in other
arcs of M. Suppose also, to obtain a contradiction, that M has k arcs B1, . . . , Bk that
induce a hole in that order. If A1 = Bi for some 1 ≤ i ≤ k, then A2 is adjacent to all
the arcs of the hole, i.e., A2, B1, . . . , Bk induce a wheel. Otherwise, we ought to consider
three cases by Proposition 3.2.1:

Case 1: A1 and Bi cover the circle for some 1 ≤ i ≤ k. In this case, A1 intersects all the
arcs of the hole, i.e., A1, B1, . . . , Bk induce a wheel. Therefore, this case cannot
happen.

Case 2: A1 is contained in Bi ∪ Bi+1 for some 1 ≤ i ≤ k. In this case, A2 intersects
all the arcs of B1, . . . , Bk, thus A2, B1, . . . , Bk induce a wheel. This case is also
impossible.

Case 3: A1, Bi, . . . , Bj is a hole of M for some 1 ≤ i, j ≤ k. As in Case 2, A2 intersects
all the arcs of this new hole. Thus, A2, A1, Bi, . . . , Bj induce a wheel, again a
contradiction.

Since none of the cases can occur, it follows that M has no holes. Thus, G is hole-free
and it contains no rising suns, 3-suns, nor umbrellas, which implies that G is an interval
graph by Theorem 3.2.2. Consequently, M is equivalent to some interval model of G.

The characterization by minimal forbidden induced subgraphs then follows easily.

Corollary 3.2.4. An HCA graph is NHCA if and only if it contains no wheels, 3-suns,
rising suns, nor umbrellas as induced subgraphs.

There is also a strong consequence for circular-arc models that can be used for negative
certification and which is also useful for the characterization of NHCA graphs in terms
of NCA graphs.

Corollary 3.2.5. Every circular-arc model of a non-interval NHCA graph is NHCA.

Proof. Let M be any circular-arc model of a non-interval NHCA graph G. Since G is
NHCA then we can apply the algorithm in [LS06] with input M, to obtain an HCA
model M′ of G. By definition, M′ is equivalent to some NHCA model, because G is
NHCA. If M′ has two arcs that cover the circle, then we can use the same arguments as
in Theorem 3.2.3 to prove that G is an interval graph, a contradiction. Otherwise, M′

is NHCA, i.e., there are neither two nor three arcs that cover C(M′).
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3.2 The structure of the HCA subclasses

b

b b

b

b b

Figure 3.5: The tent graph and one of its NCA models

The algorithm in [LS06] works in such a way that every arc of M is included in some
arc of M′. Thus, in M there could neither be two nor three arcs covering the circle, i.e.,
M is NHCA.

Now we proceed with the characterization of NHCA graphs in terms of NCA graphs.
In this case, the forbidden induced subgraphs are the wheels, the 3-sun, the rising suns,
the umbrella, and the tent graph S3 (see Figure 3.5). The proof follows the same scheme
as before, we analyze the NCA models of NHCA graphs and the characterization is
obtained as a corollary.

Theorem 3.2.6 ([LB63]). An NCA graph is an interval graph if and only if it does not
contain holes, 3-suns, rising suns, umbrellas, nor tents as induced subgraphs.

Theorem 3.2.7. Let M be an NCA model of a graph G. Then M is equivalent to an
NHCA model if and only if M contains no wheels, 3-suns, rising suns, umbrellas, nor
tents, as induced submodels.

Proof. Wheels, 3-suns, rising suns, umbrellas, and tents admit circular-arc models that
are not NHCA (see Figures 3.4 and 3.5). Hence they are not NHCA, by Corollary 3.2.5.

The converse is somehow similar to the converse of Theorem 3.2.3, but it needs a few
tweaks. Suppose that M contains none of the forbidden submodels and yet M has three
arcs A1, A2 and A3 that cover the circle. We may assume that none of these three arcs is
contained in any other arc because M has no two arcs that cover the circle. To obtain a
contradiction, suppose that M has k arcs B1, . . . , Bk that induce a hole H in this order.

Claim 1: Aj, Bi, Bi+1 do not cover the circle, for 1 ≤ i ≤ k and 1 ≤ j ≤ 3. Otherwise,
Aj intersects all the arcs of H, i.e., H ∪ {Aj} induces a wheel.

Claim 2: There is a hole H′ ⊂ H ∪ {A1, A2} that contains at least one of A1 and A2.
Suppose, to obtain a contradiction, that this is not the case. Then, by Proposi-
tion 3.2.1 and Claim 1, it follows that A1 ⊂ (Bi ∪Bi+1) \ (Bi+2, . . . , Bi−1) and that
A2 ⊂ (Bj ∪ Bj+1) \ (Bj+2, . . . , Bj−1), for 1 ≤ i, j ≤ n. By Claim 1, A3 does not
cover the circle with Bi and Bi+1, thus i 6= j. So, either t(A1) ∈ Bi+1 ∩ A2 and
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3 Subclasses of normal Helly circular-arc graphs

A3

Bi+2

A2

Bi+1

A1

Bi

Figure 3.6: Claim 2 of Theorem 3.2.7, A1, Bi+1, A2, A3, Bi induce a wheel.

j = i + 1 or t(A2) ∈ Bi ∩ A1 and i = j + 1. Assume the former w.l.o.g., thus
A2 ⊂ (Bi+1 ∪Bi+2) \ (Bi+2, . . . , Bi) (see Figure 3.6). Now, consider the position of
arc A3. Since A1, A2, A3 cover the circle, then A3 crosses both t(Bi+2) and s(Bi).
By Claim 1, A3 crosses neither s(Bi+1) nor t(Bi+1), thus A1, Bi+1, A2, A3, Bi induce
a wheel where A1 is the universal arc.

By Claim 2, there is a hole H′ ⊂ H ∪ {A1, A2} that contains at least one of A1, A2, say
A1. If we exchange H with H′ and A1 with A3 in Claim 2, we obtain that there is a hole
H′′ ⊂ H′ ∪ {A2, A3} that, w.l.o.g., contains A2 as well. If A1 is not an arc of H′′, it is
because A1 is covered by two arcs of the hole, one of which is A2. In this case, call B
to the arc of H′′ that together with A2 covers A1. Otherwise, call B = A1. Summing
up, H′′ = B,A2, Bi, . . . , Bj, for some pair 1 ≤ i, j ≤ k. Since A1, A2, A3 cover the circle
then B,A2, A3 cover the circle, thus A3 must intersect all the arcs of H′′, a contradiction.
This contradiction appears because we assume that there is a hole in M. Therefore, G
contains no holes, 3-suns, umbrellas, rising suns, nor tents as induced subgraphs. This
implies that G admits an interval model equivalent to M by Theorem 3.2.6.

Corollary 3.2.8. An NCA graph is NHCA if and only if it contains no wheels, 3-suns,
rising suns, umbrellas, nor tents as induced subgraphs.

The proofs of Theorems 3.2.3 and 3.2.7 can be combined to obtain a result characterizing
when a circular-arc graph admits an NHCA model. We are not going to prove the
theorem to avoid repetitions, instead we just give a sketch of the proof.

Theorem 3.2.9. A circular-arc graph is NHCA if and only if it contains no wheels,
3-suns, rising suns, umbrellas, nor tents as induced subgraphs.

Proof. Wheels, 3-suns, rising suns, umbrellas and tents are not NHCA by Theorem 3.2.7.
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3.2 The structure of the HCA subclasses

For the converse, suppose that there are two arcs A1, A2 that cover a circular-arc model
M, and that M has an induced hole B1, . . . , Bk. Then, by Proposition 3.2.1, we can
either find a wheel in M as in Theorem 3.2.3 or A1, Bi, Bi+1 cover the circle for some
1 ≤ i ≤ k. In this last case, A1 is universal to all the arcs of the hole which also implies
that M contains an induced wheel. Then, as before, M is an interval model or M is
NCA. If M is NCA then the result follows from Theorem 3.2.7.

3.2.2 Proper Helly circular-arc graphs

Up to this point we have characterized which circular-arc (resp. HCA, NCA) graphs
admit an NHCA model and which NHCA graphs admit a PHCA model. In this section
we characterize which PCA graphs are also PHCA. For the proof we may use the same
arguments of Theorem 3.2.3 to show that every PCA model of a non-interval PHCA
graph is in fact a PHCA model. This would yield an elegant short proof. But instead,
we prefer to do a constructive proof that shows how can a PCA model of an interval
graph be transformed into a proper interval model. As we will see in Chapter 5, this
proof yields an O(n) time algorithm to transform a PCA model into a PHCA model.

Theorem 3.2.10. Let M be a PCA model of a graph G. Then the following are equiv-
alent:

(i) M is equivalent to a PHCA model.

(ii) M contains no induced submodel of W4 and S3.

(iii) U1(M) is HCA or U0(M) is a PIG model.

Proof.

(i) =⇒ (ii): neither W4 nor S3 are NHCA graphs by Theorem 3.2.3, thus M cannot
have induced submodels of them.

(ii) =⇒ (iii): let M be a PCA model, containing no induced submodels of W4 and
S3. By Lemma 2.4.7, M1 = U1(M) is an NPCA model. If M1 is not an HCA model,
Corollary 3.0.4 implies that M1 contains three arcs A1, A2, A3 covering C(M1). No
two arcs cover C(M1), thus we may assume that s(A1), t(A3), s(A2), t(A1), s(A3), t(A2)
appear in this order in a traversal of C(M1). First, we prove that one of the above
three arcs must be universal. Suppose the contrary. Then, there exist arcs B1, B2 and
B3 such that Bi does not intersect Ai, for i ∈ {1, 2, 3}. However, since M1 is a proper
model, it follows that Bi intersects Aj, Ak for {j, k} = {1, 2, 3} \ {i}. The latter leads
to a contradiction because the intersection graph of {Ai, Bi}i∈{1,2,3} is isomorphic to S3,
when B1, B2, B3 are pairwise disjoint, or it contains an induced W4. Consequently, one
of A1, A2, A3, say A1, is the only universal arc of M1.
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Figure 3.7: Proof of Theorem 3.2.10. If A1 is completely covered then G is not a PHCA
graph.

Next, we examine the arc A1 in M1. We will prove that there is no pair of arcs L,R such
that t(L) ∈ A1, s(R) ∈ A1, and s(R) precedes t(L) in a traversal of C(M) from s(A1).
To obtain a contradiction for this fact, assume the contrary and discuss the following
alternatives.

Case 1: L = A3. In this situation, R,A2, A3 are three arcs covering C. Because A1

is the unique universal arc of M1, we know that R,A2, A3 are not universal.
Consequently, as above, M1 contains a submodel of W4 or S3, a contradiction
(Figure 3.7(a)).

Case 2: R = A2. Similar to Case 1.

Case 3: L 6= A3 and R 6= A2. By Cases 1 and 2, above, it suffices to examine the
situation where s(R), t(L) ∈ (t(A3), s(A2)). Suppose L ∩ A2 = R ∩ A3 = ∅. In
this case, the arcs A1, A2, A3, L,R form a forbidden W4, impossible (Figure 3.7(b)).
Alternatively, let L ∩ A2 6= ∅. Then the arcs A2, L,R cover the circle and none
of them is the universal arc A1, an impossibility (Figure 3.7(c)). The situation
R ∩ A3 6= ∅ is similar.

By the above cases, we conclude that all the ending points must precede the beginning
points in (s(A1), t(A1)). Let t and s be the last ending point and the first beginning point
inside (s(A1), t(A1)), respectively. Taking into account that A1 is the only universal arc,
we conclude that no point of the segment (t, s) ⊂ A1 of C(M) can be contained in any
arc of M except A1. Hence M0 = M1 \ {A1} is a PIG model.

(iii) =⇒ (i): suppose first that M1 = U1(M) is an HCA model. By Lemma 2.4.4, we
can include in the model all the universal arcs that have been possibly removed from it,
obtaining a model equivalent to M that is both PCA and HCA.

Next, suppose that M0 = U0(M) is a PIG model and M1 is not an HCA model, thus
M0 6= M1. Since M0 6= M1 then it follows that M1 has some universal arc A. We
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3.2 The structure of the HCA subclasses

prove that M′ := M0 ∪ {A} is a PIG model equivalent to M1. By Lemma 2.4.7, M1 is
an NPCA model, thus there is exactly one extreme of each non-universal arc inside A.
Hence, A contains exactly one extreme of each non-universal arc. This means that A is
a universal arc of M′, and that M′ is an NPCA model equivalent to M1. On the other
hand, since M0 is an interval model, it follows that there is some point p ∈ A which is
crossed only by A in M1. Therefore, p is not crossed by any arc of M′, which implies
that M′ is an interval model as well. Summing up, M′ is a PIG model equivalent to
M1. Duplicating the universal arc of M′ we can include all the universal arcs that were
removed from M1, to obtain a PIG model of G.

The characterization in terms of forbidden subgraphs is depicted in the corollary below.

Corollary 3.2.11. A PCA graph is PHCA if and only if it contains no induced W4 and
no induced S3.

In the implication (ii) =⇒ (iii), the non-Helly PCA model M1 = U1(M) has a universal
arc A whose removal yields the interval model U0(M). This arc A can be replaced by
A, and then all the arcs of M\M1 can be inserted once again into M0 by duplicating
A as in (iii) =⇒ (i). The model so obtained is a PIG model equivalent to M. Thus,
if some PHCA graph admits a non-Helly PCA model then the graph is in fact a PIG
graph. The following corollary, which is the analogous of Corollary 3.2.5, reflects this
fact.

Corollary 3.2.12. Every PCA model of a non-interval PHCA graph is PHCA.

Proof. By Corollary 3.2.5, every PCA model of a non-interval PHCA graph is also
NHCA. Thus, the model is both PCA and HCA.

3.2.3 Unit Helly circular-arc graphs

Theorem 3.2.10 describes when can a PCA model be transformed into an equivalent
PHCA model. An almost verbatim copy of its proof can be used to characterize those
UCA models which are equivalent to some UHCA model. However, this characterization
can be done easily once Corollary 3.2.12 is known.

Theorem 3.2.13. A graph is UHCA if and only if it is PHCA and UCA. Moreover,
every UCA model of a non-interval UHCA graph is UHCA.

Proof. Clearly, every UHCA model is both PHCA and UCA. For the converse, let G be
a PHCA and UCA graph and observe that G contains no induced K1,3. If G is also an
interval graph, then it is a UIG graph by Theorem 3.1.1. If G is not an interval graph
then, by Corollary 3.2.12, every UCA model of G is also HCA.
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3 Subclasses of normal Helly circular-arc graphs

The partial forbidden induced subgraph characterizations of UHCA graphs are shown
below.

Corollary 3.2.14. A UCA graph is UHCA if and only if it contains no induced W4.

Proof. It follows from Theorems 3.2.13 and 2.4.6, Corollary 3.2.11, and the fact that
S3 = CI(3, 1).

Corollary 3.2.15. A PHCA graph is UHCA if and only if it contains no induced
CI(n, k) graph with n > 3k.

Proof. By Theorem 2.4.6, UCA graphs contain no induced CI(n, k) for n > 3k. For the
converse, let G be a PHCA graph with no induced CI(n, k) with n > 3k. By definition
(see Chapter 2), every CI(n, k) model with 2 < n < 3k has three arcs that together the
circle. Then, since CI(n, k) graphs are not interval graphs, it follows by Corollary 3.2.12
that CI(n, k) graphs with 2 < n < 3k are not PHCA. So, in G there is no induced
CI(n, k) for n > 2k. Thus, Theorem 2.4.6 and Corollary 3.2.14 imply that G is a UHCA
graph.

The whole picture of the CA class hierarchy is depicted in Figure 3.8. Each box of
the picture represents a subclass of circular-arc graphs. An upright edge from the box
corresponding to the class C1 to the box corresponding to the class C2 means that C1 is
properly contained in C2. Graphs that belong to C2 but not to C1 appear beside the edge
corresponding to the inclusion of C1 in C2, except for the edge between the CA and the
NCA classes since this family is unknown. Finally, the label O beside the edge between
the CA and HCA classes represents the family of obstacles that were defined by Lin and
Szwarcfiter in [LS06].

3.3 Some additional properties of the NHCA

subclasses

In this section we prove some properties of the normal Helly subclasses that might be
useful from an algorithmic point of view. Some of these were presented in Section 3.1 as
natural generalizations of properties of interval graphs.
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Figure 3.8: The class hierarchy of circular-arc graphs.
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3.3.1 Counting NPHCA models of PHCA graphs

The first problem is to count how many NPHCA models a PHCA graph admits. This
question of how many representations of a graph are there has been solved for both
PIG graphs and co-connected PCA graphs; Roberts [Rob69] proved that the PIG model
of a connected PIG graph is unique up to full reversal, while Huang [Hua95] proved
that the PCA model of a connected and co-connected PCA graph is unique up to full
reversal. Besides the theoretical interest behind these questions, it turns out that the
uniqueness of PIG models is strongly used to solve the recognition problem. In fact,
interval graphs can be recognized in O(1) time per edge insertion due to this property
(see [DHH96, HSS01]). Because of the strong relationship between PIG and PHCA
graphs, it should come at no surprise that there is a unique NPHCA model of every
PHCA graph, up to full reversal. Even more, this property can be exploited so as to
generalize the PIG recognition algorithms to the PHCA case, with not much effort (see
Chapter 6).

Before counting the number of NPHCA models, we take a little detour to prove a property
of PCA models. Recall that everyXCA graph admits a twin-consecutiveXCA model. It
turns out that PCA graphs admit only twin-consecutive models, except for the universal
arcs. This is useful for non-interval PHCA models, because they have no universal arcs.

Theorem 3.3.1. Every PCA model with at most one universal arc is twin-consecutive.

Proof. Let A1 and A2 be a pair of twin arcs of a PCA model M and assume, w.l.o.g., that
s(A1), s(A2), t(A1), and t(A2) appear in this order in a traversal of C(M). To obtain a
contradiction, suppose that s(A1) and s(A2) are not in the same s-sequence. So, there is
some ending point t, of some arc A = (s, t), between s(A1) and s(A2). Since A1 is not uni-
versal then, by Lemma 2.4.7, it follows that A1 and A do not cover the circle. Also, since
M is proper then s, s(Ai), t must appear in this order in a traversal of C(M). Finally,
since A1 and A2 are twins, then A2 ∩A 6= ∅. Summing up, s(A1), t, s(A2), t(A1), s, t(A2)
must appear in this order in C(M). Since A1 is not universal and A1 and A2 are twins,
then there is some arc whose both extremes lie in (t(A2), s(A1)). But this is a contra-
diction to the fact that M is proper, because this arc is contained in A. Therefore,
s(A1) and s(A2) lie in the same s-sequence. Analogously, t(A1) and t(A2) lie in the same
t-sequence.

Now, suppose that there is some beginning point s of an arc A = (s, t) in the segment
(s(A1), s(A2)). Then, t must belong to the segment (t(A1), t(A2)) since otherwise A is
either contained in A1 or containing A2. In other words, A is a twin of both A1 and
A2. Analogously, if the ending point of some arc lies between t(A1) and t(A2) then its
beginning point lies between s(A1) and s(A2). Hence, every maximal set of twin arcs is
consecutive in M, i.e., M is twin-consecutive.
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We record the results by Roberts and Huang for easy of reference.

Theorem 3.3.2 ([Rob69]). Every connected PIG graph admits at most two PIG models,
one the reverse of the other.

Theorem 3.3.3 ([Hua95]). Every connected PCA graph whose complement is either
connected or non-bipartite admits at most two PCA models, one the reverse of the other.

We are now ready to prove the uniqueness of normal PHCA models.

Theorem 3.3.4. Every connected PHCA graph admits at most two NPHCA models,
one the reverse of the other.

Proof. The proof is by induction on the number of twin vertices. Suppose, for the base
case, that G contains no pair of twin vertices. If G is connected or it is non-bipartite
then the result follows from Theorem 3.3.3. Then, it is enough to deal with the case in
which G has k > 1 components H1, . . . , Hk, all of which are bipartite. We denote by Hi

the subgraph of G induced by the vertices of Hi, for 1 ≤ i ≤ k. Since G has no twin
vertices and it is W4-free by Corollary 3.2.11, then it follows that k = 2. Analyze the
following two cases:

Case 1: |H1| ≥ |H2| > 1. If H1 contains an induced path of four vertices v1, v2, v3, v4

then v1, v2, v3 together with a pair of non-adjacent vertices of H2 induce a W4 in
G, a contradiction to Corollary 3.2.11. Then, H1 is bipartite and H1 contains no
twins and no paths of four vertices. Thus H1 if isomorphic to P2. Then, by the
case hypothesis, H2 is also isomorphic to P2. Consequently, G is isomorphic to C4,
which admits a unique circular-arc model.

Case 2: |H2| = 1. In this case G contains no hole, or otherwise the hole and the vertex
of H2 would induce a wheel. Let M be an NPHCA model of G. Since G contains
no hole, it follows some point of C(M) is not covered by the arcs of M. In other
words, every NPHCA model of G is a PIG model. Hence, by Theorem 3.3.2, G
admits two NPHCA models, one the reverse of the other.

For the inductive case, observe that either G contains no universal vertices or every
NPHCA model of G is PIG as in Case 2 above. In the former case, every NPHCA model
of G is twin-consecutive by Theorem 3.3.1, thus there is a unique model by the inductive
hypothesis. In the latter case, G admits a unique PIG model by Theorem 3.3.2.
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3.3.2 Circular-ones properties of the clique matrix

For the second part of this section, we study the relationship between PHCA graphs and
the circular-ones properties of the clique matrix. A 0-1 matrix M has the consecutive-
ones property for rows if its columns can be ordered so that, in every row, the ones
are consecutive. Matrix M has the circular-ones property for rows if the columns can
be ordered so that, in every row, either the zeros or the ones are consecutive. The
consecutive and circular-ones properties for columns are defined analogously. That is,
M has the consecutive-ones property for columns ifMT has the consecutive-ones property
for rows, while M has the circular-ones property for columns if MT has the circular-ones
property for rows. Here MT is the transpose matrix of M .

Let C1, . . . , Ck be the cliques of a graph G and v1, . . . , vn be its vertices. The clique-
vertex incidence matrix of G, or simply the clique matrix of G, is the 0-1 matrix Q(G)
with k rows and n columns where Q(G)i,j = 1 if and only if vertex vj belongs to clique
Ci, for every 1 ≤ i ≤ k, 1 ≤ j ≤ n.

We mentioned in Section 3.1 that Q(G) has the consecutive-ones (resp. circular-ones)
property for columns if and only if G is an interval graph (resp. HCA graph). The
stronger condition of Q(G) having also the consecutive-ones property for rows is equiva-
lent to the condition of G being a proper interval graph. We prove the analogous result
for the circular-ones property, i.e., Q(G) has the circular-ones property for both rows
and columns if and only if G is a PHCA graph.

Theorem 3.3.5. A graph G is a PHCA graph if and only if Q(G) has the circular-ones
property for both rows and columns.

Proof. Let M be a PHCA model of G and let A1, . . . , An be the arcs of M in order of
appearance of its beginning points. Since M is HCA then each clique is represented by
some clique point. Let p1, . . . , pk be the clique points in circular order. Define Q as the
k×n matrix where Qi,j = 1 if Aj crosses pi, and 0 otherwise. By definition, Q is a clique
matrix of G. Since we used the same construction as Gavril did in [Gav74], it follows
that Q has the circular-ones property for columns. We now show that Q has also the
circular-ones property for rows. Let r be some row of Q and represent by ri the i-th
column of r. Suppose that the ones in r are not all consecutive. Then, there exist a, b, c
such that ra = rc = 1, rb = 0 and 1 ≤ a < b < c ≤ n. In other words, the clique point pi

is crossed by Aa and Ac, but not by Ab. Since s(Aa), s(Ab), s(Ac) appear in this order in
M and M is proper, then s(Aa), pi, t(Ac), s(Ab), t(Ab) appear in this order in M. Even
more, since M is proper, it follows that Ad crosses pi for every d such that 1 ≤ d ≤ a or
c ≤ d ≤ n. Thus, every zero in r is consecutive, and so Q has the circular-ones property
for rows.

For the converse, we show that if G is not a PHCA graph then Q(G) does not have the
circular-ones property for either the rows or the columns. If G is not an HCA graph, then
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Figure 3.9: From left to right, the clique matrices of K1,3, W4, W5 and S3 are shown.

Q(G) does not have the circular-ones property for columns [Gav74]. Suppose then that
G is HCA and it is not PHCA. Then, by Corollary 3.2.4 and Theorem 3.1.2, G contains
a K1,3, a W4, a W5, or an S3 as an induced subgraph. Clique matrices for these graphs
are depicted in Figure 3.9. By inspection, none of these matrices has the circular-ones
property for rows. Thus, asQ(G) contains at least one (permutation) of these matrices as
a submatrix, it follows that Q(G) does not have the circular-ones property for rows.

3.3.3 Graph orientations and vertex enumerations

It is easy to see that in any NHCA model M, the submodel induced by the closed
neighborhood of some arc is in fact an interval model. Hence, if G is an NHCA graph,
then N [v] is an interval graph for every v ∈ V (G). The converse does not hold; the
umbrella is not an NHCA graph, but the closed neighborhood of each of its vertices is an
interval graph. Nevertheless, it is possible to give a necessary and sufficient condition that
reflects the fact that NHCA graphs are “locally interval”. This “locally interval” property
is based on interval vertex orders, interval enumerations and out-straight orientations.
We begin by introducing all these notions (see also [BJG01]).

An interval vertex order of a graph G is a linear ordering v1, . . . , vn of V (G) such that,
for every 1 ≤ i ≤ n, vi is adjacent to vi+1, . . . , vj and is not adjacent to vj+1, . . . , vn,
for some i ≤ j ≤ n. As it was proved by Olariu in [Ola91], a graph is an interval
graph if and only if it admits an interval vertex order. Interval vertex orders can also be
defined in terms of vertex enumerations and graph orientations. An oriented graph D
is out-straight if there is a linear ordering v1, . . . , vn of V (D) such that, for every vertex
vi, N

+[vi] = Lin[vi, vi+r], where r = d+(vi). The linear ordering v1, . . . , vn is referred to
as an out-straight enumeration of D. Note that there is a one-to-one mapping between
graphs with interval vertex orders and out-straight oriented graphs. Indeed, if G is
a graph with an interval vertex order v1, . . . , vn, then the digraph D that is obtained
by orienting each edge so that vi −→ vj if and only if vivj ∈ E(G) and i < j is an
out-straight orientation of G (see Figure 3.10). Moreover, v1, . . . , vn is an out-straight
enumeration of D.
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Figure 3.10: An interval graph and its corresponding out-straight orientation. The or-
dering v1, . . . , v6 is an interval vertex order of the graph and an out-straight
enumeration its orientation.

The most common way to generalize the definition of out-straight enumerations into
circular orderings is to exchange the linear ordering v1, . . . , vn with a circular ordering.
That is, an oriented graph D is out-round if there is a circular ordering v1, . . . , vn of
V (D) such that, for every vertex vi, N

+[vi] = [vi, vi+r] where r = d+(vi). The circular
ordering v1, . . . , vn is referred to as an out-round enumeration of D. Figure 3.11 shows
three examples of out-round oriented graphs.

Although out-round oriented graphs are a natural generalization of out-straight oriented
graphs, there is a key property about the scopes of the vertices that is completely lost.
Let φ = v1, . . . , vn be an ordering (either linear or circular) of V (D) for an oriented graph
D. For vi ∈ V (D), define the leftmost neighbor of vi in φ as the vertex vl ∈ N−[v] that
appears last when traversing φ from vi in reverse order. Similarly, define the rightmost
neighbor of vi in φ as the vertex vr ∈ N+[v] that appears last when traversing φ from vi

in forward order. The scope of vi in φ is the range [vl, vr] where vl and vr are the leftmost
and rightmost neighbors of vi in φ (see Figure 3.11 (c)). (Recall that ranges are linear
orderings by definition.) In other words, the scope of vi is the unique range S = [vl, vr]
such that N [vi] ⊆ S, vl ∈ N−[vi] and vr ∈ N+[vi] (if such a range exists).

It is easy to see that if φ = v1, . . . , vn is an out-straight enumeration of an oriented graph
D, then the scope S of the vertex vi is an out-straight enumeration ofD[S], for every vi ∈
V (D). This property does not hold for out-round oriented graphs. The oriented 4-wheel
graph D in Figure 3.11 (a) is out-round, but the scope S of its universal vertex contains
an induced hole and, therefore, D[S] is not out-straight. We define the locally out-
straight oriented graphs specifically to restore this property back. That is, an oriented
graph D is locally out-straight if there is an out-round enumeration φ = v1, . . . , vn of D
such that S is an out-straight enumeration of D[S], for every vi ∈ V (D) with scope S in
φ. As before, the enumeration φ is referred to as a locally out-straight enumeration of D.
The graph depicted in Figure 3.11 (b) is locally out-straight and it is not out-straight.

The next two theorems relate the out-round and the locally out-straight oriented graphs
with the NCA and NHCA graphs, respectively.
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Figure 3.11: Examples of round oriented graphs. An out-round orientation of the 4-wheel
graph is depicted in (a). Figure (b) shows an orientation of a non-interval
graph together with a locally out-straight enumeration φ = v1, . . . , v7. The
scope of v6 in φ appears at (c).

Theorem 3.3.6. A graph is an NCA graph if and only if it admits an out-round orien-
tation.

Proof. Let M be an NCA model of a graph G with arcs A1, . . . , An where s(A1), . . .,
s(An) appear in this order in a traversal of C(M). For 1 ≤ i ≤ n, call vi to the vertex of
G that corresponds to Ai. Define D as the digraph with vertex set V (G), where vi −→ vj

if and only if Ai crosses s(Aj), for every 1 ≤ i, j ≤ n. We claim that D is an out-round
orientation of G with φ = v1, . . . , vn as an out-round enumeration. Fix i and j such that
1 ≤ i, j ≤ n. First, notice that s(Ai) ∈ Aj only if s(Aj) 6∈ Ai because M is NCA. Thus,
vi −→ vj if and only if vi is adjacent to vj and vj −→6 vi which implies that D is an
orientation of G. Second, if vi −→ vj then, since s(Aj) ∈ Ai, it follows that vi −→ vk

for every vk ∈ (vi, vj]. Hence N+[vi] = [vi, vi+r] where r = d+(vi), implying that φ is an
out-round enumeration of D.

For the converse, let φ = v1, . . . , vn be an out-round enumeration of some orientation D
of G. Pick n points s(1), . . . , s(n) of a circle C in such a way that s(1), . . . , s(n) appear
in this order in a traversal of C. For each vertex vi ∈ V (D), define Ai as the arc of
C whose beginning point is s(i) and whose ending point lies in (s(i + ri), s(i + ri + 1))
where ri = d+(vi). We claim that M = (C, {Ai}1≤i≤n) is an NCA model of G. Fix i
and j such that 1 ≤ i, j ≤ n. By definition, vi −→ vj if and only if i < j ≤ i + ri, thus
Ai crosses s(j) = s(Aj) if and only if vi −→ vj which implies that M is a circular-arc
model of G. On the other hand, if vi −→ vj then vj −→6 vi, hence if Ai crosses s(Aj)
then Aj does not cross s(Ai). That is, M is an NCA model of G.

Theorem 3.3.7. A graph is an NHCA graph if and only if it admits a locally out-straight
orientation.

Proof. Let M be an NHCA model of a graph G with arcs A1, . . . , An where s(A1), . . .,
s(An) appear in this order in a traversal of C(M). Define the set {vi}1≤i≤n, the orienta-
tion D of G, and the out-straight enumeration φ of D as in the proof of Theorem 3.3.6.
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We claim that D is actually a locally out-straight orientation of G with φ as a locally
out-straight enumeration. Fix i such that 1 ≤ i ≤ n, and take a small enough ǫ. Let Al

be the arc crossing si + ǫ whose beginning point is farthest from si in a counterclockwise
traversal of C(M). Similarly, let Ar be the arc crossing ti − ǫ whose beginning point
is nearest to ti in a counterclockwise traversal of C(M). By the way that φ is defined,
it follows that vl and vr are the leftmost and rightmost neighbors of vi in φ. Hence,
S = [vl, vr] is the scope of vertex vi in φ.

Since s(A1), . . . , s(An) appear in this order in M, it follows that vj ∈ S if and only if
s(Aj) ∈ (sl − ǫ, ti + ǫ). Thus, Aj can not cross sl, or otherwise Aj together with Al

and Ai would cover the circle. Therefore, the submodel M′ of M induced by the arcs
Al, . . . , Ar is an interval model of G[S]. This implies that S is an interval vertex order
of G[S] and, hence, it is also a locally out-straight enumeration of D[S]. Consequently,
φ is a locally out-straight enumeration of D as claimed.

For the converse, let G be a graph that admits a locally out-straight orientation. By
Theorem 3.3.6, G must be an NCA graph. So, it is enough to prove that G contains no
wheels, 3-suns, umbrellas, rising suns, nor tents as induced subgraphs, by Corollary 3.2.8.
It is not hard to see that the class of graphs that admit a locally out-straight orientation
is hereditary, hence we need only to prove that wheels, 3-suns, umbrellas, rising suns,
and tents admit no locally out-straight orientations. We shall do this for the proof.

For the first case, let D be an out-round orientation of a wheel and take φ as an out-
round enumeration of D. Clearly, if v is the universal vertex of the wheel and S is its
scope then N [v] = V (D) ⊆ S. But then D[S] is not out-straight because it contains
a hole, implying that φ is not a locally out-straight enumeration. Therefore, D is not
locally out-straight.

For the second case, let D be an out-round orientation of the n-rising sun graph with n ≥
4. Recall that the n-rising sun is the graph obtained by inserting two universal vertices
v1 and vn into a path P = v2, . . . , vn−1, and then inserting three vertices w1, wn−1, wn

such that wi is adjacent only to vi and vi+1, for i ∈ {1, n − 1, n} (see Figure 3.12 (a)).
Suppose, to obtain a contradiction, that D admits a locally out-straight enumeration
φ. It is not hard to see that the induced path w1, P, wn−1 admits only the following
out-round enumerations, all of which are out-straight:

• ρ = w1, v2, . . . , vn−1, wn−1,

• γ = v2, w1, v3, . . . , vn−1, wn−1,

• ρ′ = wn−1, vn−1, . . . , v2, w1, and

• γ′ = vn−1, wn−1, vn−2, . . . , v2, w1.

Each of these enumerations corresponds to one of the four possible out-straight orien-
tations of a path (see Figures 3.12 (b) and (c)). So, one of these enumerations must
appear in this order inside φ. Furthermore, a vertex z1 in φ′ has a directed edge to
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Figure 3.12: The n-rising sun graph and the orientations corresponding to ρ and γ.

another vertex z2 in φ′ only if z1 appears before z2 in φ′. Enumerations ρ and ρ′ are
symmetric, in the sense that the former is obtained from the latter by exchanging the
labels of the vertices. This is also true for enumerations γ and γ′, so we need to consider
only two cases, either φ′ = ρ or φ′ = γ. For the sake of simplicity, define u1 = w1 and
u2 = v2 in ρ, and u1 = v2 and u2 = w1 in γ. Thus, φ′ = u1, u2, v3, . . . , vn−1, wn−1. Denote
by l(v) and r(v) the leftmost and rightmost neighbors of v in φ for every v ∈ V (D). The
following claims analyze the positions of wn and vn in φ.

Claim 1: wn 6∈ [u1, wn−1] in φ. Otherwise, there would be two adjacent vertices z1 and
z2 such that z1, z2 appear in this order in φ′ and z1, wn, z2 appear in this order in
φ. But this is impossible, because z1 −→ z2 and z1 −→6 wn.

Claim 2: vn ∈ [w1, wn−1] in φ. Again, suppose otherwise, so in particular vn 6∈ [w1, v3]
in φ. Vertices v3 and vn are adjacent, so either vn −→ v3 or v3 −→ vn. The former
is impossible because it implies that w1 ∈ [vn, r(vn)], contradicting the fact that
vn is not adjacent to w1. In the latter case, v2 −→6 vn because wn−1 6∈ [v2, r(v2)].
But this is also impossible since v3 ∈ [l(vn), vn], v2 ∈ [vn, r(vn)] and v2 −→ v3,
contradicting the fact that [l(vn), r(vn)] is out-straight.

By Claims 1 and 2, w1, vn, wn−1, wn must appear in this order in a traversal of φ. So,
vn −→ wn in D because w1 6∈ [wn, r(wn)] or otherwise φ would not be out-round. Hence,
v1, wn−1, wn can not appear in this order in the range [l(vn), r(vn)], because v1 is adjacent
to wn and not to wn−1. Consequently, vn, wn−1, v1 appear in this order in [l(vn), r(vn)].
Analogously, v2, wn−1, v1 can not appear in this order in [l(vn), r(vn)], so vn, wn−1, v2 must
appear in this order in [l(vn), r(vn)]. Recall that v2 −→ v3 in D, thus vn, wn−1, v2, v3 must
appear in this order in [vn, r(vn)] and, therefore, vn −→ v3. But since φ′ is either ρ or
γ, it follows that vn, wn−1, u1, u2, v3 appear in this order in φ. This is a contradiction to
the fact that φ is out-round, because vn −→ v3 but vn −→6 w1 ∈ {u1, u2}.

Finally, by using backtracking arguments, it can be proved that there are no locally
out-straight orientations of the 3-sun, the tent, and the umbrella.

47



3 Subclasses of normal Helly circular-arc graphs

bv1

b
v2

b
v3

b
v4 b v5

b
v6

b
v7

b
v8

Figure 3.13: Two out-round orientations of a universal-free non-interval NCA graph (the
edge between v4 and v8 can be oriented both ways). We can see that φ =
v1, . . . , v8 is an out-round enumeration of both orientations.

As we already argued, every interval graph G admits an out-straight orientation. We
can encode this information with the orientation D and its out-straight enumeration φ.
But, we can also encode this information only with an enumeration φ. This is because
if φ = v1, . . . , vn, then vi −→ vj in D if and only if vi is adjacent to vj in G and i < j.
That is, we do not really need to say who is D once φ and G are given, i.e., φ and G are
an implicit representation of D. This is what Olariu did in [Ola91], he encoded D with
G and an interval vertex order of G without using any kind of orientations.

This nice encoding of out-straight orientations is lost for out-round digraphs. That
is, there are NCA graphs that admit two different out-round orientations that share the
same out-round enumeration, as it is depicted in Figure 3.13. So, this is another example
of a property that holds for interval graphs and it does not hold for NCA graphs. The
property can be restored, by restricting the attention to the non-interval NHCA graphs.
We show how to do this in the following proposition, but before we need one definition.
For a circular ordering φ = v1, . . . , vn of the vertices of G, define −→φ as the relation
on V (G) such that vi −→φ vj if and only if vi is adjacent to all the vertices in [vi+1, vj]
(1 ≤ i, j ≤ n).

Proposition 3.3.8. Let D be a locally out-straight orientation of a non-interval graph
G, and let φ = v1, . . . , vn be one of its locally out-straight enumerations. Then, for
1 ≤ i, j ≤ n, vi −→ vj in D if and only if vi −→φ vj.

Proof. If vi −→ vj in D and vi −→φ6 vj, then there is a vertex vh ∈ [vi, vj] such that
vi −→6 vh in D. Then, φ is not out-round.

For the converse, suppose that vi −→φ vj and yet vi −→6 vj in D. Let r = i + d+(vi).
Since φ is locally out-straight, then [vi, vr] ⊂ [vi, vj]. By definition of −→φ, vi is adjacent
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to all the vertices in [vi+1, vj], thus vi is adjacent to vr+1. Then, vr+1 −→ vi in D, because
D is an orientation of G and vi −→6 vr+1. Let M be the NCA model that is obtained
from D and φ as in the proof of Theorem 3.3.6. By Theorem 3.3.7 and Corollary 3.2.5,
G is an NHCA graph and M is an NHCA model of G. Call Aa to the arc of M that
corresponds to the vertex va, for every 1 ≤ a ≤ n. As in Theorem 3.3.6, the arc Aa

crosses s(Ab) if and only if va −→ vb in D. Then, Ai crosses s(Ar) and Ar+1 crosses
s(Ai) in M. Since M is NHCA, then it follows that no arc crosses both t(Ai) and
s(Ar+1). Thus, no arc of M crosses s(Ar+1) and, therefore, M is an interval model of
G.

By the above proposition, there is no need to say who is D once a non-interval NHCA
graph G and a circular ordering φ of V (G) are given. We can think of φ as a some sort
of locally out-straight enumeration of G, instead of thinking φ as a locally out-straight
enumeration of an orientation of G. To make this more formal, let φ be a circular
ordering of V (G). Define the φ-orientation of G as the digraph D that has the same
vertices as G and such that vi −→ vj in D if and only if vi −→φ vj. Then, we have the
following definition, which is similar to interval vertex orders.

Definition 3.1. Let φ be a circular ordering of V (G) and D be the φ-orientation of G.
Say that φ is an NHCA order of G if and only if φ is a locally out-straight enumeration
of D and D is an orientation of G.

To see the analogy between interval vertex orders and NHCA orders, it is better to
rephrase the definition of interval vertex orders. An interval vertex order is a linear
ordering φ = v1, . . . , vn of V (G) such that φ is an out-straight enumeration of the φ-
orientation of G. The condition saying that the φ-orientation is also an orientation of G
is not required, because if vi −→φ vj then vj −→φ6 vi. Why is this condition required for
NHCA orders?

Proposition 3.3.8 guaranties that if G is a non-interval NHCA graph and φ is a locally
out-straight enumeration of an orientation of G then φ is an NHCA order of G. However,
this is not true when G is an interval graph. That is, φ can be a locally out-straight
enumeration of an orientation of G but not an NHCA order of G. The problem is that,
in this case, the φ-orientation of G could not be an orientation of G at all. This is true
even when G is universal-free, as is depicted in Figure 3.14. For this reason is that we
ask the φ-orientation to be an orientation of G in Definition 3.1.

The problem to relate interval vertex orders with NHCA orders is that the former are
linear orderings whereas the latter are circular orderings. So, in an interval vertex order
φ, we may have a vertex w (as v5 in Figure 3.14) which is adjacent to all the vertices to
the right of it, and it is also adjacent to the leftmost vertex v (v1 in Figure 3.14). This
implies that the interval vertex order is not an NHCA order because v −→φ w −→φ v.
When G is universal-free, there is always a non-neighbor z of w, between v and w, that
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Figure 3.14: The φ-orientation of G, for φ = v1, . . . , v6, is not an orientation of G because
v1 −→φ v5 and v5 −→φ v1. However, φ is an out-straight enumeration of
the orientation D of G.

can be put as the leftmost vertex (as v2 in Figure 3.14). This vertex is what we call a
messy vertex. If we move the messy vertices to the leftmost position, then we will obtain
an NHCA order. In the example of Figure 3.14 such enumeration is v2, v1, v3, v4, v5, v6.
We now formalize this idea.

Let φ = v1, . . . , vn be an interval vertex order of some graph G. Say that vi is a messy
vertex of φ if there is a vertex vj, j > i, such that v1 is adjacent vj and vj is not adjacent
to vi. A messy-free interval vertex order is an interval vertex order that has no messy
vertices.

Proposition 3.3.9. Every universal-free interval-graph admits a messy-free interval ver-
tex order.

Proof. Suppose that G is a universal-free interval graph that admits no messy-free in-
terval vertex orders. Take the interval vertex order φ = v1, . . . , vn of G that has the
fewer messy vertices. Let vi be the messy vertex with the lowest index and define
φ′ = vi, [v1, vi−1], [vi+1, vn]. By the minimality of i and the fact that v1 is adjacent to all
the vertices in [v2, vi], it follows that [v1, vi] is a complete set. Hence, for every 1 ≤ k ≤ i,
N [vk] = [v1, vr(k)] where r(k) = d(vk)+1 which implies that φ′ is an interval vertex order
of G. Again, by minimality of i, it follows that r(k) > r(i) for every 1 ≤ k < i. So,
v1, . . . , vi−1 are not messy vertices of φ′. Finally, if vk is messy in φ′ then vk is messy
in φ because r(1) > r(i). Hence, φ′ contains at least one messy vertex less than G, a
contradiction.

After moving all the messy vertices to the left as in the proposition above, we have a
messy-free interval vertex order. Such an interval vertex order is an NHCA order as it
is shown in the next theorem.

Theorem 3.3.10. If φ′ = v1, . . . , vn is a messy-free interval vertex order of a universal-
free graph G, then the circular ordering φ = v1, . . . , vn is an NHCA order of G.
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Proof. Suppose, to obtain a contradiction, that vi −→φ vj for some 1 ≤ j < i ≤ n. Then,
by the definition of −→φ, it follows that vi is adjacent to all the vertices in [vi+1, vj]. In
particular, vi is adjacent to v1 in G and, since φ′ is an interval vertex order, it follows
that v1 is adjacent to all the vertices in [v2, vi]. Therefore, since there are no messy
vertices in φ′, we obtain that vk is adjacent to vi in G, for every 1 ≤ k < i. But this
implies that vi is a universal vertex, a contradiction.

Suppose now that vi −→φ6 vj for 1 ≤ j < i ≤ n. Then, the φ-orientation D is in fact
an out-straight digraph that has φ′ as an out-straight enumeration. That is, D is an
orientation of G and φ is a locally out-straight enumeration of D.

The main theorem about NHCA orders is the following.

Theorem 3.3.11. A universal-free graph is NHCA if and only if it admits an NHCA
order.

Proof. If G is a non-interval graph then it admits an NHCA order by Proposition 3.3.8
(cf. above). Otherwise, G admits a messy-free interval vertex order by Proposition 3.3.9,
and the circular version of this order is an NHCA order of G by Theorem 3.3.10.

The converse of the theorem follows from the fact that graphs admitting an NHCA
order have an orientation as a locally out-round digraph, hence, by Theorem 3.3.7, these
graphs are NHCA.

Now that we are done with the NHCA orders, consider once again the universal-free
non-interval graph G in Figure 3.13. It is not hard to see that G admits exactly two
isomorphic out-round orientations, both depicted in Figure 3.13. The unique out-round
enumeration φ these orientations is v1, . . . , v8. It turns out that the φ-orientation of G is
not an orientation of G. Thus, as we already argued informally, φ and G are not enough
to encode the orientation D; even if φ and G are given, we still have to say who is the
rightmost neighbor of every vertex v of G.

Up to this point we have described interval, NHCA, and NCA graphs in terms of orien-
tations and enumerations. We showed that for interval graphs and universal-free NHCA
graphs one can get rid of the orientation by using interval vertex orders and NHCA
orders, respectively. For interval graphs this is a natural thing because there is no need
of the orientation to define interval vertex orders. For universal-free NHCA graphs,
this is somehow artificial because the φ-orientation is not always an orientation. Even
worst, for some universal-free NCA graphs this is impossible. It is also interesting to
note what happens when interval vertex orders are generalized into circular orderings
without orienting the graph. Say that a circular ordering φ = v1, . . . , vn of V (G) is a
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Figure 3.15: Examples of straight (a), locally straight (b) and round (c) oriented graphs.

circular-arc ordering whenever, for 1 ≤ i, j ≤ n, if vi is adjacent to vj then vi is adja-
cent to vi+1, . . . , vj or vj is adjacent to vj+1, . . . , vi. In this case, a graph G admits a
circular-arc ordering if and only if G is a circular-arc graph [Tuc74].

PIG, PCA and PHCA graphs can also be described in terms of orders, orientations and
enumerations. The analogous of an interval vertex order is called a PIG order. A PIG
order of a graph G is a linear ordering φ = v1, . . . , vn of V (G) such that, for every
1 ≤ i ≤ n, there exist two non-negative values l, r such that N [vi] = Lin[vi−l, vi+r] and
both Lin[vi−l, vi] and Lin[vi, vi+r] are complete sets. Looges and Olariu [LO93], and
Huang [Hua92] independently proved that G is a PIG graph if and only if it admits
a PIG order. As before, this condition can be described in terms of orientations and
enumerations. An oriented graph D is straight if there is a linear ordering v1, . . . , vn of
V (D) such that, for every vertex vi, N

−[vi] = Lin[vi−l, vi] and N+[vi] = Lin[vi, vi+r],
where l = d−(vi) and r = d+(vi) (see Figure 3.15 (a)). As usual, the ordering v1, . . . , vn

is called a straight enumeration of D. Deng et al. [DHH96] (see also [Hua92]) proved
that G is a PIG graph if and only if it admits an straight orientation. Furthermore, φ is
a PIG order of G if and only if φ is a straight enumeration of the φ-orientation of G.

As before, straight oriented graphs can be generalized either as locally straight oriented
graphs or as round oriented graphs. An oriented graph D is round if there is a circular
ordering v1, . . . , vn of V (D) such that N−[vi] = [vi−l, vi] and N+[vi] = [vi, vi+r], for every
vertex vi with l = d−(vi) and r = d+(vi). When the scope S of each vertex is a straight
enumeration of D[S], then D is also a locally straight oriented graph. As before, the
circular orderings corresponding to the round and locally straight oriented graphs are
called round enumerations and locally straight enumerations, respectively. Examples of
straight, locally straight and round oriented graphs are depicted in Figure 3.15. Hell
and Huang [HH95] (see also [Skr82]) proved that the class of PCA graphs is exactly the
class of graphs that admit a round orientation. As with NCA graphs, we can restore the
Helly condition of PIG graphs by restricting the attention to locally straight graphs.

Theorem 3.3.12. A graph is a PHCA graph if and only if it admits a locally straight
orientation.
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Proof. Let M be an NPHCA model of a graph G and define D and φ = v1, . . . , vn as
in the proof of Theorem 3.3.7. By Theorem 3.3.7, the scope S of each vertex vi in φ
is an out-straight enumeration of D[S], for every 1 ≤ i ≤ n. Also, as in the proof of
Theorem 3.3.7, the submodel M′ of M induced by the vertices of S is an interval model
of G[S]. Since M′ is also PCA then M′ is a PIG model and so S is in fact a PIG order
of G[S]. Therefore, S is a straight enumeration of D[S] as well.

For the converse, let G be a locally straight orientable graph. Since locally straight
oriented graphs are locally out-straight, then G is an NHCA graph by Theorem 3.3.7.
Thus, it is enough to see that G contains no induced K1,3 by Theorem 3.1.2. But, since
the class of locally straight orientable graphs is hereditary, it suffices to prove that no
orientation of K1,3 is locally straight. This is clearly true because the K1,3 graph admits
no round orientation.

A directed-triangle of a digraph D is a triple v1, v2, v3 ∈ D such that v1 −→ v2, v2 −→ v3,
and v3 −→ v1. Locally straight orientations can be characterized in terms of directed
triangles. The following theorem is a corollary of Theorem 3.3.12, and it will be taken
as an alternative definition of locally straight orientations, without further references.

Theorem 3.3.13. A round oriented graph is locally straight if and only if it contains no
directed-triangle.

To end this chapter, we discuss the implicit encodings of round and locally straight
oriented graphs. As for NHCA graphs, the orientation D of G can be implicitly encoded
with a round enumeration of D, when G is a universal-free PCA graph. In fact, D is
isomorphic to the φ-orientation of G in this case, as in Proposition 3.3.8. The proof is a
simplification of the one in Proposition 3.3.8.

Proposition 3.3.14. Let D be a round orientation of a universal-free graph G, and let
φ = v1, . . . , vn be one of its round enumerations. Then, for 1 ≤ i, j ≤ n, vi −→ vj in D
if and only if vi −→φ vj.

Proof. If vi −→ vj in D and vi −→φ6 vj then there is a vertex vh ∈ [vi, vj] such that
vi −→6 vh in D. But then φ is not out-round.

For the converse, suppose that vi −→φ vj and yet vi −→6 vj in D. Let r = i + d+(vi).
Since φ is round, then [vi, vr] ⊂ [vi, vj]. By the definition of −→φ, vi is adjacent to all
the vertices in [vi+1, vj], thus vi is adjacent to vr+1. Then, vr+1 −→ vi in D, because D is
an orientation of G and vi −→6 vr+1. But then, since φ is round, it follows that vk −→ vi

for every vk ∈ [vr+1, vi−1], i.e., vi is universal.
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3 Subclasses of normal Helly circular-arc graphs

This proposition can be used to define PCA orders in a similar way as NHCA orders.
However, observe that in this case if vi −→φ vj then vj −→φ6 vi. Thus, we need not to
ask for the φ-orientation to be an orientation of G. In fact, we do not have to use an
orientation at all. Let φ = v1, . . . , vn be a circular order of G. For every 1 ≤ i ≤ n,
denote by r(i) the maximum value such that vi is adjacent or equal to all the vertices
of [vi, vi+r(i)]. Similarly, denote by l(i) the maximum value such that vi is adjacent or
equal to all the vertices of [vi−l(i), vi]. In other words, vi−l(i) and vi+r(i) are the leftmost
and rightmost neighbors of vi in the φ-orientation. PCA and PHCA orders are defined
as follows.

Definition 3.2. Let φ = v1, . . . , vn be a circular ordering of V (G). Say that φ is a PCA
order of G if and only if N [vi] = [vi−l(i), vi+r(i)] and both [vi−l(i), vi] and [vi, vi+r(i)] are
complete sets, for every vi ∈ φ.

Definition 3.3. Let φ = v1, . . . , vn be a circular ordering of V (G). Say that φ is a
PHCA order of G if and only if N [vi] = [vi−l(i), vi+r(i)] and [vi−l(i), vi+r(i)] is a PIG order
of the subgraph of G induced by N [vi], for every vi ∈ φ.

The analogy between PCA orders and NHCA orders is explicit in the following proposi-
tion.

Proposition 3.3.15. Let G be a universal-free PCA graph, φ be a circular ordering of
V (G) and D be the φ-orientation of G. Then φ is a PCA order of G if and only if φ
is a round enumeration of D and D is an orientation of G. Furthermore, φ is a PHCA
order if and only if φ is a locally straight enumeration of D.

Proof. Let φ = v1, . . . , vn be a PCA order of G and suppose that D is not an orientation
of G. This means that either G is not isomorphic to underlying graph H of D, or that
there are two vertices vi and vj such that both vi −→ vj and vj −→ vi are edges of D.

First we show that G is isomorphic to H. For this, fix two values i and j such that
1 ≤ i, j ≤ n. By definition, if vi −→φ vj then vi and vj must be adjacent in G, thus H is
a subgraph of G. On the other hand, for φ to be a PCA order, if vi and vj are adjacent,
then either vj ∈ (vi, vi+r(i)] or vj ∈ [vi−l(j), vi). In the former case vi −→φ vj, while in
the latter case vj −→φ vi because [vi−l(i), vi] is a complete set and thus vi ∈ (vj, vj+r(j)].
Hence G is isomorphic to H.

Now, suppose that there are two vertices vi and vj such that vi −→φ vj and vj −→φ vi.
By definition of −→φ, vi is adjacent to all the vertices of [vi+1, vj] and vj is adjacent to
all the vertices of [vj+1, vi]. Now, since φ is a PCA order, the latter implies that [vj, vi]
is a complete set, thus vi is universal, a contradiction.

For the converse, let φ be a round enumeration of D, and D be an orientation of G. Fix
i ∈ {1, n} and let l = d−(vi) and r = d+(vi). It is easy to see that N(vi) = [vi−l, vi+r],
and that [vi−l, vi] and [vi, vi+r] are complete sets.
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The furthermore part is trivial.

The characterizations of PCA and PHCA graphs by PCA and PHCA orders are obtained
as corollaries.

Theorem 3.3.16. A universal-free graph is a PCA graph if and only if it admits a PCA
order.

Proof. A similar proof to the one of Theorem 3.3.11 shows that a universal-free graph is a
PCA graph if and only if there is a circular enumeration φ which is a round enumeration
of its φ-orientationD, whileD is an orientation ofG. Then, apply Proposition 3.3.15.

Theorem 3.3.17. A universal-free graph is PHCA if and only if it admits a PHCA
order.
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4 Powers of paths and cycles

In 1988, Golumbic and Hammer [GH88] proposed a linear-time algorithm for the maxi-
mum independent set problem restricted to circular-arc graphs. Their algorithm is based
on a simple rule called the neighborhood reduction. Basically, they propose to remove
each dominator vertex of the graph, until no more dominator vertices remain. The main
observation is that the graph so obtained is isomorphic to a power of a cycle.

There are other nice connections between powers of cycles and circular-arc graphs. For
instance, Bonomo [Bon06] proved that an HCA graph is self-clique if and only if it is
isomorphic to Ck

n for some pair of values n, k such that n > 3k. In fact, a general circular-
arc graph is K-convergent if and only if it converges to Ck

n for n > 3k (cf. Chapter 8).
Powers of cycles are also considered in some different contexts, for example in coloring
problems ([CdM07, EK03, KN04, LL07, Tho05]).

Induced subgraphs of powers of cycles have also been examined. Bondy and Locke [BL92]
have described bounds for the number of edges in a triangle-free induced subgraph of a
power of a cycle. Bermond and Peyrat [BP89] have determined a lower bound for the
number of vertices of an induced subgraph G of Ck

n, with the restriction that δ(G) ≥ k+l,
for k, l > 0.

The aim of this chapter is to give more connections between powers of cycles and circular-
arc graphs. In Section 4.1 we make explicit all characterizations of powers of cycles
implicit in [GH88], and we add some more equivalences. A similar series of equivalent
characterizations of powers of paths are given later in the same section. Section 4.2 is
devoted to induced subgraphs of powers of cycles and paths. We prove that the former
form precisely the class of UCA graphs while the latter form the class of UIG graphs. In
Section 4.3 we present a new constructive proof of Roberts’ “proper = unit” Theorem.
Our proof shows how to obtain a power of a path supergraph of the input PIG graph G,
which is then used to obtain a UIG model of G. Furthermore, we show that the extremes
of the output model are natural numbers of polynomial value with respect to the size
of G, improving over some of the previously known characterization. Finally, we make
some further remarks in Section 9.

Sections 4.1 and 4.2 are part of a joint work with Dieter Rautenbach.
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4 Powers of paths and cycles

4.1 Powers of cycles and paths

Our first result collects several equivalent descriptions of powers of cycles. Theorem 1
in [GH88] actually only states that a circular arc graph without dominators is a power
of a cycle. Nevertheless, the given arguments imply the following equivalences from our
Theorem 4.1.1 below:

(i) ⇐⇒ (v) ⇐⇒ (vii) ⇐⇒ (ix)

Theorem 4.1.1. For a graph G of order n which is not complete, the following state-
ments are equivalent.

(i) G is isomorphic to Ck
n for some integer k.

(ii) G is a regular UCA graph with no twins.

(iii) G is a regular PCA graph with no twins.

(iv) G is a UCA graph without dominators.

(v) G is a PCA graph without dominators.

(vi) G is a UCA graph and in every UCA model of G the beginning and ending points
alternate.

(vii) G is a PCA graph and in every PCA model of G the beginning and ending points
alternate.

(viii) G is a UCA graph and in some UCA model of G the beginning and ending points
alternate.

(ix) G is a PCA graph and in some PCA model of G the beginning and ending points
alternate.

Proof. The implications (ii) =⇒ (iii), (vi) =⇒ (viii), (vii) =⇒ (ix) and (viii) =⇒ (ix)
are trivial.

(i) =⇒ (ii). Clearly, Ck
n is regular and has no pair of twins. If s1, s2, . . . , sn are n equally

spaced points on a circle C and A is a set which contains the n open arcs of equal length
with beginning point si and ending point between si+k and si+k+1 for 1 ≤ i ≤ n, then
(C,A) is a UCA model of Ck

n.

(ii) =⇒ (iv) (and resp. (iii) =⇒ (v)). If N [u] ⊆ N [v], then the regularity of G implies
N [u] = N [v] and the twin-freeness of G implies u = v. Hence G is a UCA (resp. PCA)
graph without dominators.

(iv) ⇒ (vi) (and resp. (v) ⇒ (vii)). If s(A1) and s(A2) are two consecutive extreme
points of a UCA (resp. PCA) model of G, where A1 and A2 are the arcs corresponding
to the vertices v1 and v2 of G, then every arc of the model which intersects A1 also
intersects A2 and, so, N [v1] ⊆ N [v2].
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(ix) ⇒ (i). Let s0, t0, s1, t1, . . . , sn−1, tn−1 be the cyclically consecutive extreme points of
a PCA model M of G as in (ix), where si is a beginning point and ti is an ending point
for 1 ≤ i ≤ n. It suffices to prove the existence of some k ∈ N such that A(M) consists
of the arcs with beginning point si and ending point ti+k for 0 ≤ i ≤ n− 1.

For contradiction, we may assume that the arc A0 beginning with s0 ends with tk and
that the arc A1 beginning with s1 ends with tk+i for some k with i 6= 1. Since M is
proper, A1 6⊂ A0, thus i ≥ 2. Let the arc Aj ending with tk+1 begin with sj for some j.
Again, since the model is proper, Aj 6⊂ A1, thus j < 1. Similarly, Aj 6⊃ A0, hence j > 0.
We obtain the contradiction that the integer j satisfies 0 < j < 1.

In view of the following diagram of the implications, the proof is complete.

(i) =⇒ (ii) =⇒ (iv) =⇒ (vi) =⇒ (viii)
⇓ ⇓

(iii) =⇒ (v) =⇒ (vii) =⇒ (ix) =⇒ (i)

Our next result collects several equivalent descriptions of powers of paths. Before we can
state it, we need some further definitions.

Let I = {(si, ti) | 1 ≤ i ≤ n} be a PIG model for a connected graph G with vertex set
{v1, v2, . . . , vn} such that

(si, ti) corresponds to vi for 1 ≤ i ≤ n (4.1)

and

s1 < s2 < . . . < sn. (4.2)

The ordering φ = v1, v2, . . . , vn is a PIG order of G (cf. Chapter 3). That is, for every
1 ≤ i ≤ n, there exist two non-negative values l, r such that N [vi] = Lin[vi−l, vi+r],
and both Lin[vi−l, vi] and Lin[vi, vi+r] are complete sets. As noted by Roberts [Rob69],
the ordering φ is unique up to permutation of twins and up to full reversal (see Theo-
rem 3.3.2).

If

p = max{i | 1 ≤ i ≤ n, vi ∈ NG[v1]} = d(v1) + 1 and

q = min{i | 1 ≤ i ≤ n, vi ∈ NG[vn]} = n− (d(vn) + 1), (4.3)

then
{vi | min{p, q} ≤ i ≤ max{p, q}}

is the set of middle vertices. By Roberts’ result [Rob69], this set does not depend on the
PIG order. Note that the vertices vi with q ≤ i ≤ p are exactly the universal vertices of
G.
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4 Powers of paths and cycles

Theorem 4.1.2. For a connected graph G of order n which is not complete, the following
statements are equivalent.

(i) G is isomorphic to P k
n for some integer k.

(ii) G is a UIG graph in which all twins are universal and whose middle vertices have
the same degree.

(iii) G is a UIG graph in which all twins are universal. Furthermore, if v1, v2, . . . , vn is
a PIG order and p and q are as in (4.3) then the only dominator sequences of G
are

vr, vmin{p,q}−1, vmin{p,q}−2, . . . , v1

with min{p, q} ≤ r ≤ p and

vs, vmax{p,q}+1, vmax{p,q}+2, . . . , vn

with q ≤ s ≤ max{p, q}.

(iv) G is a UIG graph and for all PIG models I = {(si, ti) | 1 ≤ i ≤ n} with (4.1) and
(4.2), and p and q as in (4.3), the beginning and ending points between sp and tq
alternate.

(v) G is a UIG graph and for some UIG model I = {(si, ti) | 1 ≤ i ≤ n} with (4.1)
and (4.2), and p and q as in (4.3), the beginning and ending points between sp and
tq alternate.

Proof.

(i) =⇒ (ii). Clearly, in P k
n all twins are universal and {(2i, 2(i+ k) + 1) | 1 ≤ i ≤ n} is

a UIG model for P k
n which yields the desired degree property.

(ii) =⇒ (iii). Since G is connected and not complete, we obtain 1 < min{p, q} ≤
max{p, q} < n. By (4.1) to (4.3), this implies

N [v1] ⊆ N [v2] ⊆ . . . ⊆ N [vmin{p,q}−1] ⊆ N [vr]

for min{p, q} ≤ r ≤ p, and

N [vn] ⊆ N [vn−1] ⊆ . . . ⊆ N [vmax{p,q}+1] ⊆ N [vs]

for q ≤ s ≤ max{p, q}. Since vn is not adjacent to vmin{p,q}−1 and v1 is not adjacent to
vmax{p,q}+1, we obtain that no vertex in [v1, vr)∪ (vs, vn] is universal and, so, (ii) implies
that all the above inclusions are proper. This yields the dominator sequences described
in (iii). It remains to prove that there are no further dominator sequences.

Since, by (ii), all middle vertices have the same degree, every dominator sequence con-
tains at most one middle vertex. Consider two values i and j such that vi is not a middle
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vertex. If i < min{p, q} and p < j then v1 ∈ N [vi] \ N [vj]. Furthermore, either q ≤ j
which implies that vn ∈ N [vj] \N [vi], or q > j which implies that vj is a middle vertex
and, by (ii), d(vj) = d(vp) > d(vi). Hence, in both cases, vi and vj do not both appear
in one dominator sequence. Similarly, if i > max{p, q} and j < q, then vi and vj do
not both appear in one dominator sequence. Altogether, this implies that there are no
further dominator sequences as those described in (iii).

(iii) =⇒ (iv). Let I be a PIG model for G as in (iv). For contradiction, we may assume,
by symmetry, that there are two consecutive beginning points si and si+1 between sp and
tq. By (4.3), the extreme point following sp is t1 which implies i > p. Since I is a PIG
model, we obtain N [vi] ⊆ N [vi+1]. Since v1 6∈ N [vi] ∪ N [vi+1], the vertices vi and vi+1

are not universal. Hence, by (iii), vi+1 and vi are no twins and they appear in this order
in some dominator sequence of G. By (iii), this implies the contradiction i+ 1 ≤ p.

(iv) =⇒ (v). trivial.

(v) =⇒ (i). Let I be a UIG model as described in (v). By (4.3), (v), and the fact that
si < sj implies ti < tj, the order of the extreme points is as follows

s1 < s2 < . . . < sp < t1 < sp+1 < t2 < sp+2 < t3 < . . . < sn < tq < tq+1 < . . . < tn

which implies that p = n− q − 1 and that G is isomorphic to P p−1
n .

In view of the corresponding recognition algorithms for PCA graphs and PIG graphs
(see e.g. [DHH96]), Theorems 4.1.1 and 4.1.2 imply that powers of cycles and paths can
be recognized in linear time.

4.2 Induced subgraphs

In the previous section, we have shown that powers of cycles and powers of paths are
special UCA graphs and special UIG graphs, respectively. In this section, we prove
that the induced subgraphs of powers of cycles are exactly the UCA graphs. Similarly,
we prove that the induced subgraphs of powers of paths are exactly the unit interval
graphs.

Theorem 4.2.1.

(i) A graph is an induced subgraph of a power of a cycle if and only it is a UCA graph.

(ii) A graph is an induced subgraph of a power of a path if and only it is a UIG graph.
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Figure 4.1: Proof of Theorem 4.2.1 (i): (a) is a UCA model, (b) is the model obtained
by extending each arc of (a), and (c) is a UCA model of C4

12.

Proof. Since the proofs of (i) and (ii) are very similar, we will only give details for (i).

By Theorem 4.1.1, powers of cycles are UCA graphs and, hence, so are their induced
subgraphs. For the converse, let G be a UCA graph and M = (C, {(sv, tv) | v ∈ V (G)})
be UCA model of G. As noted in Chapter 2, we may assume that all the extremes points
are distinct. Even more, since |V (G)| is finite, we can assume that all the extreme points
are integer values of C (see e.g. Figure 4.1 (a)). By replacing tv with tv + 1

2
for every

v ∈ V (G), we obtain a UCA model M′ of G whose arcs have length k+ 1
2

for some integer
value k (see e.g. Figure 4.1 (b)). Inserting one arc (s, s+ k + 1

2
) for every integer s ∈ C

such that s is not an extreme of M′, we obtain a PCA model in which every beginning
point is followed by an ending point (see e.g. Figure 4.1 (c)). Hence, by Theorem 4.1.1,
G is an induced graph of a power of a cycle.

4.3 Yet another “proper = unit” proof

In [Rob69], Roberts proved that every PIG graph admits a UIG model (see Theo-
rem 3.1.1). Roberts used the Scott-Suppes Theorem [SS58] to prove that every claw-free
interval graph is a UIG graph. Since then, at least three constructive proofs have been
proposed to show how to transform a PIG model into a UIG model. We will review these
characterizations in Chapter 5, where we consider the problem of transforming a PIG
model into a UIG model. In this section we give yet another proof of Roberts’ “proper
= unit” Theorem. Our proof comes with the guarantee that the length of every interval
is at most 2n2, and it serves to exemplify how Theorems 4.1.2 and 4.2.1 can serve as a
framework for thinking about PIG graphs.
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4.3 Yet another “proper = unit” proof

The idea of our proof is to include new intervals into a PIG model I, to build an extended
model I ′ ⊇ I such that the “middle” extreme points of I ′ alternate between beginning
and ending points. By Theorem 4.1.2, the intersection graph of I ′ is isomorphic to the
power of a path, hence, by Theorem 4.2.1, I ′ is equivalent to some UIG model and so is
I. To take into account the iterative process that it is used to obtain I ′, it is better to
adapt our terminology.

Let I = {(si, ti) | 1 ≤ i ≤ n} be a PIG model satisfying (4.2). The extremes of I in
[t1, sn] is the set of middle extremes of I. (There are no middle extremes when t1 > sn.)
The s-sequences and t-sequences that are contained in [t1, sn] are called the middle s-
sequences and middle t-sequences, respectively. In general, a middle extreme sequence
is either a middle s-sequence or a middle t-sequence. In a PIG model of a power of a
path, the middle points alternate between beginning points and ending points. This is
equivalent to say that every middle extreme sequence is a singleton sequence. Say that
an extreme point is separated if it belongs to a singleton extreme sequence.

To build the extended model I ′, we employ a separation procedure which is divided
into two steps: the t-separation and the s-separation. The former separates the middle
ending points, while the latter separates the middle beginning points. First, we apply the
t-separation procedure to the given model I, obtaining an intermediate model. Then we
apply the s-separation procedure to the intermediate model and obtain the final model
I ′. The separation procedure, the t-separation procedure and the s-separation procedure
are shown in Algorithm 4.1, Algorithm 4.2 and Algorithm 4.3, respectively.

The effects of Algorithm 4.1 on a PIG model are depicted in Figure 4.2. The following
theorem employs the separation procedure and shows its correctness.

Theorem 4.3.1. The following statements are equivalent for a graph G:

(i) G is a PIG graph.

(ii) G is an induced subgraph of a power of a path.

(iii) G is a UIG graph.

Moreover, if I is a PIG model, then Algorithm 4.1 applied on I yields a PIG model of
a power of a path.

Proof.

(i) =⇒ (ii). Let I be a PIG model of G and suppose, w.l.o.g., that G is connected.
Perform Algorithm 4.1 on I to obtain the model I ′ ⊇ I. By induction, we show that all
middle extremes of I ′ are separated. We start by discussing the effects of the t-separation
step described in Algorithm 4.2. We prove that this procedure in fact terminates.

Examine the iteration corresponding to the leftmost non-separated middle ending point
ti, and let (sj, tj) and (s, t) be as in Algorithm 4.2. Call Ti and Tj to the t-sequences that
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4 Powers of paths and cycles

Algorithm 4.1 Separation procedure

Input: A connected PIG model I.
Output: A connected PIG model I ′ ⊇ I whose middle extremes are separated.

1. Apply Algorithm 4.2 to I to obtain I ′′.

2. Apply Algorithm 4.3 to I ′′ to obtain I ′.

Algorithm 4.2 t-separation procedure

Input: A connected PIG model I.
Output: A connected PIG model I ′ ⊇ I whose middle ending points are separated.

1. Set I ′ := I.

2. While there are non-separated middle ending points in I ′:

3. Let ti be the leftmost non-separated middle ending point and (sj , tj) be the interval
such that sj precedes ti in I ′.

4. Insert in I ′ a new interval (s, t), placing s immediately after ti and t immediately after
tj .

Algorithm 4.3 s-separation procedure

Input: A connected PIG model I.
Output: A connected PIG model I ′ ⊇ I whose middle beginning points are separated.

1. Set I ′ := I.

2. While there are non-separated middle beginning points in I ′:

3. Let si be the rightmost non-separated middle beginning point and (sj , tj) be the interval
such that t succeeds si in I ′.

4. Insert in I ′ a new interval (s, t), placing t immediately before si and s immediately
before sj .
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4.3 Yet another “proper = unit” proof

(a) A PIG model prior to separation.

(b) The PIG model after the t-separation step.

(c) The PIG model after the s-separation step.

Figure 4.2: The effects of the separations procedures. All middle ending points are fol-
lowed by a beginning point after the t-separation step, while all middle be-
ginning points are preceded by an ending point after the s-separation step.

contain ti and tj prior to the insertion of (s, t), respectively. After the insertion of (s, t), Ti

is divided into two t-sequences, namely {ti} and Ti\{ti}. On the other hand, t is inserted
into Tj and Tj 6= Ti. We have then two possibilities after the insertion of (s, t), according
to the size of Ti \ {ti}. If |Ti \ {ti}| = 1 then the number of t-sequences to the right of
the leftmost non-singleton t-sequence is decreased. Otherwise, the number of extremes
in the leftmost non-singleton t-sequence decreases while the number of t-sequences to its
right remains the same. Therefore the t-separation procedure terminates.

Next, examine the actual effect of inserting (s, t) in the t-separation procedure. Clearly,
ti becomes separated because s immediately follows it. Similarly, s is also separated.
Furthermore, because the inclusion of (s, t) does not affect separated beginning points,
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4 Powers of paths and cycles

we conclude that no newly non-separated beginning points have been created during the
examination of ti. Consequently, at the end of the t-separation step, all the ending points
are separated, all the beginning points of the intervals inserted during the t-separation
step are also separated, while the separated beginning points of I have been preserved.
Moreover, (s, t) cannot contain nor be contained in any other interval (sk, tk) of I ′, or
otherwise (sj, tj) would also contain or be contained in (sk, tk), contradicting the fact
that I ′ is proper before the inclusion of (s, t).

The s-separation step described in Algorithm 4.3 takes as input the model generated
by the t-separation step, and transforms it into the final model I ′. The proof of its
correctness is similar. We can conclude that after termination of Algorithm 4.1, I is
included in a PIG model I ′, which has all its middle extremes separated. Therefore, by
Theorem 4.1.2, the intersection graph of I ′ is isomorphic to P k

j for some pair of values
j and k. Then G is an induced subgraph of a power of a path.

(ii) =⇒ (iii). See Theorem 4.2.1.

(iii) =⇒ (i). Trivial.

Theorem 4.3.1 can be used to effectively transform a PIG model I into an equivalent
UIG model. First, run the separation algorithm on I to obtain a PIG model I1 of a
power of a path. Then, use (i) =⇒ (ii) of Theorem 4.1.2 to obtain a UIG model I2

equivalent to I1. Finally, remove every interval of I2 that was inserted by Algorithm 4.1.
The model I3 so obtained is a UIG model equivalent to I. The next theorem guaranties
that the separation algorithm finishes in O(n2) steps and that all the intervals of model
I3 have length at most 2n2.

Theorem 4.3.2. Let I be a PIG model and I ′ be the model obtained from I after
applying Algorithm 4.1. Then in I ′, there are less than 2n extremes of I ′ \ I between
any two consecutive extremes of I.

Proof. Let I = {(si, ti) | 1 ≤ i ≤ n} be such that s1 < s2 . . . < sn. First, we consider
the t-separation procedure described in Algorithm 4.2. Let It be the set of intervals
included in I by the t-separation procedure. We attach a label to each ending point
of I ∪ It, as follows. The ending point ti is assigned the label i, for every 1 ≤ i ≤ n.
Further, following the progress of the t-separation procedure, whenever a new interval
(s, t) is included for the purpose of separating an ending point having label i from its
successor in the model, the new ending point t also gets the label i (see Figure 4.3).
Clearly, there can be several ending points in I ∪It sharing the same label. However, in
any t-sequence all the ending points have distinct labels, at any time of the execution of
the t-separation procedure. Consequently, the size of any t-sequence at any stage of the
algorithm is less than n. On the other hand, every non-singleton middle t-sequence T is
separated by including one new beginning point of It between every consecutive pair of
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4.3 Yet another “proper = unit” proof

1 2 3 4 5 6 7 8 9 102 3 6 2

Figure 4.3: Labeling of the ending points in the proof of Theorem 4.3.2. Throughout the
execution of the t-separation step, no t-sequence has two ending points with
the same labels.

ending points of T . Hence, T is transformed into a sequence of size 2|T | − 1, in which
the ending points and beginning points alternate. By invariant, the first ending point of
T belongs to I. All the other 2|T | − 2 extremes may perhaps belong to It, but they are
followed by a beginning point of I. Therefore, in I ∪ It there are less than 2n extremes
of It between any two extremes of I. More precisely, less than i ending points of It have
been included in the segment of I whose left extreme is ti. Furthermore, all extremes of
It have been included in segments of I of types t-t or t-s.

Next, we apply the s-separation procedure described in Algorithm 4.3 to the model
I ∪ It. Denote by Is the set of intervals introduced in the model by the s-separation.
That is, the final model is I ′ = I ∪ It ∪ Is. We know that the t-separation procedure
separates all ending points, while preserving the already separated beginning points, and
neither increasing the size nor creating new non-singleton s-sequences. Consequently, the
t-separation and s-separation procedures are independent. Furthermore, in I ′ there can
be no three consecutive extremes, such that the first and the third belong to It and the
second belongs to Is, or vice-versa. So, similarly as above, we can conclude that in I ′

there are less than 2n extremes of Is between any two consecutive extremes of I. More
precisely, less than n − i beginning points of Is have been introduced in the segment
of I whose right extreme is si. Furthermore, all extremes of Is have been included in
segments of I of types s-s or t-s.

Finally, we examine the total number of extremes of It ∪ Is that have been introduced
in a segment z of I, according to the type of z. If z is an s-s type segment then less
than 2n extremes of Is and zero extremes of It have been introduced. Similarly, if z is of
type t-t then zero extremes of Is and less than 2n extremes of It have been introduced.
In an s-t type segment of I no extremes of It ∪ Is can be included at all. It remains to
examine the case when z is a t-s segment. Let ti and sj be the left and right extremes
of z, respectively. We know that less than i ending points of It and less than n − j
beginning points of Is have been included in z. That is, less than 2(i+ n− j) extremes
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4 Powers of paths and cycles

of Is ∪ It. However, we also know that i < j, because si must precede ti. Consequently,
there are less than 2n extremes of I ′ \I = It ∪Is between any two consecutive extremes
of I.

As a corollary, we can obtain a UIG model of a PIG graph in O(n2) time, when a PIG
model of the graph is given as input. In Chapter 5 we show that this algorithm can be
improved so as to run in O(n) time.
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5 Transformations between circular-arc

models

Recall that there are ten different subclasses of circular-arc graphs: CA, NCA, HCA,
NHCA, PCA, PHCA, UCA, UHCA, IG and PIG. For each of these classes, except for the
NCA class, there are severalO(n+m) time algorithms that recognize if a given graph is an
XCA graph, and these algorithms output an XCA model in the affirmative case (see e.g.
Table 5.1). So, the recognition problem for XCA graphs is well solved. As for the model
construction, first we refer to the more general class of circular-arc graphs. Considering
that the corresponding models of this class can be represented by just O(n) elements,
there is a motivation for trying to find O(n) time algorithms that solve the recognition
and model construction problems for each of the subclasses. In this case, the input is a
general circular-arc model of a graph G and the question is deciding whether G belongs
to a restricted class of circular-arc graphs and, whenever affirmative, constructing the
corresponding restricted circular-arc model. For example, given an arbitrary circular-arc
model of a graph G, algorithms running in O(n) time have been recently described to
construct, whenever possible, a proper circular-arc model ofG [Nus08], a unit circular-arc
model of G [LS08], or a Helly circular-arc model of G [JLM+09].

Recall also that there are some circular-arc subclasses, such as the PIG class, which are
defined by more than one kind of model, one strong and one weak. For these graphs there
is also a motivation for constructing a strong model from a weak model. For instance, an

CA subclass Algorithms
CA [McC03, KN06]
HCA [JLM+09, LS06]
NHCA Chapter 3
PCA [DHH96, KN09, Nus08]
PHCA Chapter 3
UCA [KN09, LS08]
UHCA Chapter 3
IG [BL76, COS98, HMPV00, KM89]
PIG [Cor04, DHH96, HH05, HdFMPdM95]

Table 5.1: Linear-time recognition algorithms for the circular-arc subclasses.
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5 Transformations between circular-arc models

O(n) time algorithm for transforming any PCA model into an NPCA model was given
in [LS08].

In the present chapter we consider the representation problems for several circular-arc
subclasses. We propose new algorithms along the above lines and we discuss about the
related certification and authentication problems. In Section 5.1 we propose a new O(n)
time algorithm that transforms any PCA model into an NPCA model. Our algorithm
is simpler than the previous known algorithms, both in its implementation and its time
complexity analysis. Next, in Section 5.2, we describe the O(n +m) time algorithm to
recognize NHCA graphs when circular-arc models are given as input. This is the only
problem for which we have not found an O(n) time algorithm. After, in Section 5.3,
we show how to obtain in O(n) time a PHCA model from either a PCA model or an
NHCA model. As a corollary, we obtain an O(n) time algorithm to transform a PCA
model into a PIG model. Similarly, in Section 5.4 we present an O(n) time algorithm to
transform UCA models and PHCA models into UHCA models. Finally, in Section 5.5
we revisit the problem of transforming a PIG model into a UIG model, and we present
a new algorithm for this problem.

5.1 Normalization of PCA models

In Chapter 2 we gave a new proof of Tucker’s theorem which states that every PCA
graph admits an NPCA model. But besides its theoretical interest, why is it important
to find an NPCA model of a PCA graph? One answer is the following. Let M be any
normal PCA model of a UCA graph G. Tucker [Tuc74] proved that G admits a UCA
model M′ in which all the extremes of M′ appear in the same order as in M. In all the
polynomial-time algorithms to recognize UCA graphs (see [DGM+06, KN09, LS08]), an
NPCA model is required as the input model of the recognition algorithm.

In this chapter we use our elementary proof of Tucker’s theorem to develop a simple
O(n) time algorithm that transforms a general PCA model into an NPCA model. We
begin with a brief review of the work done so far with respect to this problem.

In [DGM+06], Durán et al. show how to normalize a PCA model in O(n2) time. Their
idea is to traverse each arc Ai so as to find if there is some arc Aj that together with Ai

cover the circle, i.e., s(Ai), t(Aj), s(Aj), t(Ai) appear in this order in a traversal of the
circle. If such Aj is found then t(Aj) and all the ending points inside (s(Ai), t(Aj)) are
moved so that t(Aj) and s(Ai) appear in this order. The main point is that every Aj can
be found and shrunk in O(n) time, for each arc Ai. Lin and Szwarcfiter [LS08] improve
this algorithm so that all the pairs Ai, Aj are found and shrunk in O(n) time, obtaining
an O(n) time normalization algorithm. The inconvenience of this new algorithm is that
a somehow difficult analysis is used to show that every arc is shrunk at most twice.
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Our normalization algorithm is depicted in Algorithm 5.1. The main loop computes the
model U1(M) and Step 5 inserts back all the possibly removed arc. The algorithm is
correct by Theorem 2.4.8 and Lemma 2.4.9. This algorithm has three advantages over
the one in [LS08]. First, it is easier to implement and to describe. Second, every extreme
of the model is traversed only once, while for the algorithm in [LS08] there is only the
guaranty that the main cycle is repeated at most 5n times. Third, the model generated
by Algorithm 5.1 is twin-consecutive, as Theorem 5.1.1 shows.

Algorithm 5.1 Normalization procedure.

Input: A PCA model M of a graph G.
Output: A twin-consecutive NPCA model of G.

1. Set u := 0 and U := NULL.

2. Traverse each arc A of M and apply the following operations when A contains at least n−1
extremes:

3. If u = 0 then set u := 1 and U := A.

4. Otherwise, remove A from M and set u := u+ 1.

5. If u > 0 then duplicate u− 1 times the arc U as in Lemma 2.4.4.

With respect to the time complexity of the algorithm, Step 2 takes O(1) time if each
extreme has an index to its position in the traversal, and a pointer to the other extreme
of the arc. This information can be easily preprocessed in O(n) time with one traversal
of the model. Therefore, the total time complexity of the algorithm is O(n).

Theorem 5.1.1. The model generated by Algorithm 5.1 is twin-consecutive.

Proof. Immediately before the execution of Step 5, M is a PCA model with at most
one universal arc. Then, by Theorem 3.3.1, M is twin-consecutive at this point of the
execution. After the insertion of the u− 1 copies of the universal arc as in Lemma 2.4.4,
the beginning points as well as the ending points of the universal arcs are consecutive.
Therefore, the generated model is twin-consecutive.

5.2 Recognition of NHCA graphs

In this section we develop an algorithm to test whether a circular-arc graph is NHCA,
when the input is a circular-arc model. The algorithm follows directly from Corol-
lary 3.2.5 and its time complexity is O(n+m).

71



5 Transformations between circular-arc models

Let M be a circular-arc model of a graph G. If there are neither two nor three arcs
covering C(M) then G is an NHCA graph and M is an NHCA model of G, so there
is nothing to be done for this case. Otherwise, it is enough to check if M is equivalent
to an interval model since, by Corollary 3.2.5, those NHCA graphs that admit a non
NHCA model are interval graphs. If M is equivalent to an interval model, then G is an
NHCA graph and any interval model of G is an NHCA model of G.

We use Algorithm 5.2 to test whether there are two or three arcs covering the circle.
There, NEXT (A) represents the arc crossing t(A) whose ending point reaches farthest
and NEXT 2(A) = NEXT (NEXT (A)). In the second traversal of the first loop, N is
the arc reaching farthest of those crossing e, when e is reached. Thus, NEXT is correctly
computed in the first loop. Now, observe that if A1 and A2 cover C(M), then A1 and
NEXT (A1) also cover C(M). Similarly, if A1, A2, A3 cover C(M), then A1, NEXT (A1)
and NEXT 2(A1) also cover C(M). Thus, M is an NHCA model if and only if neither
NEXT (A) nor NEXT 2(A) crosses s(A), for every A ∈ M. Therefore, Algorithm 5.2 is
correct.

Algorithm 5.2 Authentication of an NHCA model.

Input: A circular-arc model M.
Output: If M is not NHCA, then two or three arcs that cover M. Otherwise, there is
no output.

1. Let A1 be any arc of M and set A := A1.

2. Traverse C(M) twice from s(A1) and apply the following operation when an extreme e of
an arc A is reached.

3. If e = s(A) and t(A) reaches farther than t(N) then set N := A.

4. If e = t(A) then set NEXT (A) := N .

5. Traverse C(M) once again from s(A1) and apply the following evaluation when s(A) is
reached.

6. If NEXT (A) crosses s(A) then output A,NEXT (A).

7. If NEXT 2(A) crosses s(A) then output A,NEXT (A) and NEXT 2(A).

With respect to the time complexity, all the operations of both loops take O(1) time,
thus the total time complexity of Algorithm 5.2 is O(n).

To test if M is equivalent to an interval model when M is not NHCA, we compute
the intersection graph G of M and we invoke the O(n+m) time certified algorithm by
Kratsch et al. [KMMS06]. Unfortunately, we were unable to find an O(n) time algorithm
to obtain an interval model from M.
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We now discuss the certification and the authentication procedures. When M is an
NHCA model, the positive certificate is just M. If M is not an NHCA model, but it
is equivalent to an interval model, the certificate is provided by the certified interval
graph recognition algorithm in O(n + m) time [KMMS06]. If M is neither NHCA nor
equivalent to an interval model then the negative certificate is obtained by combining
the certificate of the interval graph recognition algorithm with the two or three arcs that
cover the circle. This certificate is enough by Corollary 3.2.5. The negative certificate can
be authenticated in O(n) time as in [KMMS06]. To authenticate the positive certificates
it is enough to test that the output model M′ is NHCA and equivalent to M. For the
NHCA authentication use Algorithm 5.2, and for the isomorphism authentication use the
O(n) time algorithm by Curtis [Cur07]. The complete certified procedure is summarized
in Algorithm 5.3.

Algorithm 5.3 Recognition of NHCA graphs.

Input: A circular-arc model M.
Output: Either an NHCA model equivalent to M or a subset of arcs whose intersection
graph is not NHCA.

1. Execute Algorithm 5.2 to authenticate if M is an NHCA model. If so, output M.

2. Otherwise, execute the algorithm of [KMMS06] to the intersection graph G of M. If G is
an interval graph then output the interval model obtained by the algorithm. Otherwise,
output the two or three arcs covering C(M) together with the negative certificate obtained
by the interval graph recognition algorithm.

5.3 Recognition of PHCA graphs

In this section we show two algorithms that can be used to recognize PHCA graphs. The
first one transforms an NHCA model into a PHCA model in O(n) time, if possible. The
second one transforms a PCA model into a PHCA model in O(n) time, if possible.

To transform an NHCA model into a PHCA model we need only to sort the extreme
sequences as in Theorem 3.1.2. If the model so obtained is not PHCA then we can search
for an induced K1,3. We begin by describing how to sort all the extreme sequences in
O(n) time.

Let M be an NHCA model. For arcs Ai, Aj ∈ A(M) with nonempty intersection, say
that s(Ai) appears before s(Aj) if s(Ai) appears before s(Aj) in a traversal of C(M) from
some point p ∈ C(M)\ (Ai∪Aj) (see Figure 5.1). Observe that the point p must always
exist because Ai and Aj do not cover C(M). Similarly, say that t(Ai) appears before
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Ai

Aj

b
p

Figure 5.1: In this model s(Ai) appears before s(Aj) and t(Ai) appears before t(Aj).

t(Aj) if t(Ai) appears before t(Aj) in a traversal of C(M) from the same point p (see
Figure 5.1). The sorting of the extremes sequences in Theorem 3.1.2 can be rephrased
as follows. First, sort each t-sequence T so that, for t(Ai), t(Aj) ∈ T , if s(Ai) appears
before s(Aj), then t(Ai) appears before t(Aj). Next, sort each s-sequence S so that, for
s(Ai), s(Aj) ∈ S, if t(Ai) appears before t(Aj), then s(Ai) appears before s(Aj). The
algorithms to sort the t-sequences and s-sequences are symmetric, so we only describe
how to sort the t-sequences.

Let T1, . . . , Tk be the t-sequences of M and T be the set of all the ending points cor-
responding to arcs that cross some fixed beginning point s. Consider the t-sequence T ′

i

that results from sorting the t-sequence Ti, for some 1 ≤ i ≤ k. In T ′
i , all the ending

points of Ti ∩ T appear before all the ending points of Ti \ T . Thus, we can sort all the
t-sequences with four traversals of C(M) as in Algorithm 5.4. In the first traversal of
C(M), Algorithm 5.4 marks all those arcs that cross the fixed beginning point s(A1).
Thus, the ending points of T are precisely those ending points corresponding to the
marked arcs. The second traversal is used to find all the t-sequences T1, . . . , Tk of M.
The third traversal computes and sorts the sequences Ti,1 = Ti ∩ T and Ti,2 = Ti \ T , for
every 1 ≤ i ≤ k. Note that, in Step 9, t(A) is stored at the end of either Ti,1 or Ti,2, and
all the ending points corresponding to arcs whose beginning point appears before s(A)
were already stored. Finally, the last traversal of C(M) replaces each t-sequence with
the sorted t-sequence. Thus, the algorithm is correct.

With respect to the time complexity, all the operations of both loops take O(1) time,
while the computation of the t-sequences can be easily done in O(n) time. Therefore,
the total time complexity of the sorting algorithm is O(n).

After sorting the extremes, we must check whether its output model M′ is PHCA or not.
Algorithm 5.4 does not modify the elements that compose each t-sequence, thus M′ is
NHCA. So, it is enough to check whether M′ is PCA. That is, we ought to check if the
beginning points of the arcs appear in the same order as the ending points. If affirmative,
then M′ is a PHCA model equivalent to the input model M. Otherwise, there are two
arcs Ai and Aj such that s(Ai), s(Aj), t(Aj) and t(Ai) appear in this order in a traversal
C(M′). Let L be the arc whose ending point appears immediately after s(Ai) and R be
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5.3 Recognition of PHCA graphs

Algorithm 5.4 Sorting of the t-sequences of an NHCA model.

Input: An NHCA model M.
Output: An NHCA model M′ equivalent to M in which every t-sequences is sorted.
That is, if t(Ai), t(Aj) are extremes of the t-sequence T of M′ and s(Ai) appears before
s(Aj) then t(Ai) appears before t(Aj).

1. Let A1 be any arc of M.

//Find the arcs that cross s(A1).

2. Traverse M from s(A1) and apply the following operation when an extreme e of an arc A
is reached:

3. If e = s(A), then mark A.

4. If e = t(A), then clear the mark of A.

//Sort the extremes

5. Traverse M to compute the family T1, . . . , Tk of t-sequences of M.

6. For each i := 1, . . . , k, define Ti,1 and Ti,2 as empty sequences.

7. Traverse M from s(A1) and apply the following each time a beginning point s(A) is reached:

8. Find the t-sequence Ti that contains t(A).

9. If A is marked, insert t(A) at the end of Ti,1; otherwise, insert t(A) at the end of Ti,2.

10. Replace Ti with Ti,1, Ti,2 in M for every 1 ≤ i ≤ k.

11. Output M.

the arc whose beginning point appears immediately before t(Ai). Arcs Ai, Aj, L, and R
are taken as the negative certificate since, as in the proof of Theorem 3.1.2, they induce
a circular-arc model of K1,3 (see Figure 3.2). As for the authentication, the negative
certificate can be tested to be an induced submodel of K1,3 in M in O(1) time, if it is
implemented as a set of four pointers. To authenticate the positive certificate we ought
to verify that the output model M′ is normal, proper, Helly and equivalent to M. The
NHCA properties can be checked with Algorithm 5.2, while the test of whether M′ is
PCA or not is done as in the PHCA recognition algorithm (Steps 3–5 of Algorithm 5.5).
Finally, if M′ is PCA, then the equivalence of M and M′ can be tested by running
the PCA isomorphism algorithm of Chapter 7. Algorithm 5.5 summarizes the complete
procedure.

We now proceed to describe the algorithm that transforms a PCA model M into a PHCA
model M′, when possible. The algorithm is a direct consequence of Theorem 3.2.10.
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5 Transformations between circular-arc models

Algorithm 5.5 Recognition of PHCA graphs from NHCA models.

Input: An NHCA model M.
Output: Either a PHCA model equivalent to M or an induced submodel of K1,3.

1. Apply Algorithm 5.4 to sort the t-sequences, and the symmetric algorithm to sort the
s-sequences.

2. Let A1 := (s1, t1) be any arc of M.

3. For i := 1, . . . , n do:

4. Find the arc Ai+1 = (si+1, ti+1) whose beginning point is the first after si.

5. If Ai ⊃ Ai+1, then output Ai, Ai+1, the arc whose ending point appears first from si,
and the arc whose beginning point appears first from ti in a counterclockwise traversal
of C(M).

6. Output M.

That is, it verifies if either U1(M) is an HCA model or U0(M) is an interval model. If
affirmative, then M is equivalent to a PHCA model, and one such PHCA model can be
obtained as in Theorem 3.2.10. Otherwise, the algorithm finds an induced submodel of
W4 or S3.

The PHCA recognition algorithm is obtained by gluing together several parts of the
algorithms developed so far. The first step is to compute U1(M) as in Steps 1–4 of
Algorithm 5.1. The second step is to verify whether U1(M) is HCA. For this, it is
enough to invoke Algorithm 5.2 so as to verify if U1(M) is NHCA, because U1(M) is
NCA by Lemma 2.4.7. However, we can simplify the computation of NEXT so that it
takes only one traversal of C(M). Let t(A1), . . . , t(Ak) be a t-sequence of M. Since M
is PCA, then NEXT (Ai) is the arc of M whose beginning point is closest to t(Ai) in
the counterclockwise direction. Hence NEXT (Ai) = NEXT (A1), for every 1 ≤ i ≤ k.
Therefore, with only one traversal we can find NEXT (A) for every A ∈ A(M). The last
step is to test whether U0(M) is a PIG model or not, whenever U1(M) has a universal arc
A. Instead of doing this, we can check that no beginning point appears before an ending
point inside A, as it is done in Theorem 3.2.10. All these steps can be implemented so
as to run in O(n) time with techniques similar to those discussed so far.

The algorithm described above can be modified so as to produce certificates in O(n)
time. When U1(M) is a PHCA model, we can obtain a PHCA model equivalent to M by
including the universal arcs that where possible removed by Steps 1–4 of Algorithm 5.1.
This can be achieved as in Step 5 of Algorithm 5.1. To obtain the positive certificate
when U0(M) is a PIG model, we refer to the proof of Theorem 3.2.10, in particular,
the implication (iii) =⇒ (i). In this situation, U1(M) contains a universal arc A. To
obtain the required model, we include in M0 the arc A, and then we can include the
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5.4 Recognition of UHCA graphs

possible remaining universal arcs as in Step 5 of Algorithm 5.1. The authentication of
these certificates can be done in O(n) time, as discussed for Algorithm 5.5.

The algorithm fails to transform the input PCA model into a PHCA model when U1(M)
is not HCA and U0(M) is not PIG. According to Theorem 3.2.10, an induced submodel
of M whose intersection graph is either isomorphic to W4 or to S3 can be obtained as
follows. Let A1, A2, and A3 be the three arcs that together cover the circle of U1(M). If
none of these arcs is universal, then, as in Theorem 3.2.10, we know that there are three
arcs B1, B2, B3, such that Bi intersects Aj and not Ai, for all 1 ≤ i, j ≤ 3, i 6= j. In this
case, the arcs A1, A2, A3, B1, B2, and B3 either induce a model of S3 or contain a model
of W4. On the other hand, if one among A1, A2, A3, say A1, is a universal arc then there
are arcs L,R, such that s(R) precedes t(L) in A1. In this situation, a negative certificate
can be obtained as above by replacing A1 with either R or L when R = A2 or L = A3.
Finally, when R 6= A2 and L 6= A3, the arcs A1, A2, A3, L and R induce the model of a
forbidden W4. The authentication takes O(1) time if the forbidden submodel is stored
as a set of five or six pointers to the corresponding arcs of the model. We summarize
the above discussion in Algorithm 5.6.

5.4 Recognition of UHCA graphs

In this section we briefly discuss how to transform either a UCA or a PHCA model M
into a UHCA model, when possible. We begin with the case in which M is PHCA.
In this case, apply the algorithm in [LS08] to transform M into a UCA model M′, if
possible. Since this algorithm preserves the order of the extremes of M then M′ is both
UCA and PHCA, i.e., M′ is UHCA. This algorithm takes O(n) time and the model M′

so generated can be authenticated to be UCA in O(n) time. If M is not equivalent to a
UHCA model, then apply the algorithm of [KN09] to generate a negative certificate in
O(n) time. This negative certificate can also be authenticated in O(n) time.

Finally, consider the case in which M is a UCA model. If M has two arcs that cover
the circle, then the intersection graph of M is a complete graph and an equivalent UIG
model is easily obtained in O(n) time. Suppose, then, that M is an NCA model, and
consider the model U1(M). If U1(M) is HCA then it is also UHCA and a UHCA model
equivalent to M can be easily obtained in O(n) time by duplicating the universal arc of
U1(M), if existing, as in Lemma 2.4.4. If U1(M) is not HCA but U0(M) is an interval
model then a PIG model equivalent to M can be obtained by applying Algorithm 5.6.
A UIG model equivalent to M can be constructed in O(n) time as in Section 5.5. In
the last case, if U1(M) is not an HCA model and U0(M) is not an interval model then,
by Theorem 3.2.10, M is not equivalent to a UHCA model and a negative certificate
is obtained as in Algorithm 5.6. All the certificate authentications take O(n) time as
before.
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5 Transformations between circular-arc models

Algorithm 5.6 Recognition of PHCA graphs from PCA models.

Input: A PCA model M.
Output: Either a PHCA model equivalent to M or an induced submodel of W4 or S3.

1. Apply Steps 1–4 of Algorithm 5.1 to obtain U1(M).

2. Execute Algorithm 5.2 (simplified for PCA graphs), to verify whether U1(M) contains three
arcs that cover the circle. If negative, output the model obtained by the execution of Step 5
of Algorithm 5.1 on U1(M).

3. Let A1, A2 and A3 be the three arcs of U1(M) that were obtained in the previous step.

4. If A1, A2 and A3 are not universal, then:

5. Let Bi be the arc whose beginning point is the first from t(Ai), for i ∈ {1, 2, 3}.

6. If B1, B2 and B3 are pairwise disjoint, then output {Ai, Bi}1≤i≤3; otherwise, output
A1, A2, A3 and two intersecting arcs of B1, B2 and B3.

7. Sort A1, A2 and A3 so that A1 is the universal arc.

8. Traverse M from s(A1) to t(A1) to find if there are two arcs L and R such that s(R) appears
before t(L). If L and R are found then:

9. If R = A2, then set A1 := R and goto Step 5. If L = A3, then set A1 := L and goto
Step 5. Output A1, A2, A3, L and R.

10. Let M′ := (M\ {A1}) ∪ {A1}.

11. Duplicate A1 in M′ as many times as arcs where removed in Step 1, and return the model
so obtained.

5.5 UIG models of PIG graphs

Recall that, by Theorem 3.1.1, the classes of UIG and PIG graphs are equal. For the
recognition problem of UIG graphs we may apply any of the many PIG recognition
algorithms (see eg. [Cor04, DHH96, HH05, HdFMPdM95, KN09]). However, not all
these algorithms are able to produce a UIG model of the graph, i.e., a model in which
all the intervals have the same length. We begin this section with a brief description of
the known representation algorithms for this class.

In [CKN+95], Corneil et al. developed an O(n + m) time algorithm for the recognition
and representation problems, when the input is the adjacency lists of the graph. Their
algorithm is divided into two main phases. In the first phase they are able to produce
a PIG order of the vertices of the graph. In the second phase they actually transform
this PIG order into a UIG model of the graph. For the second phase, a special tree is
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5.5 UIG models of PIG graphs

built, and then a postorder traversal of this tree is used to obtain the desired model.
One of the nice properties of the output model is that every extreme is represented by
an integer in the range [0, n2], which is asymptotically the best possible.

A few years later, Bogart and West [BW99] gave a new simple and constructive proof
of Roberts’ “proper = unit” Theorem (see Theorem 3.1.1). This proof yields—with a
naive implementation—an O(n2) operations algorithm to transform a PIG model into
a UIG model. However, the extremes of the intervals could be of exponential value
with respect to n. In the book by Spinrad [Spi03] there is a short description of the
algorithm by Corneil et al., in the case that the input is a PIG model. This algorithm
is equivalent to the second phase of the original algorithm, but the input PIG order is
replaced with a PIG model of the graph. The algorithm obtained by Spinrad runs in
O(n+m) time, but this is not linear with respect to the size of the input. More recently,
Gardi [Gar07] gave one more proof of the “proper = unit” Theorem, which yields an
O(n) operations algorithm. Unfortunately, the extremes of the output model may have
exponential value.

In [Gar07], Gardi states that it would be interesting to find a linear-time (and linear-
space) algorithm for constructing a UIG model with extremes of polynomial value, when
a PIG model is given as input, without traversing a tree. This problem involves two
interesting questions by its own. The first question is how to find an O(n) time algorithm
for constructing a UIG model with extremes of polynomial value. The second question
is how to do it without traversing any tree. Lin and Szwarcfiter gave an answer to the
former question in [LS08], where they develop an O(n) time and space algorithm to
transform a PCA model into a UCA model, whenever possible. When the input of the
algorithm is a PIG model, the output is a UIG model. However, this algorithm is to
general for UIG graphs, and it requires several traversals of the input model and the use
of network flow techniques.

In this section we revisit both of the questions posed by Gardi. To answer the first
question we show how to implement the algorithm by Corneil et al., so that it runs in
O(n) time when the input is a PIG model. This is not an answer to the second question
because we still need to traverse a tree. To answer the second question, we develop a new
O(n) time algorithm based on the separation algorithm of Chapter 4. This algorithm
requires only two traversals of the input model and very few computations with numbers
in the range 0 to O(n2).

5.5.1 Corneil et al. algorithm

Let I be a PIG model with intervals I1, I2, . . . , In, where Ii = (si, ti) and s1 < s2 <
. . . < sn. The idea of Corneil et al. is to build a special breath-first search (BFS) tree,
where the root corresponds to I1. This tree is used, in part, to check if the input graph
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5 Transformations between circular-arc models

is actually a PIG graph. However, in this case we already know that the graph is PIG,
thus the construction of the BFS tree can be simplified as follows. For i = 2, . . . , n,
let PREV (Ii) be the interval whose ending point appears first from s(Ii). Let T be an
ordered tree with vertices v1, . . . , vn such that

• vi is the parent of vj if and only if Ii = PREV (Ij) and

• if vi and vj are siblings nodes then vi appears before vj if and only if i < j.

Tree T is a BFS tree of G from the vertex v1 that corresponds to I1. The algorithm by
Corneil et al. is really simple. Let ℓi be the level of vi in T , ki be the position of vi in
a postorder traversal of T , and define ai = nℓi + ki and bi = (n + 1)ℓi + ki. Then, the
model {(ai, bi) | 1 ≤ i ≤ n} is a UIG model equivalent to I [CKN+95].

The function PREV and the tree T can be easily computed in O(n) time, as we did
with NEXT before in this chapter. As it is well known, the computation of ℓi and ki

takes O(n) time, and so the whole algorithm needs only O(n) operations. Observe that
all the operations are done with numbers in the range [0, n2], thus the first question of
Gardi is actually answered by the algorithm of Corneil et al. It is not our objective to
show how to implement this algorithm in the most space efficient way. However, it is
good to note that there is no need to actually compute all the edges of T . Observe that
the children of a node vi form a range Lin[vj, vk], thus the children of vi can be stored
with only two pointers.

5.5.2 An algorithm with no tree traversals

In Chapter 4 we developed an algorithm to transform a PIG model I into an equivalent
UIG model. Recall that this algorithm has three main steps. First, the Separation
Algorithm on page 64 is run with input I, to obtain a PIG model I1 of a power of a
path. Then, implication (i) =⇒ (ii) of Theorem 4.1.2 is used to obtain a UIG model
I2 equivalent to I1. Finally, every interval of I2 that was inserted by the Separation
Algorithm is removed. The model so obtained is a UIG model equivalent to I.

By Theorem 4.3.2, model I2 in the above algorithm contains O(n2) extremes. Therefore,
any algorithm for explicitly constructing I2 would require Ω(n2) steps, which precludes
an O(n) time algorithm—our initial goal. However, we do not have to construct I2

explicitly. We just need to find the submodel of I2 induced by the extremes of I, which
of course has 2n extremes. Our idea is to determine the number of extremes of I2 \ I
which would be included inside each segment of I by the separation procedures, without
actually including them. In this way, we determine the segment lengths of the desired
unit interval model of G, obtaining the required unit model. The final algorithm follows
this idea.
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Figure 5.2: The UIG model corresponding to I2 for the model I in Figure 4.2. The
value r(e) is shown at the top of the picture for every extreme e 6= tn. If the
position of each extreme e is modified according to Equation 5.1 then the
size of each interval is 11.

Let {(si, ti)}1≤i≤n be the intervals of I, where s1 < s2 < . . . < sn. For an extreme e, we
denote by e− and e+ the extremes of I lying immediately before and after e, respectively.
Denote by r(e) the number of extremes of I2 belonging to (e, e+) in I, for each extreme
e 6= tk of I. In the output UIG model, the position p(e) of each extreme e of I is equal
to the position p(e) of e in I2. To compute p(e), we first compute the r(e) values since,
at is shown in Figure 5.2, we know that the position of e in I2 is:

p(e) =











0, if e = s1;

p(e−) + 2(r(e) + 1), if e ∈ (s1, t
−
1 ) ∪ (s+

n , tn];

p(e−) + r(e) + 1, otherwise.

(5.1)

Our algorithm is based on the above remarks. It consists of two stages. In Stage 1, we
increase the values of r to take into account all the extremes that are inserted for the
purpose of separating the beginning points. In Stage 2, we further increase the values
of r, taking into account the separation of the ending points. In fact, Stages 1 and 2
are variations of the s-separation and t-separation procedures that were described in
Page 64. However, we change the order of the operations of the Separation Algorithm;
first we separate the beginning points and second we separate the ending points. The
reason for this change is that, while the ending points are separated, we output the
extremes of every interval so as to minimize the number of model traversals.

Algorithm 5.7 is used to transform a PIG model into an equivalent UIG model. We briefly
discuss the implementation of Stage 1. First observe that when a middle beginning point
si is traversed in this stage, tj is the first ending point to the right of si. On the other
hand, r(e) represents the number of extreme points that where inserted into (e, e+) for
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5 Transformations between circular-arc models

Algorithm 5.7 PIG to UIG model transformation

Input: A connected PIG model I = {(si, ti)}1≤i≤n where s1 < s2 < . . . < sn.
Output: A UIG model equivalent to I.

1. Set r(e) := 0 for every extreme e of I.

//Stage 1

2. Set I := (sn, tn).

3. For each extreme e in a traversal of I from right to left, do:

4. If e is an ending point tj then set I := (sj , tj).

5. Otherwise, e is a beginning point si and I = (sj , tj). If e is a middle extreme then:

6. Set r(s−j ) := r(s−j ) + r(s−i ).

7. Set r(s−i ) := r(s−i ) + r(s−i ).

8. If s−i is a beginning point then add one to both r(s−i ) and r(s−j ).

//Stage 2

9. Set I := (s1, t1) and p(s1) := 0.

10. For each extreme e in a traversal of I from left to right, do:

11. If e is a beginning point sj then set I := (sj , tj).

12. Otherwise, e is an ending point ti and I = (sj , tj). If e is a middle extreme then:

13. Set r(tj) := r(tj) + r(ti).

14. Set r(ti) := r(ti) + r(ti).

15. If t+i is an ending point then add one to both r(ti) and r(tj).

//Output of the model

16. If e ∈ (s1, t
−
1 ) ∪ (s+n , tn] then set p(e) := p(e−) + 2(r(e−) + 1). Otherwise set p(e) :=

p(e−) + r(e−) + 1.

the purpose of separating all the beginning points to the right of si, for every extreme
e. In particular, r(s−i ) accounts only for beginning points. The virtual insertion of
intervals is done in Steps 6–8. To separate all the beginning points between s−i and
si we need to insert r(s−i ) ending points. All these new ending points correspond to
intervals whose beginning points appear inside (s−j , sj). We simulate these insertions in
Steps 6 and 7, where we increase the values of r(s−j ) and r(s−i ), respectively. Similarly,
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if s−i is a beginning point, we should add one more ending point to separate the last
beginning point inserted from s−i . This new interval also has its beginning point inside
(s−j , sj) and its ending point inside (s−i , si), thus we increase by one the numbers r(s−j )
and r(s−i ) in Step 8. The implementation of Stage 2 is analogous. However, note that
p(e) is computed in this second traversal according to Equation 5.1.

The time and space required by the algorithm is clearly O(n), and the length of the
largest segment of the unit model is less than 2n by Theorem 4.3.2. This algorithm is,
therefore, a solution to Gardi’s problem.

5.6 Summary

In Table 5.2 we summarize the time complexities of the transformation algorithms be-
tween the CA subclasses.

From To Time complexity References
CA NCA open
co-bipartite CA NCA O(n5m6 logm) [Mül97, HH04]
CA HCA O(n) [JLM+09]
CA ∪ NCA PCA O(n) [Nus08]
PCA UCA O(n) [LS08]
CA ∪ HCA ∪ NCA NHCA O(n+m) [KMMS06] & § 5.2
NHCA PHCA O(n) §5.3
PCA PHCA O(n) §5.3
UCA UHCA O(n) §5.3 & §5.4
PHCA UHCA O(n) [LS08] & §5.3
NHCA IG O(n) Corollary 3.2.5
PHCA ∪ UHCA PIG O(n) §5.3
IG PIG O(n) §5.2
PIG UIG O(n) [CKN+95] & §5.5

Table 5.2: Time complexities of the transformation algorithms. All algorithms proposed
in this chapter are certified.
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6 Dynamic recognition of PCA and

PHCA graphs

In a previous chapter we dealt with the recognition and representation problems for
several subclasses of circular-arc graphs. In that chapter we developed algorithms that
transform a circular-arc model M into a specific circular-arc model that satisfies some
property P , whenever possible. A more classic approach to the recognition and repre-
sentation problems is to develop an algorithm that, given a graph G, first recognizes if G
admits a circular-arc model with property P and then outputs such a circular-arc model.
In this chapter we consider this classical view of the proper circular-arc graph recognition
and representation problems, but we do it for dynamically changing graphs.

For a simple motivation, suppose that we have a PCA model M of a graph G and we
are asked to find a PCA model of G ∪ {v} for a vertex v 6∈ V (G). Of course, vertex v
is given together with its set of neighbors N(v) ⊆ V (G). One way to solve our problem
is to run the fastest PCA recognition and representation algorithm on G ∪ {v}, to find
the desired model in O(n + m) time. That is, we can throw away the PCA model M,
and compute a new PCA model M′ from scratch. However, considering that the size
of the input v is only d(v), our naive solution is not as efficient as it could be. Instead
of throwing away the model M, we can use it to find a PCA model of G ∪ {v} more
efficiently.

The dynamic graph recognition and representation problem for a class of graphs C, or
simply the dynamic recognition problem for a class C, is the problem of maintaining a
representation of a dynamically changing graph while the graph belongs to the class C.
The input of the problem is a graph G together with a sequence of update operations
that change the size of the graph. A dynamic recognition algorithm is composed by
the algorithm that builds the initial representation of G and the algorithms that apply
each update operation. The time efficiency of a dynamic algorithm is measured by the
time efficiency of all the algorithms that compose the dynamic algorithm. There are
other kinds of dynamic graph problems besides the graph recognition and representation
problems. Eppstein et al. [EGI99] consider such dynamic graph problems and give a nice
introduction to the subject.

There are four special dynamic recognition problems, according to the update operations
allowed. The basic recognition problem in which no update is allowed is called static;
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the input of a static recognition problem is a graph and the output is whether the graph
belongs to some class. For instance, all the recognition algorithms in Chapter 5 are
static. The dynamic recognition problem in which only updates that increment the
size of the graph are allowed is called incremental. Similarly, the dynamic recognition
problem in which only updates that decrement the size of the graph are allowed is called
decremental. Finally, the recognition problem in which both kinds of updates are allowed
is called fully dynamic.

In traditional fully dynamic graph algorithms, only insertions and removals of edges
are supported [EGI99]. There is no loss of generality, because any graph on n vertices
can be obtained from another graph on n vertices with edge insertions and removals.
However, these operations are not general enough for the dynamic recognition problems,
since we cannot guarantee to obtain all the graphs in the class without going through
intermediate graphs that do not belong to the class. For instance, in the dynamic P3-free
recognition problem, we cannot obtain a triangle without going through an intermediate
P3. Similarly, a tree on n vertices cannot be obtained from another tree on n vertices if
only edge insertions and removals are allowed. For a graph G, the updates allowed in a
general dynamic graph recognition problem are:

• Vertex insertion: given a vertex v 6∈ V (G) and a set of neighbors of N(v) ⊆ V (G),
update the representation of G into a representation of H = G ∪ {v}, if possible,
where NH(v) = N(v).

• Vertex removal: given a vertex v ∈ G, update the representation of G into a
representation of G \ {v}, if possible.

• Edge insertion: given an edge vw 6∈ E(G), update the representation of G into a
representation of G ∪ {vw}, if possible.

• Edge removal: given an edge vw ∈ E(G), update the representation of G into a
representation of G \ {vw}, if possible.

A dynamic recognition problem in which only insertions and removals of vertices are
allowed is called a vertex-only problem. Similarly, a dynamic recognition problem in
which only insertions and removals of edges are allowed is called an edge-only problem.
There are problems in which other structures, such as complete sets, are included or
removed (e.g. [kY06]), but we shall not deal with such problems.

Several incremental and fully dynamic recognition algorithms have been developed in
the last years. Just to name a few examples from the last six years,

- In 2004, Shamir and Sharan [SS04] developed a fully dynamic cograph recognition
algorithm that runs in O(1) time per edge modification and in O(d(v)) time per vertex
modification.
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- Between 2005 and 2006, Crespelle and Paul devised a certified fully dynamic recog-
nition algorithm for directed cographs that runs in O(1) time per edge modification
and in O(d(v)) time per vertex modification [CP06], and a fully dynamic permutation
graph recognition algorithm that runs in O(n) time per operation [CP05].

- Also in 2006, Nikolopoulos et al. [NPP06] proposed a dynamic algorithm for the recog-
nition of P4-sparse graphs that requires O(1) time per edge update and O(d(v)) time
per vertex insertion. This algorithm can be converted into a fully dynamic algorithm
that handles each edge removal in O(log n) time, at the extra cost of O(log n) time per
edge updated and O(d(v) log n) per vertex insertion.

- In 2007, Tedder and Corneil [TC07] gave an optimal edge-only fully dynamic algorithm
for the recognition of distance hereditary graphs.

- In 2008, Ibarra [Iba08] presented different algorithms for the edge-only dynamic chordal
graph recognition problem and an optimal edge-only dynamic recognition algorithm
for split graphs.

- Even more recently, Ibarra developed edge-only dynamic algorithms for the recogni-
tion of interval and PIG graphs. The former runs in O(n log n) per edge modifica-
tion [Iba09a] while the latter runs in O(log n) time per edge modification [Iba09b].

- Finally, Crespelle [Cre09] designed a fully dynamic algorithm for the recognition of
interval graphs that handles each operation in O(n) time.

With respect to circular-arc graphs and its subclasses—in addition to the algorithms by
Ibarra and Crespelle—, Hsu [Hsu96] developed a vertex-only incremental algorithm for
the recognition of interval graphs that runs in O(d(v) + log n) time per vertex insertion;
Deng et al. [DHH96] developed a vertex-only incremental algorithm for the recognition
of connected PIG graphs that runs in O(d(v)) time per vertex insertion; and Hell et
al. [HSS01] developed a fully dynamic algorithm for the recognition of PIG graphs that
runs in O(d(v) + log n) time per vertex update and in O(log n) time per edge update.
Hell et al. [HSS01] also developed an incremental PIG graph recognition algorithm and
a decremental PIG graph recognition algorithm. Both of them run O(d(v)) time per
vertex update and in O(1) time per edge update.

In this chapter we develop new dynamic algorithms for the PCA and PHCA recognition
problems. For the PHCA recognition problem we generalize all the results by Hell et al.
That is, we develop:

• a fully dynamic algorithm that runs in O(d(v) + log n) per vertex update and in
O(log n) time per edge update,

• an incremental algorithm that runs in O(d(v)) time per vertex insertion and O(1)
time per edge insertion, and

• a decremental algorithm that runs in O(d(v)) time per vertex removal and O(1)
time per edge removal.
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For the PCA recognition problem, in turn, we develop vertex-only dynamic algorithms
that run in the same time as the algorithms by Hell et al. That is, we develop1:

• a vertex-only fully dynamic algorithm that runs in O(d(v) + log n) per vertex
update, and

• a vertex-only incremental algorithm that runs in O(d(v)) time per vertex insertion.

There is a strong relationship between the dynamic representations of the PIG, PHCA
and PCA algorithms. In fact, the dynamic representation that is maintained in the al-
gorithms by Deng et al. and by Hell et al. is essentially a straight enumeration, whereas
the representation that we use for the PCA algorithm is essentially a round enumeration
(see Chapter 3). Furthermore, the representation that the PCA recognition algorithm
generates is a locally straight enumeration when G is PHCA, while it is a straight enu-
meration when G is a PIG graph. Therefore, the dynamic PCA recognition algorithm is
also able to answer in constant time if the dynamic graph is a PIG or PHCA graph.

This chapter is organized as follows. In Section 6.1 we give a brief overview of the
algorithms by Deng et al. and by Hell et al. These algorithms play a central role in
the present chapter for two reasons, one practical and one theoretical. The practical
reason is that we use them when an update operation is applied to a PIG graph. The
theoretical reason is that our algorithm follows the same ideas as these algorithms, and
hence we prove results similar to those in [DHH96, HSS01]. In Section 6.2 we describe
the dynamic data structures for our algorithms and their relationships with the data
structures of the algorithms by Hell et al. In Section 6.3 we develop an algorithm to
find all the co-components of a PCA graph when a vertex is inserted or removed. The
incremental algorithm for inserting a vertex into a PCA graph appears in Section 6.4.
Next, in Section 6.5, we describe a decremental algorithm that removes vertices from a
PCA graph, and a fully dynamic algorithm that combines vertex insertions with vertex
removals. The algorithms to insert and remove edges from PHCA graphs are described
in Sections 6.6 and 6.7, respectively. Finally, in Section 6.8 we discuss the connectivity
data structure that is required by the fully dynamic algorithm.

6.1 The DHH and HSS algorithms: an overview

In this section we briefly review the algorithm by Deng et al. [DHH96] and the algo-
rithms by Hell et al. [HSS01]. By Corollary 2.4.5, twin vertices can be ignored by any
static recognition algorithm. This is not the case when the graph is dynamic, because
the insertion and removal of vertices generate new twin vertices. Nevertheless, it is con-
venient to treat every maximal set of twin vertices as if they were just one vertex of the

1The vertex-only decremental algorithm for PCA graphs is trivial, it can be done by removing one arc
of a PCA model in O(1) time.
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6.1 The DHH and HSS algorithms: an overview

graph. This is one of the key ideas of the DHH algorithm that is replicated in the HSS
algorithms and in ours. We present here the definitions that are needed to treat the sets
of vertices as if they were vertices.

Let G be a graph, v ∈ V (G) and B ⊆ V (G) \ {v}. Say that v is adjacent to B when
B ∩ N(v) 6= ∅, while v is co-adjacent to B when B \ N(v) 6= ∅. In other words, v is
adjacent to B if v has some neighbor in B, while it is co-adjacent if it has some non-
neighbor in B. When v is adjacent to all the vertices in B, then v is fully adjacent to
B. Similarly, when v is not adjacent all the vertices in B, then v is not adjacent to B.
Observe that v is fully adjacent to B if and only if v is not co-adjacent to B.

Define a semiblock to be a set of twin vertices, and a block to be a maximal semiblock.
A partition of V (G) into semiblocks is a semiblock partition of G. The special semiblock
partition defined by the blocks of G is called the block partition of G. For a semiblock
partition B, we define the B-reduction of G as the graph obtained by identifying each
semiblock B ∈ B into a representative vertex v. Observe that G can be decoded from
its B-reduction by inserting |B| − 1 copies of v for each semiblock B ∈ B. When B is
the block partition of G, the B-reduction of G is called the block-reduction of G. We
extend all the graph theoretical definitions about vertices of the B-reduction of G to the
corresponding semiblocks of B. For instance, we say that two semiblocks B and B′ are
adjacent, call N(B) to the family of adjacent semiblocks of B, say that a semiblock is
universal, etc. We also extend all the graph theoretical definitions about sets of vertices
to families of semiblocks. For instance, we may also say that a family of semiblocks B is
a complete set or a co-bipartition of a graph, that some semiblocks induce a path, etc.

Recall that a PIG order of a graph G is a linear ordering φ = v1, . . . , vn of V (G)
such that, for every 1 ≤ i ≤ n, there exist two non-negative values l, r such that
N [vi] = Lin[vi−l, vi+r], and both Lin[vi−l, vi] and Lin[vi, vi+r] are complete sets. By
Theorem 3.3.2 and Lemma 2.4.4, it follows that the vertices of every block of G are
consecutive in the PIG order. Thus, we can uniquely encode all the PIG orders of the
vertices with one PIG order of the blocks of G. Let B be a semiblock partition of G and
H be the B-reduction of G. Suppose that v1, . . . , vk is a PIG order of H, where vi is the
representative vertex of Bi ∈ B. Then, a PIG order of G can be obtained by inserting
first the vertices of B1 in any order, then the vertices of B2 in any order, and so on. We
call the ordering Φ = B1, . . . , Bk of B a semiblock PIG order of G, while if B is a block
partition then Φ is also a block PIG order of G. To distinguish between semiblock PIG
orders and PIG orders, we always denote the former by Capital Greek letters and the
latter with lower case Greek letters.

In [DHH96], Deng et al. developed an incremental algorithm, which we call the DHH
algorithm, for the connected PIG graph recognition problem. The dynamic representa-
tion that is maintained by the algorithm is a block PIG order Φ = B1, . . . , Bk of the
input graph G. When a new vertex v is inserted into G, there are two possibilities. If
v has some twin in some block, say Bp, then v is inserted into Bp and the algorithm
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6 Dynamic recognition of PCA and PHCA graphs

finishes. Otherwise, a new block Bp has to be created for v and a new block PIG order
Ψ of G∪ {v} has to be generated. Since the class of PIG graphs is hereditary, it follows
that Φ′ = Ψ \ {Bp} is a semiblock PIG order of G. By Theorem 3.3.2 and Lemma 2.4.4,
Φ′ is rather similar to Φ in the sense that Φ′ is obtained from Φ just by splitting some
blocks into consecutive semiblocks. Thus, Φ is modified just a little to obtain Ψ. In fact,
v is adjacent and co-adjacent to at most two blocks of G, say Bl and Br. Even more, v
has to be fully adjacent to all the blocks in Lin[Bl+1, Br−1] and Ψ is equal to Ψl,Ψv,Ψr

where

Ψl = Lin[B1, Bl−1], Bl \N(v)

Ψv = Bl ∩N(v),Lin[Bl+1, Bh], Bp,Lin[Bh+1, Br−1], Br ∩N(v)

Ψr = Br \N(v),Lin[Br+1, Bk]

for some value h. Of course, there are other cases in which v is not adjacent to Bl and
Br, but this is the more general case. The DHH algorithm finds the position h and
inserts Bp into Φ, whenever possible.

The implementation of the block PIG order Φ = B1, . . . , Bk in this algorithm is really
simple (see Figure 6.1). There is doubly-linked list of blocks, where Bi has two near
pointers NΦ

l (Bi) and NΦ
r (Bi) that respectively point to Bi−1 and Bi+1, for every 1 <

i < k. In turn, every block Bi has two far pointers pointers FΦ
l (Bi) and FΦ

r (Bi) that
point to the leftmost and rightmost neighbors of Bi in Φ. Finally, every vertex has a
pointer to its block. When Bp is inserted as a new block into the PIG order, we have
to partition the blocks Bl and Br, and possibly change the far pointers of all the blocks
in Bl, . . . , Br. All these operations are done in O(d(v)) time, i.e., O(1) time per edge
insertion, which is optimal.

The DHH algorithm was extended by Hell et al. [HSS01] to handle the case in which
the graph is not connected. In this case, G admits an exponential number of block PIG
orders which can be constructed by permuting the block PIG orders of its components,
and by reversing each connected block PIG order. To handle this situation, the vertex-
incremental HSS algorithm keeps two block PIG orders for each component, one the
reversal of the other. When a new vertex v is inserted, there are two possibilities. Either
N(v) is included in one component G1 of G, or N(v) intersects exactly two components
G1 and G2 of G. In the former case, v is inserted into the block PIG orders of G1 as
in the DHH algorithm. In the latter case, G1 and G2 have to be combined into a new
component and the four block PIG orders of G1 and G2 have to be replaced with two
block PIG orders of G1 ∪ G2 ∪ {v}. Let Ψ = B1, . . . , Bh, {v}, Bh+1, . . . , Bk be a block
PIG order of G1 ∪ G2 ∪ {v}. Since the class of PIG graphs is hereditary, we know that
B1, . . . , Bh, Bh+1, . . . , Bk is a semiblock PIG order of G1 ∪G2. Even more, B1, . . . , Bh is
a semiblock PIG order of one of the components, Bh+1, . . . , Bk is a semiblock PIG order
of the other component, and v is adjacent and co-adjacent to at most one block of G1,
and to at most one block of G2.
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The data structure implementing the PIG order v1, v2, v3, v4, v5.

Figure 6.1: The PIG data structure for a small graph. The pointers from each vertex to
its corresponding blocks are not shown.

Once G1 and G2 are determined and that the adjacent and co-adjacent blocks are known,
it is not so hard to insert the new block for v. However, it is not easy to find G1 and
G2 if the connected block PIG orders are represented as in the DHH algorithm. To find
G1 and G2, the simplest way is to first locate the ranges of blocks adjacent to v. For
this purpose, N(v) is first traversed and the blocks adjacent to v are marked. Then, a
connected block PIG order is traversed to the right and to the left, starting from a block
B adjacent to v. The traversal stops either when a block not adjacent to v is found or
when all the blocks in the PIG order have been traversed. The set of blocks traversed is
a range of blocks, all of which are adjacent to v. In the case that v is adjacent to two
ranges, then the graph is PIG only if these two ranges fall in block PIG orders of different
components, and each of these blocks contains at least one of the extreme—leftmost or
rightmost—blocks of the PIG order. To test if two ranges, both containing at least one
extreme block, belong to the same component or not, an end pointer EΦ(B) is stored
for each block B. If B is not an extreme block, then EΦ points to NULL, otherwise it
points to the other extreme of the block PIG order (see Figure 6.2). With this new data
structure, the HSS algorithm handles the insertion of a vertex in O(d(v)) time.

The vertex-incremental HSS algorithm can be adapted to allow the insertion of edges
as well. Suppose that some edge vw is to be inserted into G. We consider here only
the case in which G is connected. Let Φ = B1, . . . , Bk be the block PIG order of G and
suppose that v ∈ Bi and w ∈ Bj, for some 1 ≤ i < j ≤ k. In G, the block Bi is adjacent
to all the blocks in Lin(Bi, F

Φ
r (Bi)], and the block Bj is adjacent to all the blocks in

Lin[FΦ
l (Bj), Bj). In this case, for G ∪ {vw} to be a PIG graph, FΦ

r (Bi−1) has to point
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Figure 6.2: The data structure with end pointers for the graph in Figure 6.1.

to Bj−1 and FΦ
l (Bj) has to point to Bi+1. We have at least two possibilities for the

insertion of the edge. Either v becomes a member of Bi+1 or v gets separated from Bi to
form a new block Bp that lies between Bi and Bi+1. In the latter case, the far pointers
FΦ

r (B) of all those blocks B pointing to Bi have to be updated so as to point to Bp.

To update all these far pointers to point to the new block Bp in O(1) time, the HSS
algorithm uses the technique of nested pointers. For each block Bi, two self pointers
SΦ

l (Bi) and SΦ
r (Bi) that point to Bi are stored. Every far pointer FΦ

l (B) that was
pointing toBi now points to SΦ

l (Bi). Similarly, every far pointer FΦ
r (B) that was pointing

to Bi now points to SΦ
r (Bi) (see Figure 6.3). To indicate that all the far pointers FΦ

r (B)
that were pointing to Bi now point to Bp, we only need to exchange the value of SΦ

r (Bi)
so as to point to Bp.

Up to this point we have discussed the incremental algorithms for the PIG graph recog-
nition problem. The decremental algorithms for the removal of vertices and edges are
similar to the incremental ones. However, the end pointers have to be removed from the
data structure that is used to represent a block PIG order. This is because when two
components result from the removal of a vertex or an edge, the new end pointers cannot
be computed efficiently. On the other hand, without the end pointers, a vertex v can be
removed in O(d(v)) time, while an edge vw can be removed in O(1) time.

Finally, Hell et al. developed a fully dynamic recognition algorithm in where insertions
and removals of vertices and edges are unrestricted. The algorithm is simply the combi-
nation of the incremental and decremental algorithms that we described above. However,
there is an incompatibility with respect to the use of the end pointers. They are needed
by the incremental algorithm to test whether two vertices belong to the same component,
while they are harmful for the decremental algorithm. To solve this problem, Hell et al.
propose the use of a dynamic connectivity structure that supports an operation to test if
two vertices belong to the same component and to update the components in O(log n)
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Figure 6.3: The data structure with self pointers for the graph in Figure 6.1. Now, every
far pointer points to a self pointer.

Operation No connectivity End pointers Connectivity structure
Vertex insertion not allowed O(d(v)) O(d(v) + log n)
Edge insertion not allowed O(1) O(log n)
Vertex removal O(d(v)) not allowed O(d(v) + log n)
Edge removal O(1) not allowed O(log n)

Table 6.1: Time complexities of the HSS algorithms.

time per update of the graph.

Table 6.1 summarizes the time complexities of the HSS algorithms. Each column of
the table indicates the data structure that is implemented by the dynamic algorithm.
No connectivity means that there is no way to test if two vertices belong to the same
component. End pointers indicates that there is one end pointer for each block of the
block PIG orders. Finally, the connectivity structure means that there is a dynamic
structure to test if any two vertices belong to the same component or not.

6.2 The data structure

In the previous section we saw that three different data structures are used by the
HSS algorithms. There is one with end pointers for the incremental algorithm, one
with no support for connectivity queries for the decremental algorithm, and one with
a connectivity structure for the fully dynamic algorithm. We will extend these data

93



6 Dynamic recognition of PCA and PHCA graphs

structures for our algorithms, so as to represent round enumerations instead of PIG
orders.

As we have discussed in Chapter 3, PIG orders are the same as straight enumerations
of the straight orientations of the graph. Thus, we can think that the data structures
of the HSS algorithms represent straight “block” enumerations as well. In the PCA
recognition algorithm, the data structure represents a round enumeration of blocks, not
a PCA order. This is because round enumerations are not the same as PCA orders when
the graph has universal vertices (see Theorem 3.3.15). Nevertheless, we will use the same
data structure as for PIG orders to specify the orientation; vertex v has a directed edge
to w if w appears between v and the right far pointer of v. We formalize this idea in the
following paragraph.

Recall that a round enumeration of a round digraphD is a circular ordering φ = v1, . . . , vn

of V (D) such that, for every vertex vi, N
−[vi] = [vi−l, vi] and N+[vi] = [vi, vi+r], where

l = d−(vi) and r = d+(vi). In Chapter 3, we defined the PCA orders so that there is no
need to specify the round orientation of a non-universal PCA graph. In this chapter we
cannot get rid of the orientation, because of the universal vertices. Say that φ = v1, . . . , vn

is a round enumeration of a graph G if φ is a round enumeration of some orientation D
of G. For the sake of notation, when φ is a locally straight enumeration of D, then we
say that φ is a locally straight enumeration of G. Similarly, if φ is a straight enumeration
of D, then we say that φ is also a straight enumeration of G. That is, in this chapter
we call locally straight enumerations to PHCA orders and straight enumerations to PIG
orders. Although we need the round orientation D, it can be encoded with a round
enumeration φ and two values fφ

l (v) and fφ
r (v) for every vertex v, so that v −→ w in D

if and only if w ∈ (v, fφ
r (v)] and v ∈ [fφ

l (w), w). Whenever we take a round enumeration

φ, we assume that the values of fφ
l and fφ

r are already defined. We will write v −→φ w
when w ∈ (v, fφ

r (v)] and v −→φ6 w when w 6∈ [v, fφ
r (v)]. When there is no confusion

about φ we will omit the subscripts and superscripts.

A word of caution is required before we continue. The notation −→φ was already used
in Chapter 3 to denote the implicit orientation in PHCA, PCA, and NHCA orders. In
this chapter we use −→φ for round enumerations of graphs, which are not precisely PCA
orders. Nevertheless, by Theorem 3.3.15 there is a one-to-one mapping between PCA
orders and round enumerations of universal-free graphs. In fact, −→φ can be thought
of as an orientation for those graphs with no universal vertices, thus the meaning was
not changed. Furthermore, we have never used −→φ for graphs with universal vertices
before.

As Deng et al. and Hell et al., we have to deal with twin vertices as if they were a
unit. Let B = B1, . . . , Bk be a semiblock partition of G and suppose that v1, . . . , vk is
a round enumeration of the B-reduction of G, where vi is the representative of Bi. We
say that Φ = B1, . . . , Bk is a round semiblock enumeration of G, while Φ is a round block
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enumeration of G if B is a block partition of G. These definitions are extended to locally
straight and straight enumerations as usual. As before, we will use Capital Greek letters
for round semiblock enumerations. We also use Capital letters to denote fl and fr for
semiblocks. That is, if v is the representative vertex of B, we denote by Fl(B) and Fr(B)
the semiblocks that are represented by fl(v) and fr(v) in the B-reduction, respectively.

Hell et al. introduce the concept of a contig2 to deal with connected straight block
enumerations. For a connected graph G, a semiblock contig is a straight semiblock enu-
meration of G, while a contig is a semiblock contig whose semiblocks are also blocks.
A semiblock contig contains two special semiblocks: the leftmost end semiblock is the
semiblock B such that Fl(B) = B, and the rightmost end semiblock is the semiblock B
such that Fr(B) = B. We always assume that B1 and Bk are respectively the leftmost
and rightmost end semiblocks of the semiblock contig Φ = B1, . . . , Bk. The generaliza-
tions of contigs to round enumerations are called rings. A semiblock ring is a round
semiblock enumeration of the connected graph G, while a ring is a semiblock ring whose
semiblocks are also blocks.

The data structure that we use to represent a semiblock ring Φ = B1, . . . , Bk is almost
the same as the one used by the HSS algorithm for contigs. The main difference is that
near pointers now represent a doubly-linked circular list instead of a doubly-linked list.
We also add a PHCA flag that is true if and only if Φ is locally straight. Summing
up, the incremental algorithm will maintain the following data to represent Φ for each
semiblock Bi:

1. The vertices that compose Bi.

2. Left and right near pointers, NΦ
l (Bi) and NΦ

r (Bi). If Bi is not the leftmost end
semiblock, then NΦ

l (Bi) points to Bi−1; otherwise, NΦ
l (Bi) points to Bi. Similarly,

if Bi is not the rightmost end semiblock, then NΦ
r (Bi) points to Bi+1; otherwise,

NΦ
r (Bi) points to Bi.

3. Left and right self pointers, SΦ
l (Bi) and SΦ

r (Bi), pointing to Bi.

4. Left and right far pointers, FΦ
l (Bi) and FΦ

r (Bi), pointing to the self pointers of
Fr(Bi) and Fl(Bi), respectively.

5. An end pointer EΦ(Bi), pointing to NULL if Bi is not an extreme semiblock of a
connected PIG order, or pointing to the other extreme semiblock otherwise.

As usual, we omit the superscript Φ when no confusions arise. The overloaded notation
for Fl and Fr as pointers and blocks is intentional. We also overload the notation Nl

and Nr to represent the blocks to the left and the right of some block. Observe that
Nl(B) = Fl(B) = B whenever B is the leftmost end semiblock and Nr(B) = Fr(B) = B
whenever B is the rightmost end semiblock.

2Proper interval graphs are related to DNA sequences
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Operation No connectivity End pointers Connectivity structure
Vertex insertion not allowed O(d(v)) O(d(v) + log n)
Edge insertion PCA not allowed O(∆(G)) O(∆(G) + log n)
Edge insertion PHCA not allowed O(1) O(log n)
Vertex removal O(d(v)) not allowed O(d(v) + log n)
Edge removal PCA O(∆(G)) not allowed O(∆(G) + log n)
Edge removal PHCA O(1) not allowed O(log n)

Table 6.2: Time complexities of the dynamic recognition algorithms for PCA and PHCA
graphs.

We will represent each component of a dynamic PCA graph G with two rings, one the
reverse of the other. The algorithms will assure that, after each update, the end blocks
are always the first and last blocks of the ring’s implementation. Of course, we will
assume that this condition holds for the semiblock rings as well. So, we can test whether
a ring of G is a contig by querying whether its first block is an end block or not. All
the rings that represent a component of G are stored in one set that represents a round
block enumeration of G. The algorithms will also assure that these rings are contigs
when G is a PIG graph, while the rings are locally straight when G is a PHCA graph.
So, we can apply the HSS algorithm without modifications when G is a PIG graph and
the dynamic PHCA recognition problem is solved with the same algorithm as the PCA
recognition problem.

Following the ideas by Hell et al., the data structure for the decremental algorithms is
the same as the one for the incremental algorithm, with the exception that end pointers
are removed. Similarly, the data structure for the fully dynamic algorithms is obtained
by replacing the end pointers with a connectivity data structure. The connectivity data
structure is described in Section 6.8.

Table 6.2 is a preview of the time complexities of the algorithms. The columns of this
table have the same meaning as the corresponding columns in Table 6.1.

6.3 Co-components of PCA graphs

The incremental connected PIG recognition algorithm by Deng et al. takes advantage of
the fact that every connected PIG graph admits a unique PIG model, up to full reversal.
For the dynamic recognition of general PIG graphs, Hell et al. have to deal with each
component in a separate way, since the components can be permuted to form several
PIG orders. For PCA graphs, the situation is similar. Huang [Hua95] proved that every
connected and co-connected PCA graph admits a unique round enumeration, up to full
reversal (see Theorem 3.3.3). However, if G is not co-connected, then its co-components
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can be permuted so as to form several round enumerations. Instead of dealing with these
co-components in the data structure, we take a more lazy approach: we compute all the
co-components only when they are needed. The advantage of this approach is that it
allows us to use the same data structure as Hell et al. The disadvantage is that we have
to find all the co-components fast.

To begin this section, we show how to compute the co-component C that contains a
semiblock B in O(dC(B)) time, when a semiblock ring of a graph G is given as input.
Here dC(B) = |N(B)∩C| is the number of neighbors of B that belong to C. The solution
to this problem yields an O(∆(G)) time algorithm that computes all the co-components
of the graph. This is not enough to assure that only O(d(v)) time is spent to compute
the co-components, when v is to be inserted into G. We will show how to do this in
Section 6.3.1. The following proposition, that follows from Theorem 2.4.10, is essential
for our purposes.

Proposition 6.3.1. If a PCA graph is not co-connected, then it is co-bipartite.

Algorithm 6.1 outputs the co-component of a co-bipartite graph G that contains B. The
correctness of the algorithm is given in the following proposition.

Proposition 6.3.2. Let G be a co-bipartite graph and let X ,Y be the families in Al-
gorithm 6.1 at some step of the execution. Then, X ∪ Y is co-connected, X ∩ Y = ∅
and B ∈ X . Moreover, when Algorithm 6.1 finishes, 〈X , N(X )〉 is a co-bipartition of a
co-component of G and B ∈ X .

Algorithm 6.1 Co-bipartition of the co-component containing B.

Input: A co-bipartite graph G with a semiblock partition B, and B ∈ B.
Output: A co-bipartition 〈X ,Y〉 of the co-component that contains B, where B ∈ X .

1. Set X := {B} and Y := ∅.

2. Perform the following operations while Y 6= N(X ).

3. Set Y := N(X ).

4. Set X := N(Y).

5. Output 〈X ,Y〉.

Let Φ = B1, . . . , Bk be a round semiblock enumeration of a graph G. A range [Bl, Br]
of Φ is a co-bipartite chunk if [Bl, Br] ⊆ X for some co-bipartition 〈X , N(X )〉 of a co-
component of G. A maximal co-bipartite chunk is called a co-bipartite range. The next
proposition shows how do X and Y look like at each step of the algorithm.
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6 Dynamic recognition of PCA and PHCA graphs

Proposition 6.3.3. Let Φ be a round semiblock enumeration of a co-bipartite graph G,
and X = [Bl, Br] be a co-bipartite chunk of Φ. Then N(X ) = (Fr(Bl), Fl(Br)).

Proof. Let Φ = B1, . . . , Bk and call Ba = Fr(Bl) and Bb = Fl(Br). Suppose, to obtain
a contradiction, that Bl 6= Br and Bl −→6 Br. In this case Br −→ Bl because X
is a complete set. Hence, Br −→ Bj for every Bj ∈ (Br, Bl] which implies that Br

is universal. This is impossible because Bl and Br belong to the same co-component
by definition. Therefore, either Bl = Br or Bl −→ Br. Consequently, Br ∈ [Bl, Ba]
which implies that Bi −→ Bj for every Bi ∈ [Bl, Br] and every Bj ∈ [Br, Ba]. A
similar argument can be used to prove that Bj −→ Bi for every Bi ∈ [Bl, Br] and every
Bj ∈ [Bb, Bl]. Then, all the semiblocks in [Bb, Ba] belong to N [Bi] for every Bi ∈ X ,
thus N(X) ⊆ (Ba, Bb).

For the other inclusion, suppose that there is some semiblock B ∈ (Ba, Bb) that is
adjacent to all the semiblocks in X . This implies that Bl and Br are not universal since
otherwise (Ba, Bb) = (Fr(Bl), Fl(Bl)) = ∅. Hence, Ba+1 is not adjacent to Bl and Bb−1

is not adjacent to Br, so B 6∈ {Ba+1, Bb−1}. Consequently, [Ba+1, B) and (B,Bb−1] are
nonempty ranges. In particular, both Ba+1 and Bb−1 belong to N(X ), thus there is a
path between Ba+1 and Bb−1 in G. Such path must contain three blocks Bx, By, Bz such
that By is not adjacent to Bx, Bx is not adjacent to Bz, Bx ∈ X , By ∈ [Ba+1, B), and
Bz ∈ (B,Bb−1]. By hypothesis, either B −→ Bx or Bx −→ B. The former is impossible
because Bz −→6 Bx, while the latter is impossible because Bx −→6 By.

Corollary 6.3.4. Let Φ be a round semiblock enumeration of a co-bipartite graph. Then,
at each step of Algorithm 6.1, the variable X is a co-bipartite chunk and the variable Y
is either empty or a co-bipartite chunk.

Proof. Observe that if X is a co-bipartite chunk, then either N(X ) = ∅ or N(X ) is a
nonempty range by Proposition 6.3.3. In the former case X = {B} for some universal
block B while in the latter case N(X ) is a co-bipartite chunk. If N(X ) is a co-bipartite
chunk, then N(N(X )) 6= ∅ is also a co-bipartite chunk by Proposition 6.3.3. Therefore,
since X is a co-bipartite chunk before the main loop of Algorithm 6.1, we obtain that X
and Y are both co-bipartite chunks after every step of the main loop of Algorithm 6.1.

The above propositions show how can we compute Algorithm 6.3.1 for co-bipartite PCA
graphs when a round semiblock enumeration Φ = B1, . . . , Bk is given. We only need
to maintain the co-bipartite chunk X = [Bl, Br], compute the co-bipartite chunk Y =
(Fr(Bl), Fl(Br)), and then compute N(Y). The computation of Y is easy with the
information stored in our dynamic data structure, once Bl and Br are given. On the
other hand, to compute N(Y) we need to have access to the leftmost and rightmost
semiblocks in Y . That is, we need to find the semiblock immediately to the right of
Fr(Bl) and the semiblock immediately to the left of Fl(Br). When Fr(Bl) is an end
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semiblock of Φ, the semiblock to the right of Fr(Bl) is the leftmost end semiblock of
some contig of Φ. The dynamic data structure provides no efficient operation to obtain
the rightmost end semiblock from a leftmost end semiblock. Of course, there could
be some clever way to use the end pointer of a leftmost end semiblock to obtain its
rightmost end semiblock in O(1) time, but that would preclude the decremental problem
from invoking this algorithm. To avoid these complications, we restrict ourselves to
semiblock rings. For the semiblock ring Φ = B1, . . . , Bk, define Next(Bi) = Bi+1 and
Prev(Bi) = Bi−1. (Note that Prev(B) 6= Nl(B) (resp. Next(B) 6= Nr(B)) when B is the
leftmost (resp. rightmost) end semiblock of the ring.) The following proposition shows
that Prev and Next can be efficiently computed without using any end pointers.

Proposition 6.3.5. Let Φ be a semiblock ring of a co-bipartite graph G and B ∈ Φ. If
Nr(B) 6= B, then Next(B) = Nr(B); otherwise, Next(B) = Fl(Fl(Fl((B))). Similarly,
if Nl(B) = B, then Prev(B) = Nl(B); otherwise, Prev(B) = Fr(Fr(Fr(B))).

Proof. If Nr(B) = B then B is the rightmost end semiblock of Φ, thus Φ is a contig
and Next(B) is the leftmost end semiblock B′ of Φ. Let B1 = Fl(B), B2 = Fl(B1),
and B3 = Fl(B2). If B′ ∈ {B1, B2, B3}, then B3 = B′ because Fl(B

′) = B′. Otherwise,
neither B nor B′ are adjacent to B2 which implies that B,B′ and B2 are pairwise non-
adjacent, i.e., G is not co-bipartite. The proof is analogous when Nl(B) = B.

Algorithm 6.1 can be implemented so as to run in O(dC(B)) time, when Φ is a semiblock
ring, as in Algorithm 6.2. Note that Algorithm 6.2 outputs just the co-bipartite range
X that contains B. However, the other co-bipartite range of its co-component can be
computed in O(1) time by Propositions 6.3.3 and 6.3.5. Step 1 defines the functions Prev
and Next as in Proposition 6.3.5. Step 3 checks whether B is a universal semiblock and,
if so, it outputs the co-bipartite range X = [B,B]. When B is not a universal semiblock,
then no semiblock in X ∪ Y is universal throughout the execution of the algorithm.
Therefore, Fl(Br) is not the semiblock that appears immediately to the right of Fr(Bl).
Hence, by Proposition 6.3.3, N(X ) is equal to (Fr(Bl), Fl(Br)) which, in turn, is equal
to [Next(Fr(Bl)), P rev(Fl(Br))].

For the implementation, the co-bipartite chunks X and Y can be represented by a pair of
pointers, pointing to the leftmost and rightmost semiblocks in the range. Of course, the
empty range is implemented as a pair of pointers to NULL. Clearly, the Next and Prev
functions run in O(1) time. Therefore, the main loop takes O(dC(B)) time, because at
least one neighbor of B is inserted into X at each iteration. Moreover, the main cycle of
Algorithm 6.2 is executed for at most dC(B) times.

To invoke Algorithm 6.2 we first need to make sure that the input semiblock ring corre-
sponds to a co-bipartite graph. Of course, Algorithm 6.2 can be executed on semiblock
rings of graphs that are not co-bipartite. However, the algorithm fails to terminate in
this case, unless an end semiblock is found.
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6 Dynamic recognition of PCA and PHCA graphs

Algorithm 6.2 Co-component of B in a semiblock ring.

Input: A semiblock ring Φ of a co-bipartite graph G, and a semiblock B ∈ Φ.
Output: The co-bipartite range X that contains B.

1. Define the function Next : Φ → Φ such that Next(B) = Nr(B) when Nr(B) 6= B, and
Next(B) = Fl(Fl(Fl(B))) when Nr(B) = B. Similarly, define Prev : Φ → Φ such that
Prev(B) = Nl(B) when Nl(B) 6= B, and Prev(B) = (Fr(Fr(Fr(B))) when Nl(B) = B.

2. Set X := [B,B], Y := ∅.

3. If Next(Fr(B)) = Fl(B) then output X .

4. Define the function N([Bl, Br]) := [Next(Fr(Bl)), P rev(Fl(Br))].

5. Perform the following operation while Y 6= N(X ).

6. Set Y := N(X ).

7. Set X := N(Y).

8. Output X .

Proposition 6.3.6. If Algorithm 6.2 terminates with output [Bl, Br] when it is applied
to a semiblock ring Φ of a graph G, then either G is a co-bipartite graph or one among
R = Fr(Fr(Fr(Bl))) and L = Fl(Fl(Fl(Br))) is an end semiblock.

Proof. Suppose that Algorithm 6.2 terminates with output [Bl, Br] when it is applied
to the semiblock ring Φ = B1, . . . , Bk and the block B ∈ Φ. If B is universal then G
is co-bipartite by Proposition 6.3.1. Suppose then that B is not universal, so the main
loop of the algorithm is executed for at least one iteration. Let [Ba, Bb] be the range
corresponding to variable Y after the last iteration of the main loop is executed. By
definition, Bl = Next(Fr(Ba)) and Br = Prev(Fl(Bb)). By the loop stop condition,
Ba = Next(Fr(Bl)) and Bb = Prev(Fl(Br)). Here Prev and Next are the functions
defined as in Algorithm 6.2, i.e., Next(B′) = Fl(Fl(Fl(B

′))) when B′ is the rightmost
end semiblock, and Prev(B′) = Fr(Fr(Fr(B

′))) when B′ is the leftmost end semiblock.
If Fr(Ba) is the rightmost end semiblock B′, then Bl = Fl(Fl(Fl(B

′))), thus R is the
end semiblock B′. Similarly, if Fl(Bb) is the leftmost end semiblock, then L is an end
semiblock. On the other hand, if Fr(Bl) is an end semiblock, then R = Fr(Bl), and
thus it is an end semiblock. Similarly, L is an end semiblock when Fl(Br) is an end
semiblock. Finally, if none of Fr(Ba), Fl(Bb), Fr(Bl), and Fl(Br) are end semiblocks,
then Bl−1 = Fr(Ba) and Ba−1 = Fr(Bl) (see Figure 6.4). So, every semiblock of Φ
belongs to [Bl, Fr(Bl)] ∪ [Ba, Fr(Ba)], i.e., 〈[Bl, Fr(Bl)], [Ba, Fr(Ba)]〉 is a co-bipartition
of G.
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Figure 6.4: Proof of Proposition 6.3.6.

When Algorithm 6.2 finishes with input Φ, we can check whether G is co-bipartite or
not as in the following proposition.

Proposition 6.3.7. Let Φ = B1, . . . , Bk be a semiblock contig of a graph G. Then G is
co-bipartite if and only if B1 = Fl(Nl(Fl(Bk))) and Bk = Fr(Nr(Fr(B1))).

Proof. Suppose first that G is co-bipartite. If Nl(Fl(Bk)) 6= B1, then Nl(Fl(Bk)) is not
adjacent to Bk, thus Nl(Fl(Bk)) must be adjacent to B1. That is, B1 = Fl(Nl(Fl(Bk))).
Similarly, either Nr(Fr(B1)) = Bk or Fr(Nr(Fr(B1))) = Bk.

For the converse, observe that both X = [B1, Fr(B1)] and Y = [Fl(Bk), Bk] are com-
plete sets, and that all the semiblocks in Φ belong to at least one of X or Y because
Nr(Fr(B1)) ∈ [Fl(Bk), Bk].

The above propositions allow us to compute the co-component that containsB even when
G is not co-bipartite, as follows. First run Algorithm 6.2 for at most d(B) iterations.
If the algorithm fails to terminate, then G is co-connected and not co-bipartite, by
Proposition 6.3.1. Otherwise, we obtain a range X and we can check whether G is
co-bipartite by combining Propositions 6.3.1 and 6.3.7.

The following proposition is useful to describe the number of neighbors that a vertex v
of a graph H has in a semiblock ring of H \ {v}.

Proposition 6.3.8. Let Φ be a semiblock ring of a co-bipartite graph G and B ∈ Φ. If
the main loop of Algorithm 6.2 is executed for p iterations when it is applied to Φ and
B then G contains an induced path B1, . . . , B2p, where B = B1.

Proof. The proposition is clearly true for p = 0. Suppose then that p > 0, and call
L0 = R0 = B, Li+1 = Next(Fr(Li)), and Ri+1 = Prev(Fl(Ri)), for 0 ≤ i ≤ p. We will
prove that either L0, . . . , L2p−1 or R0, . . . , R2p−1 is an induced path of G.
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6 Dynamic recognition of PCA and PHCA graphs

By definition, variable X is equal to Xi = [L2i, R2i] and variable Y is equal to Yi =
[L2i−1, R2i−1] after the i-th iteration of the main loop of Algorithm 6.2. Recall that, by
Corollary 6.3.4, Xi and Yi are co-bipartite chunks, and Xi−1 ⊆ Xi and Yi−1 ⊆ Yi. By the
stop condition, Yp = N(Xp−1) 6= Yp−1, i.e., [L2p−1, R2p−1] 6= [L2p−3, R2p−3]. Therefore,
either L2p−1 6= L2p−3 or R2p−1 6= R2p−3. Assume, w.l.o.g., that L2p−1 6= L2p−3. Hence,
Li 6= Li−2 for every 1 ≤ i ≤ 2p − 1. Since also [Li−2, Ri−2] ⊂ [Li, Ri], we obtain that
Li+2j 6∈ [Li, Ri], for every 0 ≤ i < i+ 2j ≤ 2p− 1.

Fix some pair of values i, j such that 0 ≤ i < j ≤ 2p − 1. If i and j have the same
parity, then Li ∈ [Lj, Rj], thus Li is adjacent to Lj. If i = j − 1, then Li is not adjacent
to Lj because otherwise Li would be universal. Finally, if i 6= j − 1 and i and j have
different parity, then Lj 6∈ [Li+1, Ri+1] = N([Li, Ri]), so Li is adjacent to Lj. Summing
up, B = L0, . . . , L2p−1 is an induced path of G.

To end this section, we show how to use Algorithm 6.2 so as to obtain all the co-
components of a PCA graph together with its co-bipartitions. The input is a round
semiblock enumeration Φ, and the output is Φ when Φ is not co-bipartite, or a list
X1, . . . ,Xs of co-bipartite ranges otherwise. One interesting thing is that Xi ∪ Xi+1 is a
range of Φ for every 1 ≤ i ≤ s. The whole procedure is summarized in Algorithm 6.3.
Recall that the only disconnected co-bipartite graph is the graph formed by the union
of two complete sets. So, the only round semiblock enumeration Φ of a disconnected
co-bipartite graph has two contigs, each of which is a co-bipartite range. Steps 1 and 3
find these co-bipartite ranges. On the other hand, observe that Steps 4–6 are used to
check whether G is co-bipartite when G is connected.

6.3.1 Co-components of an incremental PCA graph

In this part of the section we deal with the problem of finding all the co-components of
a graph G when a vertex v is to be inserted into G. The key idea is to prove that, for
H = G ∪ {v} to be a PCA graph, v has to be adjacent to a large number of vertices
of G. Even more, v does not have non-neighbors in more than two non-universal co-
components of G. We present an O(dH(v)) time algorithm that, given a round semiblock
enumeration Φ of G, outputs all the co-components of G when G is co-bipartite and H
is PCA. When either G is not co-bipartite or H is not PCA, it halts with output Φ.

For a family C of subsets of V (G), denote by dC(v) the number of members of C that are
adjacent to v. The next propositions show that v is of high degree when H is a PCA
graph and G is co-bipartite.

Proposition 6.3.9. Let v be a vertex of a PCA graph H such that H\{v} is co-bipartite,
Φ be a semiblock ring of H \ {v}, B ∈ Φ, and C be the co-component of H \ {v} that
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Algorithm 6.3 Co-components of a PCA graph G

Input: A round semiblock enumeration Φ = B1, . . . , Bk of a graph G.
Output: If G is not co-bipartite, then Φ is the output. Otherwise, a list X1, . . . ,Xs

with the co-bipartite ranges of Φ is obtained, where Xi and Xi+1 is a range for every
1 ≤ i ≤ s.

1. If Φ has three components, then output Φ.

2. If Φ is composed by two contigs Φ1 = B1, . . . , Bj and Φ2 = Bj+1, . . . , Bk, then:

3. If Fr(B1) = Bj and Fr(Bj+1) = Bk, then output {Φ1,Φ2}. Otherwise, output Φ.

4. Apply Algorithm 6.2 to Φ and B ∈ Φ for at most 2d(B) steps. If Algorithm 6.2 fails to
terminate, then output Φ. Otherwise, a range X1 := [Bl, Br] is obtained.

5. If R := Fr(Fr(Fr(Bl))) is an end semiblock and Fl(Nl(Fl(R))) is not, then output Φ.

6. If L := Fl(Fl(Fl(Bl))) is an end semiblock and Fr(Nr(Fr(L))) is not, then output Φ.

7. Set i := 1 and define Next as in Algorithm 6.2.

8. While Next(Br) 6= Bl then:

9. Apply Algorithm 6.2 to Φ and Next(Br), to obtain Xi+1 := [Next(Br), Bb].

10. Set i := i+ 1 and Br := Bb.

11. Output {X1, . . . ,Xi}.

contains B. If the main loop of Algorithm 6.2 takes p iterations to terminate when it is
applied to B and Φ, then p ≤ dC(v) + 2.

Proof. Recall that the Φ-reduction of H \{v} is the graph obtained by contracting all the
vertices of each semiblock Bi into one vertex vi. Define G as the graph that is obtained
from the insertion of {v} into the Φ-reduction of H \{v}, where v is adjacent to a vertex
vi if and only if v is adjacent to the corresponding semiblock Bi. Observe that G is an
induced subgraph of H.

By Proposition 6.3.8, there is an induced path B1, . . . , B2p in H \ {v} where Bi ∈ C for
every 1 ≤ i ≤ |C|. The semiblocks of this path correspond to some path v1, . . . , v2p of

G \ {v}. The proposition is trivially true when p ≤ 2. Suppose, then, that p ≥ 3. In this
case, v1, v2, v4 and v5 induce a hole in G, thus v is adjacent to at least one of these vertices
by Theorem 2.4.10. Let a be the minimum such that va is a neighbor of v. If a ≥ 4 then
v1, v2, va and v induce a K1,3 in G, contradicting Theorem 2.4.10. Consequently a ≤ 3.

If v is adjacent to vi for every even i > a or for every odd i > a, then the result follows.
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Hence, suppose that v has two non-neighbors vi and vj in G, where j − i > 0 is odd and
i > a. Of all the possible combinations, take i and j so that v is adjacent to vh in G, for
every i < h < j. By construction, vi, . . . , vj, v is an induced cycle of G with odd length,
thus va cannot be adjacent to all these vertices in G by Theorem 2.4.10. Consequently,
i = a+ 1, and h− j is even for every j < h ≤ p such that vh is non-adjacent to v in G.
Therefore, p ≤ dC(v) + 2.

Proposition 6.3.10. Let v be a vertex of a graph H and B be a semiblock partition
of H \ {v}. If H is a PCA graph then the non-universal semiblocks of B that are not
adjacent to v lie in at most two co-components of H \ {v}.

Proof. On the contrary, suppose that there are three non-universal semiblocks B1, B2, B3

of B that lie in different co-components of H \ {v}. Call Bi+3 ∈ B to a non-neighbor
semiblock of Bi for i ∈ {1, 2, 3}. Let G be the graph with vertices v1, . . . , v6, v, where
vi and vj (1 ≤ i < j ≤ 6) are adjacent if and only if Bi and Bj are adjacent, while v is
adjacent to vi if and only if v is fully adjacent to Bi (1 ≤ i ≤ 6). Observe that G is an
induced subgraph of H.

If v is adjacent to v4, v5 and v6, then G is isomorphic to H5 in Figure 2.2, thus G is
not a PCA graph by Theorem 2.4.10. If v is adjacent to vi and not adjacent to vj, for
i, j ∈ {4, 5, 6}, then vj−3, vj, v and vi induce a K1,3 in G. Finally, if v is not adjacent
to vi and to vj, for 4 ≤ i < j ≤ 6, then vi, vj, vi−3, vj−3, v induce a C4 plus an isolated
vertex, which is not PCA by Theorem 2.4.10.

These propositions imply a lower bound condition for the degree of v in H, as it follows
from the next corollary.

Corollary 6.3.11. Let v be a vertex of a PCA graph H such that H\{v} is co-bipartite, Φ
be a round semiblock enumeration of H\{v}, and u be the number of universal semiblocks
of Φ. Call s to the number of times that Algorithm 6.2 is invoked when Algorithm 6.3
is applied to Φ. For i = 1, . . . , s, call pi to the number of iterations that the main loop
of Algorithm 6.2 requires for the i-th invocation. Then

s+
s

∑

i=1

pi ≤ u+ 2dH(v) + 12.

Proof. If H \ {v} is disconnected, then s = 0 and the corollary is trivially true. When
H \ {v} is connected, a new co-bipartite range is found each time Algorithm 6.3 invokes
Algorithm 6.2. Let X1, . . . ,Xs be the list of co-bipartite ranges of G = H \ {v} that
Algorithm 6.3 finds with these invocations. Without loss of generality, suppose that
X1, . . . ,Xu contain universal semiblocks. Suppose also that v is adjacent to all the
semiblocks of G[Xu+1∪. . .∪Xj], while v has co-adjacent semiblocks in G[Xj+1], . . . , G[Xs].
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By definition, pi = 0 for every 1 ≤ i ≤ u, and pi ≤ dXi
(v) for every 1 ≤ i ≤ j. On the

other hand, Proposition 6.3.9 implies that pi ≤ dXi
(v) + 2 for every j < i ≤ s. Finally,

by Proposition 6.3.10, s− (j + 1) ≤ 4. Therefore

s+
s

∑

i=1

pi =
s

∑

i=1

(1 + pi) ≤ u+

j
∑

i=u+1

2dXi
(v) +

s
∑

i=j+1

(2dXi
(v) + 3) ≤ u+ 2dH(v) + 12.

Algorithm 6.4 takes a semiblock enumeration of H and finds all the co-components of
H \ {v}, when H is a PCA graph and H \ {v} is co-bipartite. The correctness of this
algorithm follows from Corollary 6.3.11, and its time complexity is O(dH(v) + u) where
u is the number of universal semiblocks of H \ {v}. Note that the algorithm may output
the co-components of H \ {v} even when H is not a PCA graph, and it may output Φ
even when H is a PCA graph but H \ {v} is not co-bipartite.

Algorithm 6.4 Co-components of a round semiblock enumeration

Input: A round semiblock enumeration Φ of a graph H \ {v}, and d(v), for v ∈ V (H).
Output: If H is a PCA graph and H \ {v} is co-bipartite, then the output is a list with
the co-bipartite ranges of Φ as in Algorithm 6.3. If the co-components are not found,
then the algorithm answers Φ.

1. Set s := p := 0.

2. Apply Algorithm 6.3 while s+ p ≤ 2d(v) + 12. For each invocation of Algorithm 6.2 add 1
to s if the obtained co-bipartite range is not universal. Similarly, for each iteration of the
main loop of Algorithm 6.2 add 1 to p.

3. If s+ p > 2dH(v) + 12 then output Φ. Otherwise, output the co-bipartite ranges obtained
by Algorithm 6.3.

6.3.2 Round semiblock enumerations of co-bipartite graphs

In this last part of the section we present two algorithms that can be used to generate
all the round semiblock enumerations of those co-bipartite graphs that contain at most
one universal semiblock. These algorithms are based on the work by Huang [Hua92],
who characterized all the round enumerations of reduced graphs. As we have seen in
Chapter 3, the round enumerations with no universal vertices have some nice properties
that are lost when universal vertices are permitted. Dealing with universal vertices is
annoying and error-prone; round enumerations with universal vertices receive a special
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treatment in [Hua92], and this section is not an exception to this “rule”. Fortunately,
the universal semiblocks can be removed easily from a round semiblock enumeration as
follows.

Proposition 6.3.12. Let Φ = B1, . . . , Bk be a round semiblock enumeration of a graph
G and Bi be a universal semiblock of Φ. If k > 1, then Ψ = B1, . . . , Bi−1, Bi+1, . . . , Bk

is a round semiblock enumeration of G \ {Bi}.

Proof. Clearly Ψ is a round enumeration of the semiblocks of Φ that belong to G \{Bi}.
So, it is enough to show a round orientation of the semiblocks in Ψ. Define FΨ

l and FΨ
r

for B ∈ Ψ as follows.

• If FΦ
l (B) 6= Bi, then FΨ

l (B) = FΦ
l (B); otherwise, FΨ

l (B) = Bi+1.

• If FΦ
r (B) 6= Bi, then FΨ

r (B) = FΦ
r (B); otherwise, FΨ

r (B) = Bi−1.

Certainly, FΨ
r and FΨ

l are well defined for every B ∈ Ψ, and it is not hard to see that
B −→Φ B

′ if and only if B −→Ψ B′ for every B′ ∈ Ψ.

To remove the universal semiblock Bi as in the above proposition, we could move Fl(B)
so as to point to Bi+1 for every B such that Fl(B) = Bi. After that we could do the
analogous operation with the far right pointers and then remove Bi. However, this is
not a good idea since we would have to traverse many semiblocks of Φ. The other
choice, using the ideas from [HSS01], is to move the self pointers of Bi. Recall that
every semiblock B with Fl(B) = Bi has its far pointer pointing to Sl(Bi). Thus, by
moving Sl(Bi) so as to point to Bi+1 we actually move all the far pointers in O(1) time.
The inconvenient with this approach is that all those semiblocks that where pointing to
Sl(Bi+1) have to be updated so as to point to the new self pointer of Bi+1. However,
this is not too much expensive, as it is shown in the following proposition.

Proposition 6.3.13. Let Φ = B1, . . . , Bk be a round semiblock enumeration of a graph
G, Bi be a universal semiblock of Φ, and B ∈ Φ \ {Bi}. If Fr(Bi) 6= Bi, then

(i) Fl(B) = Bi+1 if and only if B is universal and B ∈ (Fr(Bi), Fr(Bi+1)].

(ii) Fr(B) = Bi−1 if and only if B is universal and B ∈ [Fl(Bi−1), Fl(Bi)).

If Fr(Bi) = Bi, then G is a complete graph.

Proof. If Fl(B) = Bi+1, then Bi −→6 B, which implies that B −→ Bi and, therefore, B is
universal. Moreover, B 6∈ (Bi, Fr(Bi)] and B ∈ [Bi+1, Fr(Bi+1)], thus either Fr(Bi+1) =
Fr(Bi) = Bi and G is a complete graph, or B ∈ (Fr(Bi), Fr(Bi+1)]. The converse of (i)
is trivial, and (ii) follows analogously when Fr(B) = Bi−1.
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6.3 Co-components of PCA graphs

Algorithm 6.5 can be used to remove a universal semiblock from Φ. The algorithm shows
only the case in which Bi is not an end semiblock, for the sake of simplicity. Steps 2–4
update the self pointers and far pointers as in Propositions 6.3.12 and 6.3.13. Once the
far pointers are updated, the algorithm updates the near and end pointers. For this,
observe that Bi−1 is an end semiblock if and only if Fr(Bi−1) = Bi−1. When Bi−1 is
not an end semiblock then its near right semiblock is Bi+1 and vice versa. When Bi−1

is an end semiblock then we need to update the end pointers. Here we take advantage
that the far pointers are already updated so as to obtain the other end semiblock of the
component as in Proposition 6.3.7. Clearly, this algorithm runs in O(u) time where u is
the number of universal semiblocks.

Algorithm 6.5 Removal of a universal semiblock from a round enumeration Φ

Input: A round semiblock enumeration Φ with at least two semiblocks, and a universal
block Bi.
Output: Φ is transformed into a round semiblock enumeration of Φ \ {Bi} and a round
semiblock enumeration containing only Bi.

1. Define Prev andNext as in Algorithm 6.2 and set Bi−1 := Prev(Bi) and Bi+1 := Next(Bi).

2. For each B ∈ (Fr(Bi), Fr(Bi+1)], set Fl(Bi) := Sl(Bi).

3. For each B ∈ [Fl(Bi−1), Fl(Bi)), set Fr(Bi) := Sr(Bi).

4. Swap Sl(Bi+1) with Sl(Bi) and Sr(Bi−1) with Sr(Bi).

5. Set Nr(Bi) := Nl(Bi) := E(Bi) := Bi and Fr(Bi) := Sr(Bi) and Fl(Bi) := Sl(Bi).

6. If Fr(Bi−1) 6= Bi−1 then set Nr(Bi−1) := Bi+1 and Nl(Bi+1) := Bi−1

7. Else:

8. Set Nr(Bi−1) := Bi−1 and Nl(Bi+1) := Bi+1.

9. Set E(Bi−1) := Fl(Fl(Fl(Bi−1))) and E(Bi+1) := Fr(Fr(Fr(Bi+1))).

10. Set E(E(Bi−1)) := Bi−1 and E(E(Bi+1)) := Bi+1.

From now on we deal with round semiblock enumerations that contain no universal
semiblocks. We will show two algorithms that can be used together to generate all
the round semiblock enumerations of a given graph. The first algorithm splits a round
semiblock enumeration of a graph G + H into two round semiblock enumerations, one
of G and one of H. The second algorithm joins two round semiblock enumerations of
graphs G and H into one round semiblock enumeration of G+H. We consider the split
algorithm first.

Let Φ be a round semiblock enumeration of a graph G. Say that a range X ⊆ Φ is
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Figure 6.5: Proof of Proposition 6.3.14. If Fr(Ls) is immediately to the left of Fl(Rs−1),

then X = (Fr(L1), Fl(Rs)).

a range of co-components if X is a complete set and it is the union of one or more
co-bipartite ranges. In other words, 〈X , N(X )〉 is a co-bipartition of a subgraph of G
induced by several co-components. The following proposition, which follows from the
work in [Hua92], is the generalization of Proposition 6.3.3 to ranges of co-components.

Proposition 6.3.14. Let Φ be a round semiblock enumeration of a co-bipartite graph G
and X = [Bl, Br] be a range of co-components. If Φ contains no universal semiblocks,
then N(X ) = (Fr(Bl), Fl(Br)).

Proof. By definition, X is the union of s co-bipartite ranges X1, . . . ,Xs. For i = 1, . . . , s,
let Li and Ri be respectively the leftmost and rightmost semiblocks in Xi, where L1 = Bl,
Rs = Br, and Next(Ri) = Li+1 if i < s. If s = 1, then the proposition follows from
Proposition 6.3.3. For the other case, suppose that s > 1 and that the proposition is
true for [L1, Rs−1]. Observe that it is enough to prove that N(Xs) = [Fl(Rs−1), Fl(Rs)).
By proposition 6.3.3, all we have to prove is that Fr(Ls) is immediately to the left of
Fl(Rs−1) (see Figure 6.5). Call B to the semiblock that is immediately to the left of
Fl(Rs−1). Observe first that Ls is adjacent to all the semiblocks in (Ls, Fr(L1)] since
Ls ∈ (L1, Fr(L1)]. Also, Ls is adjacent to all the semiblocks in Xi, for 1 ≤ i < s, because
Ls does not belong to the co-component that contains Xi. That is, Ls is adjacent
to every block in (Ls, B]. Now, if B −→ Ls then Ls is universal, a contradiction.
Therefore, Ls −→ B, thus either B = Fr(Ls) or Ls −→ Fl(Rs−1). The latter would
imply that B′ −→ Fl(Rs−1) for every B′ ∈ [Ls, Fl(Rs−1)). But this is impossible because
Fl(Rs−1) −→ Rs−1 and Fl(Rs−1) is not universal. Hence, B = Fr(Ls).

In view of the previous proposition, we will represent by X the range (Fr(Bl), Fl(Br)),
for each range of co-components X = [Bl, Br]. The following proposition, which also
follows from [Hua92], shows how can a round semiblock enumeration Ψ of G[X ∪N(X )]
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6.3 Co-components of PCA graphs

be extracted from Φ. This proposition is rather similar to Proposition 6.3.12. However,
instead of removing one co-component it allows the removal of several co-components
at the same time. The main advantage of removing several co-components at the same
time is that we also know how to obtain round semiblock enumeration of G\(X ∪N(X ))
by symmetry.

Proposition 6.3.15. Let Φ = B1, . . . , Bk be a round semiblock enumeration of a graph
G and X be range of co-components of Φ. If Φ contains no universal semiblocks then
Ψ = X ,X is a round semiblock enumeration of H = G[X ∪N(X )].

Proof. By Proposition 6.3.14, Ψ is a round enumeration of the semiblocks of Φ that
belong to H. So, it is enough to show a round orientation of the semiblocks in Ψ. Let
X = [Bl, Br] and X = [Ba, Bb], and define FΨ

l and FΨ
r for B ∈ Ψ as follows.

• If FΦ
l (B) ∈ X ∪ X , then FΨ

l (B) = FΦ
l (B).

• If FΦ
r (B) ∈ X ∪ X , then FΨ

r (B) = FΦ
r (B).

• If B ∈ X and FΦ
l (B) = Bb+1, then FΨ

l (B) = Bl.

• If B ∈ X and FΦ
r (B) = Ba−1, then FΨ

r (B) = Br.

• If B ∈ X and FΦ
l (B) = Br+1, then FΨ

l (B) = Ba.

• If B ∈ X and FΦ
r (B) = Bl−1, then FΨ

r (B) = Bb.

Observe that FΦ
r (Bl) is immediately to the left of Ba, while FΦ

r (Br) ∈ [Ba−1, Bb]. There-
fore, FΦ

r (B) ∈ [Ba−1, Bb] for every B ∈ X . Similarly, FΦ
l (B) ∈ [Ba, Bb+1] for every

B ∈ X , while FΦ
l (B) ∈ [Bl, Br+1] and FΦ

r (B) ∈ [Bl−1, Br] for every B ∈ X . Therefore,
FΨ

r and FΨ
l are well defined, and it is not hard to see that B −→Φ B′ if and only if

B −→Ψ B′ for every, B,B′ ∈ X ∪ X .

To update the far pointers we are going to use the technique of nested pointers once
again. The following proposition, which is the analogous of Proposition 6.3.13, shows
that we can swap some self pointers in order to move all the far pointers efficiently.

Proposition 6.3.16. Let Φ = B1, . . . , Bk be a round semiblock enumeration of a graph
G and X = [Bl, Br] be a range of co-components of Φ. If Φ has no universal semiblocks
and Bl−1, Br+1 6∈ X , then:

(i) If Fl(B) = Bl, then B 6∈ X ∪ X and

(ii) If Fr(B) = Br, then B 6∈ X ∪ X .

Let X = [Bl, Br] be a range of co-components of Φ = B1, . . . , Bk, and suppose that
X ,X 6= Φ. Call H1 and H2 to G[X ∪X ] and G\ (X ∪X ), respectively. When Φ contains
no universal semiblocks, then, by Proposition 6.3.14, X = [Ba, Bb] where Ba is the block
immediately to the right of Fr(Bl) and Bb is the block immediately to the left of Fl(Br).
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Figure 6.6: To the left, the orientation of the graph G = H1 + H2 with the round enu-
meration Φ is shown. To the right, the orientation of H1 with the round
enumeration X ,X , is shown. In H1, either Br (resp. Bb) is an end block or
Nr(Br) = Ba (resp. Nr(Bb) = Bl).

Also, since Φ 6= X ,X , there is some semiblock in (Br, Ba) or in (Bb, Bl). Suppose that
(Br, Ba) 6= ∅, so the range Y = [Br+1, Ba−1] is exactly (Br, Ba). It turns out that Y is also
a range of co-components. Indeed, Y is a complete set, and the only way to extend Y is
by including some semiblock of X ∪X . Furthermore, Y = [Bb+1, Bl−1] = (Bb, Bl) because
there are no universal semiblocks (see Figure 6.6). In other words, H2 = G[Y ∪ Y ]. So,
by Proposition 6.3.14, Ψ = X ,X is a round semiblock enumeration of H1 and Γ = Y ,Y
is a round semiblock enumeration of H2. Algorithm 6.6 can be used to split the graph
G into H1 and H2. The input of the algorithm is Φ and the range of co-components X .
Note that Φ must be a semiblock ring without end semiblocks, since Φ has at least four
co-bipartite ranges. To exchange all the far pointers in O(1) time, we make use of the
self pointers once again. Observe that, by Propositions 6.3.15 and 6.3.16, FΦ

l (B) = Bl

if and only if F Γ
l (B) = Br+1; F

Φ
l (B) = Br+1 if and only if FΨ

l (B) = Ba; F
Φ
l (B) = Ba

if and only if F Γ
l (B) = Bb+1; and FΦ

l (B) = Bb+1 if and only if FΨ
l (B) = Bl. So, the

update of the left far pointers can be done as in Step 2. Finally, the end semiblocks are
updated as in Algorithm 6.5. Clearly, this algorithm takes O(1) time.

Proposition 6.3.15 can be used in the other direction, to obtain a round semiblock enu-
meration of G from a round semiblock enumeration of G[X ∪X ] and a round semiblock
enumeration ofG\(X∪X). Suppose that Ψ = Bl, . . . , Br, Ba, . . . , Bb is a round semiblock
enumeration of a co-bipartite graph H1, where X = [Bl, Br] is a range of co-components
of Φ. Similarly, suppose that Γ = Br+1, . . . , Ba−1, Bb+1, . . . , Bl−1 is round semiblock
enumeration of the co-bipartite graphs H2, where Y = [Ba+1, Bb−1] is a range of co-
components of Γ. Define the enumeration 〈X ,Y ,X ,Y〉 as the circular enumeration of
blocks Φ = X ,Y ,X ,Y where FΦ

r and FΦ
l are defined as below.
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6.3 Co-components of PCA graphs

Algorithm 6.6 Split of a co-bipartite range

Input: A semiblock ring Φ, and a range of co-components X = [Bl, Br] such that
X ,X 6= Φ.
Output: Φ is transformed into two round semiblock enumerations, one for G[X ∪ X ]
and the other for G \ (X ∪ X ).

1. Let Bl−1 := Nl(Bl), Br+1 := Nr(Br), Bb+1 := Fl(Br), Ba−1 := Fr(Bl), Ba := Nr(Ba−1),
and Bb := Nl(Bb+1).

//Self pointers

2. Simultaneously, set Sl(Br+1) := Sl(Bl), Sl(Ba) := Sl(Br+1), Sl(Bb+1) := Sl(Ba), and
Sl(Bl) := Sl(Bb+1).

3. Simultaneously, set Sr(Bl−1) := Sr(Br), Sr(Bb) := Sr(Bl−1), Sr(Ba−1) := Sr(Bb), and
Sr(Br) := Sr(Ba−1).

//Near and end pointers

4. Define the functions F 3
l (B) = Fl(Fl(Fl(B))) and F 3

r (B) = Fr(Fr(Fr(B))), for every B ∈ Φ.

5. If Fl(Bl) 6= Bl, then set Nl(Bl) := Bb and Nr(Bb) := Bl. Otherwise, set Nl(Bl) := Bl,
Nr(Bb) := Bb, E(Bl) := F 3

r (Bl), E(Bb) := F 3
l (Bb), E(E(Bl)) := Bl, and E(E(Bb)) := Bb.

6. If Fr(Br) 6= Br, then set Nr(Br) := Ba and Nl(Ba) := Br. Otherwise, set Nr(Br) := Br,
Nl(Ba) := Ba, E(Br) := F 3

l (Br), E(Ba) := F 3
r (Ba), E(E(Br)) := Br, and E(E(Ba)) := Ba.

7. If Fl(Br+1) 6= Br+1, then set Nl(Br+1) := Bl−1 and Nr(Bl−1) := Br+1. Otherwise,
set Nl(Br+1) := Br+1, Nr(Bl−1) := Bl−1, E(Br+1) := F 3

r (Br+1), E(Bl−1) := F 3
l (Bl−1),

E(E(Br+1)) := Br+1, and E(E(Bl−1)) := Bl−1.

8. If Fr(Ba−1) 6= Ba−1, then set Nr(Ba−1) := Bb+1 and Nl(Bb+1) := Ba−1. Otherwise, set
Nr(Ba−1) := Ba−1, Nl(Bb+1) := Bb+1, E(Ba−1) := F 3

l (Ba−1), E(Bb+1) := F 3
r (Bb+1),

E(E(Ba−1)) := Ba−1, and E(E(Bb+1)) := Bb+1.

• If B ∈ X and FΨ
r (B) = Br, then FΦ

r (B) = Ba−1.

• If B ∈ X and FΨ
r (B) = Bb, then FΦ

r (B) = Bl−1.

• If B ∈ X ∪X satisfies none of the two previous conditions, then FΦ
r (B) = FΨ

r (B).

• If B ∈ X and FΨ
l (B) = Bl, then FΦ

l (B) = Bb+1.

• If B ∈ X and FΨ
l (B) = Ba, then FΦ

l (v) = Br+1.

• If B ∈ X ∪X satisfies none of the two previous conditions, then FΦ
l (B) = FΨ

l (B).

• The symmetric definitions hold for the semiblocks of Γ.

A proposition similar to Proposition 6.3.15 holds for the join operation. That is, the
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6 Dynamic recognition of PCA and PHCA graphs

enumeration 〈X ,Y ,X ,Y〉 defined as above is a round semiblock enumeration of G =
H1 +H2.

The last operation that we discuss is the insertion of one universal semiblock. Suppose
that Ψ = B1, . . . , Bi−1, Bi+1, . . . , Bk is a round semiblock enumeration of a co-bipartite
graph G, where X = [B1, Bi−1] is a range of co-components Ψ. Define the enumeration
〈X , {Bi},X , ∅〉 as the circular enumeration Φ = [B1, Bi−1], Bi, [Bi+1, Bk], where FΦ

r and
FΦ

l are defined for as below for B ∈ Ψ.

• FΨ
r (Bi) = Bi−1 and FΦ

l (Bi) = Bi+1.

• If FΨ
l (B) 6= Bi+1 then FΦ

l (B) = FΨ
l (B); otherwise FΦ

l (B) = Bi.

• If FΦ
r (B) 6= Bi−1 then FΦ

r (B) = FΨ
r (B); otherwise FΦ

r (B) = Bi.

Define {Bi} = ∅ when Bi is a universal semiblock. Say that two round semiblocks
enumerations Ψ and Γ are joinable when at most one of Ψ and Γ contains a universal
semiblock, and this universal semiblock is the unique semiblock of such enumeration.
The inverse of Propositions 6.3.12 and 6.3.15 is as follows.

Proposition 6.3.17. Let Ψ and Γ be round semiblock enumerations of co-bipartite
graphs H1 and H2, and let X and Y be ranges of co-components of Ψ and Γ, respectively.
If Ψ and Γ are joinable, then 〈X ,Y ,X ,Y〉 is a round semiblock enumeration of H1+H2.

Proposition 6.3.17 yields an algorithm to join Ψ and Γ into a round semiblock enu-
meration of G. The details of this algorithm are very similar to those in Algorithms
6.5 and 6.6, and it can be implemented so as to run in O(1) time.

Observe that 〈X ,Y ,X ,Y〉 and 〈X ,Y ,X ,Y〉 are different round semiblock enumerations
of G. So, we can generate many round semiblock enumerations of G by combining the
round semiblock enumerations of its co-components in different ways. It turns out that
all the round semiblock enumerations of G can be generated in this way, as it was noted
by Huang.

Theorem 6.3.18 ([Hua92]). Let G be a co-bipartite PCA graph, B be a semiblock par-
tition of G that contains at most one universal semiblock, and Φ be a round semiblock
enumeration of G that contains exactly the semiblocks of B. If G is not co-connected,
then there are two joinable round semiblock enumerations Ψ and Γ such that:

• B = Ψ ∪ Γ, Ψ ∩ Γ = ∅, and

• Φ = 〈X ,Y ,X ,Y〉 for some range of co-components X of Ψ and some range of
co-components Y of Γ.

There are some facts about the algorithms of this section that we would like to highlight,
and a few details that we intentionally avoided for the sake of simplicity. The first fact
to keep in mind is that the algorithms of this section may generate round semiblock
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enumerations of PIG graphs that contain no end semiblocks. This is a desired property
and we should restore the straightness of the enumeration, if required. The second fact is
that the graphs H1 and H2 need not be connected when they are obtained from splitting
G, nor when they are joined to generate G. When G is split into two disjoint graphs
H1 and H2, then we should update the set of rings that represents the round semiblock
enumeration so as to include the pointers to the leftmost end semiblocks of the contigs
of H1 and H2. The last detail is that we should update the PHCA flag whenever one of
the obtained semiblock enumerations is locally straight. This can be done in O(1) time
as in the following proposition.

Proposition 6.3.19. Let Φ = B1, . . . , Bk be a round semiblock enumeration, [Bl, Br] be
a range of co-components of Φ, and Ba−1 = Fr(Bl). Then Φ is locally straight if and
only if

• Φ is a straight, or

• Fr(Fr(Ba−1)) = Bl−1 and Fr(Fr(Bl−1)) = Ba−1.

Proof. Suppose first that Φ is locally straight. If Fr(Ba−1) = Ba−1, then Φ is straight.
Otherwise, Ba−1 −→ Ba and Bl −→6 Ba because Ba−1 = Fr(Bl). Observe that if Bl is
universal, then Ba = Fl(Bl). On the other hand, if Bl is not universal then Ba is the
leftmost semiblock in N([Bl, Br]) and Ba −→ Bl−1, by Proposition 6.3.14. Whichever
the case, [Bl, Ba−1] and [Ba, Bl−1] are two complete sets, where Bl −→ Ba−1 and
Ba −→ Bl−1. Hence, Fr(Ba−1) −→ Bl−1 which implies that Fr(Fr(Ba−1)) ∈ [Bl−1, Ba−1].
If Fr(Fr(Ba−1)) 6= Bl−1, then Bl, Ba−1, Fr(Ba−1) is a directed triangle. Similarly, if
Fr(Bl−1) 6= Bl−1 and Fr(Fr(Bl−1)) 6= Ba−1, then Ba, Bl−1, Fr(Bl−1) is a directed triangle.

For the converse, suppose that Φ is not locally straight, so it contains three semiblocks
Bi, Bj, and Bk that form a directed triangle. Thus, Φ is not straight and, as before,
[Bl, Ba−1] and [Ba, Bl−1] are two complete sets where Bl −→ Ba−1 and Ba −→ Bl−1. By
exchanging [Bl, Ba−1] with [Ba, Bl−1] if required, assume that [Bl, Ba−1] contains at least
two semiblocks of Bi, Bj, Bk, say Bi and Bk. So, [Bl, Ba−1] does not contain Bj since
otherwise Ba−1 −→ Bl. Then, since Bi −→ Bj −→ Bk, we obtain that Ba−1, Bj, Bl is a
directed triangle. This implies that Fr(Ba−1) ∈ [Ba, Bl−1] and Fr(Fr(Ba−1)) ∈ [Bl, Br),
so Fr(Fr(Ba−1)) 6= Bl−1.

6.4 The vertex-only incremental algorithm

In this section we develop an efficient algorithm for the PCA and PHCA vertex-only
incremental recognition problems. The input of these problems is a graph G and a
vertex v 6∈ V (G) together with its set of neighbors N(v) ⊆ V (G). The goal is to update
the representation of G into a representation of H = G ∪ {v} where NH(v) = N(v), if
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6 Dynamic recognition of PCA and PHCA graphs

possible. This section is divided into two subsections. In the first subsection we show
how to insert a vertex into a round block enumeration. In the second subsection we show
the complete vertex-incremental algorithms for both PCA and PHCA graphs.

6.4.1 The refinement procedure

In this first part we consider a partial version of the vertex insertion problem. Roughly
speaking, given a vertex v of a universal-free graph H and a round block enumeration
Φ of H \ {v}, we are to find a round block enumeration Ψ of H such that Ψ \ {v} looks
similar to Φ. By similar, we mean that the semiblocks of Ψ \ {v} appear in the same
order as in Φ. A rigorous definition of “similar” for contigs can be found in Section 3.2
of [HSS01]. Its generalization to rings is in the next lemma.

Lemma 6.4.1 (Decremental Refinement Lemma). Let Ψ = B1, . . . , Bk be a non-straight
ring of a graph H, and v ∈ Bp. Call Bl = FΨ

l (Bp) and Br = FΨ
r (Bp), and define L, R,

and Φp according to rules (i) to (iii). Then,

Φ = Bl ∪ L,Φp, Br ∪R, (Br, Bl) \ {R,L}

is a (possibly straight) semiblock ring of H \ {v} that contains at most two semiblocks
that are not blocks of H \ {v}. Furthermore, one of these semiblocks is the universal
semiblock B of Ψ, and the other semiblock is a twin of B in H \ {v}.

(i) If Bl is twin of Bl−1 in H \ {v}, then L = Bl−1; otherwise, L = ∅.

(ii) If Br is twin of Br+1 in H \ {v}, then R = Br+1; otherwise, R = ∅.

(iii) If |Bp| = 1, then Φp = (Bl, Bp), (Bp, Br); if not, Φp = (Bl, Bp), Bp \ {v}, (Bp, Br).

Proof. Suppose first that |Bp| > 1, i.e., v has twins in H. Then, H \ {v} has the same
blocks as H, with the exception of Bp that is replaced by Bp \ {v}. Consequently, Φ as
defined in the lemma statement is equal to Bp \ {v}, (Bp ◦Bp), and it is clearly a round
block enumeration of H \ {v}. For the rest of the proof, suppose that Bp = {v}, i.e., v
has no twins in H.

Clearly, B = B1, . . . , Bp−1, Bp+1, . . . , Bk is a semiblock partition of H \ {v}. Not all the
semiblocks in B are necessarily blocks of H \ {v}, but all of them are included in some
block of H \ {v}, by definition. Those members of B that are not blocks of H \ {v}
need to be joined to form a block. Let B 6∈ B be a block of H \ {v}. Since B is not
a block of H, then v is neither fully adjacent nor non-adjacent to B. Consequently,
Ba = (B ∩ N(v)) and Bb = (B \ N(v)) are nonempty blocks of H and B = Ba ∪ Bb.
Observe that Ba ∈ [Bl, Br], Bb ∈ (Br, Bl), and that Ba and Bb are twin semiblocks of
H \ {v}. Furthermore, B is a universal block of H \ {v} if and only if Ba is the universal
block in H.
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We claim that Bb and Ba are consecutive in Ψ when Ba is not universal. On the contrary,
suppose that there is some block Bc ∈ (Bb, Ba) when Bb −→Ψ Ba. By definition, Ba is
adjacent to all the blocks in [Fl(Bb), Ba). Since Ba is not universal then Ba −→6 Fl(Bb),
thus Fl(Ba) = Fl(Bb) = Fl(Bc). But then, in Ψ, Bc properly dominates Bb and Ba

properly dominates Bc because Ba, Bb and Bc are blocks of Ψ. This is impossible given
that NH [Ba] \ NH [Bb] = {Bp}. Therefore, when Bb −→Ψ Ba, we obtain that a = l and
b = l − 1. The same arguments can be used to conclude that if Ba −→Ψ Bb then a = r
and b = r+ 1. That is, the only possible pairs of non-universal blocks of H that are not
blocks of H \ {v} are Bl with Bl−1 and Br with Br+1.

If Bl and Bl−1 are twins in H \ {v}, then Bl ∪ Bl−1 is a block of H \ {v}. Similarly,
if Br and Br+1 are twins of H \ {v}, then Br ∪ Br+1 is a block of H \ {v}. Note that
if l − 1 = r + 1, then either Bl is not a twin of Bl−1 or Br is not a twin of Br+1 since
otherwise Br would be a twin of Bl, contradicting the fact that Bl and Br are different
blocks of Ψ. Finally, note that Bl and Br are different from Bp because Bp is not an
end block of Ψ. Therefore, the enumeration Φ defined in the lemma’s statement is a
semiblock ring of H \ {v}, where −→Φ is the same as the restriction of −→Ψ to the
semiblocks of Φ. Furthermore, Φ contains at most two semiblocks that are not blocks,
one is the universal block B of H and the other is the twin of B in H \ {v}.

Let Ψ = B1, . . . , Bk be a non-straight ring of a graph H and v ∈ Bp. By the lemma
above, Φ = Bl ∪ L,Φp, Br ∪R, (Br, Bl) \ {R,L} is a ring of H \ {v}. Say that such Φ is
refinable, and that Ψ is a refinement of Φ.

The Decremental Refinement Lemma is useful to find out a refinable ring Φ of H \ {v},
when a ring Ψ of H is given. However, we would like to answer the opposite question.
Given a ring Φ of H \{v}, is Φ refinable? If so, we would also like to obtain a refinement
Ψ of Φ. The answer when Ψ is a contig is given in Propositions 4.1 and 4.2 of [DHH96].
The generalization of these propositions to non-straight rings that contain no universal
blocks is given in the following Incremental Refinement Lemma. We try to use the same
subindices that are used in [DHH96] to highlight the similarities.

Lemma 6.4.2 (Incremental Refinement Lemma). Let v be a vertex of a universal-free
graph H and, Φ be a ring of H \{v}. If H is not a PIG graph, then Φ is refinable if and
only there are two (possibly equal) blocks Ba and Bc that are co-adjacent to v and such
that conditions (i) to (iv) are met.

(i) v is fully adjacent to all the blocks in (Ba ◦ Bc) and it is not adjacent to all the
blocks in (Bc, Ba).

(ii) Fr(Ba) ∈ [Ba ◦Bc] and Fr(Ba) 6∈ [Fl(Bc), Bc]. In other words, if Ba 6= Bc then Ba,
Fr(Ba), Fl(Bc), Bc appear in this order in a traversal of [Ba, Bc], where possibly
Ba = Fr(Ba) or Bc = Fl(Bc).
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(iii) If either Ba 6= Bc or v is not adjacent to Ba, then every block in (Ba◦Bc) is adjacent
or equal to either Bl or Br, where Bl and Br are the leftmost and rightmost blocks
of [Ba ◦Bc] that are adjacent to v, respectively.

(iv) If Ba = Bc and v is adjacent to Ba, then either Fr(Ba) is immediately to the left
of Fl(Ba−1) or Fr(Ba+1) is immediately to the left of Fl(Ba).

Proof. =⇒) By definition, Φ has some refinement Ψ = BΨ
1 , . . . , B

Ψ
k , where v ∈ BΨ

p . Call
BΨ

l = FΨ
l (BΨ

p ) and BΨ
r = FΨ

r (BΨ
p ). If v has some twin in H then, by the definition of

refinable, Φ = (BΨ
p ◦BΨ

p ), BΨ
p \ {v}. It is not hard to see that (i) to (iv) follow by taking

Ba = NΨ
l (BΨ

l ) and Bc = NΨ
r (BΨ

r ). Suppose from now on that v has no twins in H, i.e.,
BΨ

p = {v}.

By the definition of refinable, Φ = BΨ
l ∪ L,Φp, B

Ψ
r ∪ R, (BΨ

r , B
Ψ
l ) \ {R,L}, where L,

R, and Φp are defined from Ψ as in the Decremental Refinement Lemma. Consider the
following two cases.

Case 1: BΨ
l−1 6= BΨ

r+1. If BΨ
l and BΨ

l−1 are twins in H \ {v}, then take Ba = BΨ
l ∪BΨ

l−1;
otherwise, take Ba = BΨ

l−1. Similarly, if BΨ
r and BΨ

r+1 are twins in H \ {v}, then
take Bc = BΨ

r ∪ BΨ
r+1; otherwise, take Bc = BΨ

r+1. Observe that Ba 6= Bc, and
that, by the Decremental Refinement Lemma, Ba and Bc are blocks of H \ {v}.
Moreover, v is fully adjacent precisely to the blocks in (Ba, Bc) and it is adjacent
to none of the blocks in (Bc, Ba). That is, conditions (i) and (iv) are satisfied by
Ba and Bc.

By the way we defined Ba and Bc, we know that BΨ
l−1 = Ba \ N(v) and BΨ

r+1 =
Bc \N(v). Call Bb = FΦ

r (Ba) and Bd = FΦ
l (Bb).

Consider the statement (ii). Since BΨ
l−1 −→Ψ6 BΨ

p then Ba −→Φ6 Bc, thus Ba, Bb, Bc

appear in this order in Φ, where possibly Ba = Bb. Similarly, Ba, Bd, Bc appear in
this order in Φ where possibly Bc = Bd. If either Ba = Bb or Bc = Bd, then (ii)
follows. For the other case suppose, in contradiction to (ii), that Ba, Bb, Bd, and
Bc do not appear in this order in Φ. Hence, Ba, Bd, Bb, Bc appear in this order in
Φ and, so, Ba −→Φ Bb −→Φ Bc. Then, by the Decremental Refinement Lemma,
Bb = BΨ

s for some BΦ
s ∈ [BΨ

l , B
Ψ
r ], so either BΨ

p ∈ [BΨ
s , B

Ψ
r+1] or BΨ

p ∈ [BΨ
l−1, B

Ψ
s ].

In the former case, BΨ
p −→Ψ BΨ

r+1 while in the latter case BΨ
l−1 −→Ψ BΨ

p , because
BΨ

l−1 −→Ψ BΨ
s −→Ψ BΨ

r+1. Both are impossible, so Ba, Bb, Bd and Bc appear in
this order in Φ.

For statement (iii), observe that Bl = Ba when v is adjacent to Ba, while Bl =
Ba+1 when v is not adjacent to Ba. Whichever the case, BΨ

l ⊆ Bl and, similarly,
BΨ

r ⊆ Br. If (Ba ◦Bc) = ∅, then (iii) is vacuously true. Suppose, then, that there
is some Bi ∈ (Ba ◦ Bc). Such Bi is equal to some block BΨ

s ∈ [BΨ
l , B

Ψ
r ], by the

Decremental Refinement Lemma. If BΨ
s ∈ (BΨ

l , B
Ψ
p ), then BΨ

l −→Ψ BΨ
s , while if
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BΨ
s ∈ (BΨ

p , B
Ψ
r ), then BΨ

s −→Ψ BΨ
r . Consequently, by the Decremental Refinement

Lemma, either Bl −→Φ Bi or Bi −→Φ Br, i.e., (iii) is true.

Case 2: BΨ
l−1 = BΨ

r+1. If BΨ
l and BΨ

l−1 are twins, then take Ba = Bc = BΨ
l ∪BΨ

l−1. If BΨ
r

and BΨ
l−1 are twins, then take Ba = Bc = BΨ

r ∪ BΨ
r+1. Finally, if BΨ

l−1 is a twin of
neither BΨ

l nor BΨ
r , then take Ba = Bc = BΨ

l−1. Observe that, by the Decremental
Refinement Lemma, Ba = Bc is a block of H \ {v}. Moreover, v is fully adjacent
to the blocks in (Ba ◦ Bc), thus condition (i) is satisfied by Ba and Bc. Condition
(ii) is clearly true for Ba = Bc. When v is not adjacent to Ba, then Bl = BΨ

l and
Br = BΨ

r by the Decremental Refinement Lemma. So, we can prove that statement
(iii) is true as in Case 1.

Finally, suppose that v is adjacent to Ba for statement (iv). By definition, either
BΨ

l is a twin of BΨ
l−1 or BΨ

r is a twin of BΨ
l−1. Without loss of generality, assume

the former and fix Bi ∈ (Ba, Ba−1). By the Decremental Refinement Lemma,
Bi corresponds to some block BΨ

s , and Ba−1 = BΨ
r . If BΨ

s ∈ [BΨ
l , B

Ψ
p ) then

BΨ
l −→Ψ BΨ

s , thus Ba −→Φ Bi. Otherwise, BΨ
s ∈ (BΨ

p , B
Ψ
r ) because BΨ

r = Ba−1,
so Bi −→Ψ Ba−1. Consequently, every block of Φ in (Ba ◦Ba) is adjacent to either
Ba or Ba−1. Then, Fr(Ba) is immediately to the left of Fl(Ba−1) since otherwise
there would be a block B in Φ such that Ba −→Φ B −→Φ Ba−1, implying that
B ∩N(v) 6= ∅ is a universal block of H.

⇐=) All we have to do is to show how to build a refinement Ψ of Φ. Consider the
following cases.

Case 1: v is adjacent to Ba and Ba 6= Bc (see Figure 6.7 (a) and (c)). Define Ψc =
Bc∩N(v), Bc \N(v) when v is adjacent to Bc, and Ψc = Bc when v is not adjacent
to Bc. Call Bb = Fr(Ba) and define

Ψ = (Bc, Ba), Ba \N(v), Ba ∩N(v), (Ba, Bb], {v}, [Bb+1, Bc),Ψc.

By (i), all the elements of Ψ are blocks of H, thus Ψ is a circular enumeration of
the blocks of H. To see that Ψ is a ring we have to show the orientation of the
blocks of H. Let BΨ ∈ Ψ \ {v} and B ∈ Φ be such that BΨ ⊆ B and define FΨ

l

and FΨ
r for BΨ according to the following rules (see Figure 6.7 (b) and (d)).

• If Fl(B) = Bb+1 and v is adjacent to BΨ, then FΨ
l (BΨ) = {v}.

• If Fl(B) = Bb+1 and v is not adjacent to BΨ, then FΨ
l (BΨ) = Bb+1 ∩N(v).

• If Fl(B) ∈ N(v) \ {Bb+1}, then FΨ
l (B) = Fl(B) ∩N(v).

• If Fl(B) 6∈ N(v), then FΨ
l (B) = Fl(B).

• FΨ
l ({v}) = Ba ∩N(v).

• If Fr(B) = Bb and v is adjacent to BΨ, then FΨ
r (BΨ) = {v}.

• If Fr(B) = Bb and v is not adjacent to BΨ, then FΨ
r (BΨ) = Bb ∩N(v).

• If Fr(B) ∈ N(v) \ {Bb}, then FΨ
r (B) = Fr(B) ∩N(v).
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Figure 6.7: The effects of inserting a new vertex into a round enumeration Φ. Dashed
lines indicate that there could be or not an edge between the two joined
vertices, while those marked lines indicate that there is no edge between the
two joined vertices. Figures (a) and (b) depict the case v adjacent to both
Ba and Bc with Ba 6= Bc; (c) and (d) show the case v adjacent to Ba and
not to Bc; and (e) and (f) represent the case v adjacent to Ba = Bc.
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• If Fr(B) 6∈ N(v), then FΨ
r (B) = Fr(B).

• If v is adjacent to Bc, then FΨ
r ({v}) = Bc∩N(v); otherwise, FΨ

r ({v}) = Bc−1.

We claim that FΨ
l ({v}) = Bl∩N(v) and FΨ

r ({v}) = Br∩N(v), where Bl and Br are
defined as in (iii). The former is clearly true because Bl = Ba. To see why is the
latter true, consider whether Bc is the leftmost end block of Φ. If Bc is the leftmost
end block, then v is adjacent to Bc or otherwise we can obtain a straight block
enumeration of H as in [DHH96]; just replace the last rule with FΨ

r ({v}) = {v} in
the otherwise case. If Bc is not the leftmost end block, then Bc−1 −→Φ Bc, and so,
by (ii), Bc−1 ∈ (Bb, Bc) in Φ. Therefore, FΨ

r ({v}) = Br ∩N(v) by the last rule.

To prove that FΨ
l and FΨ

r define a round block enumeration of Ψ, we ought to
see that B ∈ [B′, FΨ

r (B′)] if and only if B′ ∈ [FΨ
l (B), B] for every B,B′ ∈ Ψ,

and that N [B] = [FΨ
l (B), FΨ

r (B)] for every B ∈ Ψ. This is easy to prove with a
case analysis according to the position of B in Ψ (see [DHH96] for instance). In
particular, observe that every block of Φ in (Ba, Bc) is adjacent to either Bl or Br

by (iii). In this case Bl = Ba, so all the blocks in (Bb, Bc) are adjacent or equal to
Br in Φ.

Case 2: v is adjacent to Bc and Ba 6= Bc. This case is analogous to Case 1.

Case 3: v is adjacent to Ba and Ba = Bc. By (iv), either Fr(Ba) is immediately to
the left of Fl(Ba−1) or Fr(Ba+1) is immediately to the left of Fl(Ba). Suppose,
w.l.o.g., that Fr(Ba) is immediately to the left of Fl(Ba−1) (see Figure 6.7 (e)).
Call Bb = Fr(Ba) and define

Ψ = Ba \N(v), Ba ∩N(v), (Ba, Bb], {v}, [Bb+1, Ba).

Again, by (i), Ψ is a circular enumeration of the blocks of H. Define FΨ
l and FΨ

r

as in Case 1, with the only exception that the last rule is replaced with the rule
FΨ

r ({v}) = Ba−1 (see Figure 6.7 (f)).

By (iv), B −→Φ Ba−1 for every B ∈ (Fr(Ba), Ba−1), so it can be proved that FΨ
l

and FΨ
r define a round block enumeration. Note that in this case Ba−1 plays the

role of Br in Case 1.

(This case is important because it shows that the refinement of a refinable ring
Φ is not unique. By (iv), either Fr(Ba) is immediately to the left of Fl(Ba−1)
or Fr(Ba+1) is immediately to the left of Fl(Ba). We assumed, w.l.o.g., that the
former is true, but the latter could be simultaneously true. So, there are two
possible refinements, the enumeration Ψ defined above or the enumeration Γ =
Ba∩N(v), Ba\N(v), (Ba, Bd−1], {v}, [Bd, Ba), where Bd = Fl(Ba). There is a good
reason behind this ambiguity: Bb+1 = Bd−1 and 〈{Ba}, {Bb+1}〉 is a co-component
of H \ {v} (the reader can check these conditions). Then H is co-bipartite and
Ba∩N(v), Ba\N(v), Bb+1 and {v} form a co-component ofH whose reduced graph
is isomorphic to P4. The difference between Ψ and Γ is that the co-component
containing {v} is reversed from Ψ to Γ.)
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6 Dynamic recognition of PCA and PHCA graphs

Case 4: v is adjacent to neither Ba nor Bc. The construction of Ψ in this case is as
in [DHH96]. By (i), v is adjacent only to the blocks in (Ba ◦ Bc). Since H is
connected then (Ba ◦Bc) 6= ∅, thus N(v) is precisely [Ba+1, Bc−1], Bl = Ba+1, and
Br = Bc−1. Call Bb = Fr(Ba) and Bd = Fl(Bc). By (ii), (Bb, Bd) ⊆ [Bl, Br]. If
there is some block Bp ∈ (Bb, Bd) such that Bl −→ Bp −→ Br, then, as in [DHH96],
v is a twin of all the vertices in Bp. In this case, define Ψ = (Bp, Bp), Bp ∪ {v}
where Fr and Fl are not changed. Finally, if there is no Bp ∈ (Bb, Bd) such
that Bl −→ Bp −→ Br, then take Bu as the leftmost block in (Bb, Bd] such that
Bu −→ Br, and Bw as the rightmost block in [Bb, Bd) such that Bl −→ Bw. Note
that Bw, Bu appear in this order in [Bb, Bd] since otherwise Bu ∈ (Bb, Bd) and
Bl −→ Bu −→ Br. Also, by (iii), (Bw, Bu) = ∅, i.e., u = w + 1. In this case, take
Ψ = [Bu, Bw], {v}, where FΨ

l and FΨ
r are defined by the rules below for B ∈ Ψ∩Φ.

• If v is not adjacent to B or FΦ
l (B) 6= Bu, then FΨ

l (B) = FΦ
l (B).

• If v is adjacent to B and FΦ
l (B) = Bu, then FΨ

l (B) = {v}.

• If v is not adjacent to B or FΦ
r (B) 6= Bw, then FΨ

r (B) = FΦ
r (B).

• If v is adjacent to B and FΦ
r (B) = Bw, then FΨ

r (B) = {v}.

• FΨ
l ({v}) = Bl and FΨ

r ({v}) = Br.

It is not hard to see that Ψ is refinement of Φ (see also [DHH96]).

Now we describe the algorithm to determine if a non-universal vertex can be inserted
into a round semiblock enumeration Φ, without changing the order of the blocks of Φ.
The first step of the algorithm is to check whether H is a PIG graph by calling the HSS
algorithm. When the HSS algorithm succeeds in the insertion of v, thenH is a PIG graph
and there in nothing else to do. When the HSS algorithm fails, we know that H is not
a PIG graph and Φ is a ring, so we check the conditions of the Incremental Refinement
Lemma to see whether Φ is refinable. If Φ satisfies all the conditions then we can insert
v in the same way as it is described in the Incremental Refinement Lemma. Observe
that Φ is transformed into a straight enumeration whenever H is PIG. Algorithm 6.7
implements the insertion of v for the case in which the blocks Ba and Bc of the lemma are
not equal. The variable New is just a new self pointer pointing to the block. Operations
Prev and Next are used as usual but the reader can observe that these operations are not
really required (recall that we are allowed to use the extreme pointers in this algorithm).
Variable BΨ

p−1 is used to mark the position in which {v} is going to be created, when
v has no twin vertices in H. Similarly, BΨ

p is the block that contains v, while BΨ
l and

BΨ
r are used to mark the leftmost and rightmost neighbors blocks of BΨ

p in H. Finally,
observe that BΨ

p−1 and Nr(B
Ψ
p−1) are the only blocks of Φ that can be end blocks of

H \ {v}. We clear their end pointers at Step 22.

All the operations that are required to obtain a refinement of Φ take O(d(v)) time. In
particular, observe that for the test of Conditions (ii) and (iii) we can first mark all the
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Algorithm 6.7 Refinement of a round block enumeration

Input: A vertex v of a universal-free graph H, and a round block enumeration Φ =
B1, . . . , Bk of H \ {v}.
Output: If H is a PIG graph, then a straight enumeration of H is obtained. When H
is not a PIG graph and Φ is refinable, then Φ is updated into a refinement Ψ; otherwise,
Φ is not modified and the algorithm reports an error.

1. If Φ is straight, then apply the HSS algorithm. If successful then halt.

//Test of the conditions of the Incremental Refinement Lemma.

2. If the blocks fully adjacent to v do not form a range, then halt in error.

3. Let Ba and Bc be such that v is fully adjacent precisely to (Ba, Bc) (assume Ba 6= Bc).

4. If v is adjacent to some block in (Bc, Ba), then halt in error.

5. If Fr(Ba) 6∈ [Ba, Bc] or Fr(Ba) ∈ [Fl(Bc), Bc], then halt in error.

6. Let Bl (resp. Br) be the leftmost (resp. rightmost) block adjacent to v in (Ba, Bc).

7. If Fl(B) ∈ (Bl, B) or Fr(B) ∈ (B,Br) for B ∈ (Fr(Ba), Fl(Bc)), then halt in error.

//Insertion of v

8. If v is adjacent to Ba, then:

9. Move the vertices of Ba ∩N(v) into a new block BΨ
l between Ba and Ba+1.

10. Set Fl(B
Ψ
l ) := Fl(Ba), Fr(B

Ψ
l ) := Fr(Ba), Sr(B

Ψ
l ) := Sr(Ba), and Sr(Ba) := New.

11. Set BΨ
p−1 := Fr(Ba).

12. Otherwise, set BΨ
l := Ba+1 and BΨ

p−1 := last in [Fr(Ba), Fl(Bc)) s.t. Ba+1 −→ BΨ
p−1.

13. If v is adjacent to Bc, then:

14. Move the vertices of Bc ∩N(v) into a new block BΨ
r between Bc−1 and Bc.

15. Set Fl(B
Ψ
r ) := Fl(Bc), Fr(B

Ψ
r ) := Fr(Bc), Sl(B

Ψ
r ) := Sl(Bc), and Sl(Bc) := New.

16. Set BΨ
p−1 := Prev(Fl(Bc)).

17. Otherwise, set BΨ
r := Bc−1.

18. If some BΨ
p ∈ [BΨ

l , B
Ψ
r ] has Fl(B

Ψ
p ) = BΨ

l and Fr(B
Ψ
p ) = BΨ

r , then set BΨ
p := BΨ

p ∪{v} and
halt.

19. Create a new block BΨ
p := {v}, and insert it between BΨ

p−1 and Next(BΨ
p−1).

20. For every B ∈ [BΨ
l , B

Ψ
p ] such that Fr(B) = BΨ

p−1, set Fr(B) := Sr(B
Ψ
p ).

21. For every B ∈ [BΨ
p , B

Ψ
r ] such that Fl(B) = Next(BΨ

p−1), set Fl(B) := Sl(B
Ψ
p ).

22. Set Fl(B
Ψ
p ) := Sl(B

Ψ
l ) and Fr(B

Ψ
p ) := Sr(B

Ψ
r ), E(BΨ

p−1) := E(Next(BΨ
p−1)) := NULL.
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blocks of [Ba, Bc] so as to solve the membership questions in O(1) time per block. The
final step is to update the PHCA flag. By the lemma below, we can traverse the range
[BΨ

l , B
Ψ
r ] so as to test whether Fr(Fr(B

Ψ
r ))) ∈ [BΨ

l , B
Ψ
r ]. If true, then Fr(B

Ψ
r ) −→ BΨ

l

which implies that H is not PHCA. If false, then the PHCA flag needs not to be updated.
This update takes O(d(v)) time.

Lemma 6.4.3. Let Ψ be a non-straight ring of a universal-free graph H and Bp be the
block of Ψ that contains v, for v ∈ H. If Ψ is a refinement of Φ then Ψ is locally
straight if and only if Φ is locally straight and FΨ

r (Bp) −→6 FΨ
l (Bp).

Proof. If Φ is not locally straight then neither is Ψ by definition. Also, if FΨ
r (Bp) −→

FΨ
l (Bp), then FΨ

l (Bp), Bp, F
Ψ
r (Bp) is a directed triangle of Ψ.

For the converse, if Ψ is not locally straight, then either Φ is not locally straight or
Bp belongs to a directed triangle. In the latter case, FΨ

l (Bp), Bp, F
Ψ
r (Bp) is one such

triangle.

6.4.2 The impact of a new vertex

In this section we combine all the tools that we developed so far, so as to insert a new
vertex into a PCA graph. That is, we are given a graph G and a vertex v 6∈ V (G)
together with a set N(v) ⊆ V (G), and we ought to update the representation of G into
a representation of H = G ∪ {v}, where NH(v) = N(v). For the sake of simplicity,
throughout this section we allow graphs to be empty, i.e., graphs with empty vertex set.
Of course, their unique round block enumeration is simply the empty set as well.

The vertex-insertion algorithm, summarized in Algorithm 6.8, is really simple once all
the tools have been developed. Let Φ = B1, . . . , Bk be a round block enumeration of
G. The first step is to divide the universal block B, if any, into the two semiblocks
B ∩N(v) and B \N(v) so as to obtain a round semiblock enumeration Φ′. The reason
for doing this is that B \N(v) and B ∩N(v) get separated into different co-components
of Φ′. For the implementation, the set N(v) is traversed to test whether v is adjacent
and co-adjacent to the universal block B. If affirmative, then all the neighbors of v in
B are moved into a new block, and its self and far pointers are updated as we did in
Algorithm 6.7 for BΨ

l and BΨ
r . Once the universal block is divided, we compute the co-

components of G by running Algorithm 6.4 with input Φ′. This algorithm either outputs
the list of co-bipartite ranges of Φ′ or it halts with output Φ′.

Suppose first that Algorithm 6.4 halted without finding any co-bipartite range of Φ′.
Then either G is not co-bipartite or H is not a PCA graph. We can figure out whether
H is a PCA graph by running Algorithm 6.7 with input Φ′ and v: if H is a PCA graph
then Φ is updated into a round block enumeration Ψ, otherwise H is not a PCA graph.
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Algorithm 6.8 Insertion of a vertex v into a PCA graph G

Input: A round block enumeration Φ of a graph G, and a vertex v 6∈ V (G) with
N(v) ⊂ V (G).
Output: If G∪{v} is a PCA graph, then Φ is updated into a round block enumeration
of G ∪ {v}; otherwise, the algorithm halts in error.

1. If there is a universal block Bi in N(v) and v is co-adjacent to Bi, then:

2. Move the vertices of Bi ∩N(v) into a new block B between Bi and Bi+1.

3. Set Fl(B) := Fl(Bi), Fr(B) := Fr(Bi), Sr(B) := Sr(Bi), and Sr(Bi) := New.

4. Apply Algorithm 6.4 to find the co-components of Φ.

5. If Algorithm 6.4 halts before it terminates, then:

6. Run Algorithm 6.7 with input Φ and v. In case of errors, inform that G is not PCA;
otherwise Φ was modified into a round block enumeration of G ∪ {v}. Halt.

7. Let X1, . . . ,Xs be the list of co-bipartite ranges of Φ found by Algorithm 6.4.

8. If v is universal and there is a universal block B ∈ Φ, then insert v into B and halt.

9. If Φ has some universal semiblock adjacent to v, then remove it with Algorithm 6.5.

10. Let, w.l.o.g, X1, . . . ,Xr be the co-bipartite ranges with semiblocks co-adjacent to v, and call
G1 := G[X1 ∪ X1 ∪ . . . ∪ Xr ∪ Xr] and G2 := G1 \G.

11. Run Algorithms 6.5 and 6.6 to obtain a round block enumeration Γi of G[Xi ∪ Xi] for
1 ≤ i ≤ r, and a round block enumeration Φ2 of G2.

12. For every round block enumeration Φ1 ofG1, computed from {Γi}1≤i≤r as in Theorem 6.3.18:

13. Run Algorithm 6.7 to Φ1 and v.

14. If a round block enumeration Ψ of G1 ∪ {v} is obtained, then:

15. If Φ2 = ∅, then take Ψ as the round block enumeration of G ∪ {v} and halt.

16. Run Algorithm 6.3 to obtain a co-bipartite range X of Φ1.

17. Let Y be a co-bipartite range of Φ2, obtained at Step 11.

18. Compute 〈X ,Y,X ,Y〉 as in Theorem 6.3.18.

19. If a universal block B was removed at Step 9, then compute 〈X , {B},X , ∅〉.

20. Halt.

21. Inform that G ∪ {v} is not a PCA graph and halt.
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6 Dynamic recognition of PCA and PHCA graphs

Indeed, if H is a PIG graph, then the HSS algorithm updates Φ′ into a straight block
enumeration. On the other hand, if H is PCA but not PIG, then G is not co-bipartite
and its unique ring Φ′ = Φ must be refinable.

Suppose now that Algorithm 6.4 gave as output the list of co-bipartite ranges X1, . . . ,Xs

of Φ′. If v is a universal vertex and Φ′ has some universal semiblock, say B, then v is
inserted into B and the computation finishes. Suppose then that either v is not universal
or Φ′ has no universal semiblocks. The next step is to find those co-components that
have blocks co-adjacent to v, if any. By Proposition 6.3.10, there are at most three such
co-components in Φ, including the universal semiblock co-adjacent to v, if any. Let G1

be the subgraph of G induced by the semiblocks of such co-adjacent co-components, and
G2 = G \G1. Observe that G1 is empty when v is a universal vertex, while G2 is empty
when v has at least one co-adjacent semiblock of Φ in every co-component of G. By
definition, H = (G1 ∪ {v}) +G2, and a round block enumeration Φ1 of G1 and a round
block enumeration of Φ2 of G2 can be computed with Algorithms 6.5 and 6.6. For H to
be PCA, H1 = G1∪{v} has to be PCA and, furthermore, H1 has to be co-bipartite when
G2 is not empty. By the Decremental Refinement Lemma, either H1 is a PIG graph or
G1 is connected and one of its rings is refinable. Since G1 has only O(1) co-components,
then all its rings can be computed in O(1) time from Φ1, as in Theorem 6.3.18. Then,
since H1 is universal-free by construction, we can apply Algorithm 6.7 to each of these
rings to figure out if H1 is PCA and, if so, we obtain a ring Ψ1 of H1 as a by-product.
Finally, if G2 is not empty, then we run Algorithm 6.3 on Ψ1 to find a range of co-
components X1, and afterwards we compute 〈X1,X2,X1,X2〉 for any co-bipartition range
X2 of Φ2. The round block enumeration so obtained is a round block enumeration of
H.

Observe that the join operation is always done with blocks of H, thus the PHCA flag
is updated by the join algorithm when G2 is not empty. Also observe that the round
block enumeration computed for H1 is unique, because H1 is co-connected. (Recall that
in Case 3 of the Incremental Refinement Lemma we showed that a ring may admit more
than one refinement. In there, we argued that the graph is not co-connected for this
to happen. However, in our construction H1 is co-connected, so this ambiguity could
never occur.) Finally, note that this algorithm can be used to obtain two round block
enumerations, one the reversal of the other, by applying it to the reversal round block
enumeration that is also maintained for G.

All the operations that are executed to obtain the round block enumeration of H take
O(dH(v) + u) time, where u = 2 is the number of universal semiblocks of Φ′. As a
consequence a linear-time incremental recognition algorithm for PCA graphs is obtained.
This solves a problem stated in [DHH96], i.e., can the PCA recognition problem be solved
in linear time by an incremental algorithm?.

124



6.5 The vertex-only decremental algorithm

6.5 The vertex-only decremental algorithm

In this section we develop the vertex-only decremental algorithm that can be combined
with the vertex-only incremental algorithm to obtain a vertex-only fully dynamic recog-
nition algorithm, both for PHCA and for PCA graphs. The input for this problem is
a representation of some graph H together with a vertex v ∈ V (H), and the output
is a representation of H \ {v}. The representation of H \ {v} can always be obtained,
because the class of PCA graphs is hereditary. Recall that we have to guarantee that
the representation is locally straight when H \ {v} is a PHCA graph, while it has to be
straight when H \ {v} is a PIG graph. Also, we need to update the PHCA flag when
the representation is locally straight.

As mentioned in Section 6.2, the data structure for the decremental algorithm is the
same as the data structure for the incremental algorithm, with the exception that end
pointers are removed. The decremental algorithm is divided into two phases. The first
phase computes a round block enumeration of H \ {v}, and the second phase restores
the straightness invariant and updates the PHCA flag.

We begin by describing the first phase. Let Ψ = B1, . . . , Bk be a round block enu-
meration of a PCA graph H and v ∈ Bp, and call Bl = Fl(Bp) and Br = Fr(Bp).
When Ψ is straight, we can build a straight block enumeration of H \ {v} by call-
ing the HSS algorithm. When Ψ is not straight, we build the semiblock ring Φ =
Bl ∪ L,Φp, Br ∪ R, (Br, Bl) \ {R,L} of H \ {v}, where L and R are defined as in the
Decremental Refinement Lemma. By the Decremental Refinement Lemma, there are at
most two semiblocks of Φ that are not blocks of H \{v}, and both of these semiblocks are
universal in Φ. So, we can obtain the desired ring by joining these universal semiblocks
into one universal block.

Algorithm 6.9 implements the above procedure. Step 3 removes v from Bp when |Bp| > 1.
Steps 4–6 remove the block Bp = {v} and update the far pointers of those blocks that
were pointing to Bp. From Steps 7–12 we join the blocks Bl and Bl−1, and the blocks Br

and Br+1, when they are twins in Ψ \ {Bp}. Observe that no semiblock of Ψ \ {Bp} has
its right far pointer referencing Bl−1 because Fl(Bl−1) = Fl(Bl). Similarly, no semiblock
of Ψ \ {Bp} has its left far pointer referencing Br+1. Therefore, by moving the self
pointers, the algorithm correctly updates all the far pointers of those blocks that were
pointing to Bl and Br in Ψ. After this step, the input enumeration Ψ was transformed
in the semiblock ring Φ of H \ {v} that is defined by the Decremental Refinement
Lemma. All that it is left to do is to join the universal semiblocks. To find the universal
semiblocks, the algorithm invokes Algorithm 6.4 at Step 13 with input Φ and v. Note
that this algorithm always outputs the co-bipartite ranges of Φ when H \ {v} is co-
bipartite because H is a PCA graph. When Φ has two universal semiblocks, one of these
semiblocks is adjacent to v by the Decremental Refinement Lemma. The algorithm
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6 Dynamic recognition of PCA and PHCA graphs

Algorithm 6.9 Removal of a vertex v from a PCA graph H

Input: A round block enumeration Ψ of a graph H and a vertex v ∈ V (H).
Output: Ψ is updated into a round block enumeration Φ of H \ {v}.

1. If Ψ is straight then apply the HSS algorithm and halt.

2. Let Bp be the block that contains v, Bl := Fl(Bp) and Br := Fr(Bp).

3. If |Bp| > 1 then set Bp := Bp \ {v} and halt.

4. For every B ∈ [Bl, Bp) such that Fr(B) = Bp, set Fr(B) := Sr(Nl(Bp)).

5. For every B ∈ (Bp, Br] such that Fl(B) = Bp, set Fl(B) := Sl(Nr(Bp)).

6. Remove Bp from Ψ.

//Join of Bl with Bl−1 and Br with Br+1 when they are twins.

7. If Fl(Bl−1) = Fl(Bl) and Fr(Bl−1) = Fr(Bl) then:

8. Move the vertices from Bl to Bl−1.

9. Set Sr(Bl−1) := Sr(Bl) and remove Bl from Ψ.

10. If Fl(Br+1) = Fl(Br) and Fr(Br+1) = Fr(Br) then:

11. Move the vertices from Br to Br+1.

12. Set Sl(Br+1) := Sl(Bl) and remove Br from Ψ.

//Join of the universal semiblocks.

13. Run Algorithm 6.4 on Ψ and v to obtain the co-components of H \ {v}.

14. If there are two universal semiblocks Bi and Bj , where v is adjacent to Bi then:

15. Apply Algorithm 6.5 to remove Bi from Ψ and set Bj := Bj ∪Bi.

removes this semiblock by invoking Algorithm 6.5 and then it moves all the vertices
from this block to the other universal semiblock.

It is not hard to see that every step of Algorithm 6.9 is executed in O(d(v)) time. In
particular, observe that there are at most two universal semiblocks in Ψ at every step of
the algorithm. So, vertex v is removed from Ψ in O(d(v)) time.

The round block enumeration Φ of H \ {v} that is computed by Algorithm 6.9 may
violate the dynamic algorithm invariant, since Φ may be non-straight while H \{v} may
be a PIG graph. So, we need to transform Φ into a straight enumeration when H \{v} is
a PIG graph. Suppose thatH\{v} is in fact a PIG graph. Recall that, by Theorem 3.3.4,
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every PHCA model of a PIG graph is an interval model. In terms of round enumerations,
if Φ is locally straight, then Φ is also straight. Otherwise, Φ has some directed triangle
and, as in Theorem 3.2.10, one of the blocks in this triangle is the universal block.
The lemma below extracts all the important information of Theorem 3.2.10 that we
require, translated to the language of enumerations. Observe that in the lemma, both
B1, . . . , Bi−1 and Bi+1, . . . , Bk are ranges of co-components of G \Bi.

Lemma 6.5.1 (Corollary of Theorem 3.2.10). Let Φ = B1, . . . , Bk be a ring of a PIG
graph G. If Φ is not straight, then there is some universal block Bi ∈ Φ such that
Fr(Bi−1) = Bi = Fl(Bi+1). Furthermore, 〈[Bi−1, B1], Bi, [Bk, Bi+1], ∅〉 is a contig of G.

If the input Ψ of Algorithm 6.9 is straight, then the output Φ is also straight. When
Ψ is not straight, then Φ is straight if and only if Nr(Bp) is the leftmost end block of
Ψ \ {Bp}. Certainly, we can check this condition in O(1) time. When Φ is not straight
then, by the above lemma, H \ {v} is a PIG graph only if Φ contains some universal
block Bi that was computed at Step 13 of Algorithm 6.9. When there is such a universal
block, we can check the other condition of the above lemma to determine if H \ {v}
is PIG. If affirmative, then Φ = 〈[B1, Bi−1], Bi, [Bi+1, Bk], ∅〉, where B1 = Fl(Bi) and
Bk = Fr(Bi). So, we need only to compute Γ = 〈[Bi+1, Bk], Bi, [B1, Bi−1], ∅〉, which is
a contig of H \ {v} by Lemma 6.5.1. (The enumeration that appears in the statement
of Lemma 6.5.1 is the reverse of Γ which can be computed from the reverse of Φ.) The
computation of Γ takes O(1) time as it was discussed in Section 6.3.

Finally, we have to update the PHCA flag when Bp is removed from Ψ. By definition,
Ψ \ {Bp} is a round semiblock enumeration of H \ {v}. By Corollary 3.2.12, H \ {v} is
a PHCA graph if and only if H \ {v} is a PIG graph or Ψ \ {Bp} is locally straight. We
already discussed how to detect whether H \ {v} is a PIG graph or not. The following
lemma can be used to test in O(d(v)) time whether Ψ \ {Bp} is locally straight.

Proposition 6.5.2. Let Ψ = B1, . . . , Bk be a round semiblock enumeration of a graph H,
and suppose that Bp = {v}, for some 1 ≤ p ≤ k. Then Ψ\{Bp} has a directed triangle if
and only if there is some block B ∈ [Fl(Bp), Bp) such that Fr(Fr(Fr(B))) ∈ [B,Fr(Bp)].

Proof. Let Ba, Bb, Bc be a directed triangle of Ψ \ {Bp}. Without loss of generality,
suppose that Bp ∈ (Ba, Bb) and let Bx = Fr(Ba), By = Fr(Bx) and Bz = Fr(By). Since
Ba −→ Bb and Bc −→ Ba, then Bx ∈ [Bb, Bc). On the other hand, since Ba −→ Bp, then
Bx ∈ [Bp, Fr(Bp)], thus Bx ∈ [Bb, Fr(Bp)]. Similarly, since Ba −→ Bx and Bx −→ Bc,
then By ∈ [Bc, Ba), and By −→ Ba because Bc −→ Ba. Finally, since By −→ Ba and
Bx −→ By, then Bz ∈ [Ba, Bx], hence Bz ∈ [Ba, Fr(Bp)]. Summing up, Ba ∈ [Fl(Bp), Bp)
and Fr(Fr(Fr(Ba))) ∈ [Ba, Fr(Bp)].

For the converse, let Ba ∈ [Fl(Bp), Bp), and call Bx = Fr(Ba) and By = Fr(Bx). If
Fr(By) ∈ [Ba, Fr(Bp)], then By −→ Ba, thus Ba, Bx, By is a directed triangle.
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6 Dynamic recognition of PCA and PHCA graphs

As a consequence of this section, we can update the round block enumeration of H into
one of H \ {v} in O(dH(v)) time, for any v ∈ V (H). When H \ {v} is a PIG graph, the
enumeration so obtained is straight. After the update, the queries of whether H \ {v} is
a PIG graph or a PHCA graph can be solved in O(1) time.

6.6 The incremental algorithm for PHCA graphs

In this section we consider the edge insertion problem for PHCA graphs. That is, given
two non-adjacent vertices v and w from a PHCA graph G, we have to update the
representation of G into a representation of G ∪ {vw}, whenever possible. Let Φ =
B1, . . . , Bk be a locally straight block enumeration of G, and suppose that v ∈ Bp and
w ∈ Bq. The algorithm for inserting vw into Φ is divided into four parts. First, we
consider the case in which Φ is straight and N(Bp) ∩N(Bq) 6= ∅. Next, we consider the
case in which Φ is straight and N(Bp) ∩N(Bq) = ∅. The third considered case is when
Φ is not straight and both Fr(Bp) −→ Bq and Fr(Bq) −→ Bp. Finally, we consider the
case in which Φ is not straight and Fr(Bq) −→6 Bp. Before starting, we discard the case
in which G is disconnected with the following lemma.

Lemma 6.6.1. Let G be a PHCA graph and v, w be two non-adjacent vertices of G. If
G is disconnected, then G ∪ {vw} is a PHCA graph if and only if G ∪ {vw} is a PIG
graph.

Proof. Suppose that G∪ {vw} is a PHCA graph but not a PIG graph. Then, G∪ {vw}
has some hole C, and every vertex of G∪{vw} has some neighbor in C because G∪{vw}
is a circular-arc graph. Consequently, every vertex has some neighbor in C \ {vw}, thus
G is connected.

The first case in which G is a PIG graph and N(v) ∩N(w) 6= ∅ is similar to the case in
which G is disconnected.

Lemma 6.6.2. Let G be a PIG graph and v, w be two non-adjacent vertices of G. If
N(v) ∩ N(w) 6= ∅, then G ∪ {vw} is a PHCA graph if and only if G ∪ {vw} is a PIG
graph.

Proof. Suppose that G∪ {vw} is a PHCA graph but not a PIG graph. Then, G∪ {vw}
contains some hole C that must contain vw since G is a PIG graph. Consequently,
in G there is an induced path P with at least four vertices between v and w. Let
u ∈ N(v) ∩ N(w) and call φ to a straight enumeration of P ∪ {u}. By Theorem 3.3.2,
there are exactly two straight enumerations of P , and the extreme vertices of these
straight enumerations are v and w. So, u has to be adjacent to all the vertices of P ,
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or otherwise φ is not straight. But then P ∪ {u} induces a k-wheel in G ∪ {vw}, in
contradiction to Corollary 3.2.11.

The second case in which G is a PIG graph and N(u) ∩ N(v) = ∅ is analyzed below.
Recall that we assume that B1 and Bk are respectively the leftmost and rightmost end
blocks of a contig B1, . . . , Bk.

Lemma 6.6.3. Let Φ = B1, . . . , Bk be a contig of a graph G, v ∈ Bp, and w ∈ Bq, for
1 ≤ p < q ≤ k. If N [Bp] ∩ N [Bq] = ∅, then G ∪ {vw} is a PHCA graph if and only if
p = 1 and q = k. Furthermore, if G∪{vw} is a PHCA graph then Ψ = Ψ1, (B1, Bk),Ψk

is a locally straight ring of G ∪ {vw}, where Ψ1 and Ψk are defined by the rules below.

(i) If B1 = {v}, then Ψ1 = {v}; otherwise, Ψ1 = {v}, B1 \ {v}.

(ii) If Bk = {w}, then Ψk = {w}; otherwise, Ψk = Bk \ {w}, {w}.

Proof. Suppose that p > 1. Call R0 = Bi and Ri+1 = Fr(Pi), for every i ≥ 1. Since
G is connected, there is a value j ≥ 1 such that Rj −→ Bq and Rj−1 −→6 Bq. By
hypothesis, R1 −→6 Bq, so j > 1 and Bp, R1, . . . , Rj, Bq is an induced path of G with at
least four blocks. Also, B1 −→6 Bq and B1 −→6 Ri (for i = 1, . . . , j) since otherwise B1

would be a twin of Bp. If B1 −→ Bp, then v and w together with a vertex in B1 and
a vertex in R1 induce a K1,3 in G ∪ {vw}. Otherwise, v and w together with the set
{u ∈ Ri | 1 ≤ i ≤ j} induce a hole C in G ∪ {vw}, and no vertex of B1 has a neighbor
in C. Therefore, G∪ {vw} is not a PCA graph. Similarly, if q < k then G∪ {vw} is not
a PCA graph.

For the converse, suppose that p = 1 and q = k. All we have to do is to show that Ψ
is a locally straight ring of G ∪ {vw}. Clearly, Ψ is a circular ordering of the blocks of
G ∪ {vw}. Let B ∈ Φ be such that B 6= {v} and B 6= {w}, and define FΨ

l and FΨ
r with

the rules below.

• If FΦ
l (B) 6= B1 then FΨ

l (B \ {w}) = FΦ
l (B).

• If FΦ
l (B) = B1 then FΨ

l (B \ {v}) = {v}.

• FΨ
l ({v}) = {w}.

• If FΦ
r (B) 6= Bk then FΨ

r (B \ {v}) = FΦ
r (B).

• If FΦ
r (B) = Bk then FΨ

r (B \ {w}) = {w}.

• FΨ
r ({w}) = {v}.

It is not hard to see that FΨ
l and FΨ

r define a round orientation of the blocks of G∪{vw},
so Ψ is a ring of G ∪ {vw} (see Figure 6.8). Moreover, {v} and {w} belong to all the
directed cycles of blocks in Ψ. Hence, Ψ is locally straight because there is no block B
in Ψ such that {v} −→Ψ B −→Ψ {w} or otherwise B ∈ N [B1] ∩N [Bk] in Φ.
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Figure 6.8: Insertion of an edge vw as in Lemma 6.6.3. Note that B1 \ {v} and Bk \ {v}
could be empty.

For the following case it is better to work with rings that may contain empty blocks.
This is a contradiction by itself, because there are no empty blocks. So, we need to use
some sort of technical trick that we have avoided so far. Given an ordering Ψ of sets,
each of which is either a block or an empty set, we can filter the blocks of Ψ by removing
∅ from Ψ. That is, we can obtain an ordering of blocks by taking Ψ \ {∅}. This is what
we do in the next lemma.

Lemma 6.6.4. Let Φ be a locally straight ring of a graph G, Bp and Bq be two non-
adjacent blocks of Φ, v ∈ Bp, and w ∈ Bq. If Fr(Bp) −→ Bq and Fr(Bq) −→ Bp

then G ∪ {vw} is a PHCA graph if and only if V (G) can be partitioned into six sets
B1, . . . , B6 that satisfy conditions (i) to (vi). Furthermore, if G∪{vw} is a PHCA graph,
then Ψ\{∅} is a contig of G∪{vw}, where Ψ is the linear ordering B6, B5, B1, B4, B2, B3.

(i) B1, B2, B4, and B5 are blocks of G, while B3 and B6 are either blocks or empty
sets.

(ii) B1 = {v} and B4 = {w}.

(iii) B2 and B5 are adjacent to both B1 and B4.

(iv) If B3 6= ∅, then B3 is adjacent to both B2 and B4.

(v) If B6 6= ∅, then B6 is adjacent to both B1 and B5.

(vi) There are no more adjacencies.

Proof. Clearly, if V (G) can be partitioned into six sets that satisfy conditions (i) to (vi),
then Ψ \ ∅ is a contig of G ∪ {vw} (see Figure 6.9).

For the converse, suppose that G ∪ {vw} is a PHCA graph, and let Bl = Fl(Bq), Br =
Fr(Bp), Ba = Fl(Bp), and Bb = Fr(Bq). For the proof we will make some observations
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Figure 6.9: Insertion of an edge vw as in Lemma 6.6.4. In this case, B3 and B6 could be
empty.

that we then combine to show that Φ is equal to [B1, B6] \ ∅, where B1–B6 are defined
by the rules (i) to (vi).

Claim 1: no block in (Bp, Bq) is adjacent to a block in (Bq, Bp). By hypothesis Br −→
Bq, so Bp, Bl, Br, and Bq appear in this order in Φ, where possibly Bl = Br.
Similarly, Bq, Ba, Bb and Bp appear in this order in Φ, where possibly Ba = Bb.
Then, no block in (Bp, Bl) is adjacent to a block in (Bq, Ba) and no block in (Bb, Bp)
is adjacent to a block in (Br, Bq). Also, Br −→6 Ba or otherwise Bp, Br, Ba would
form a directed triangle. Similarly, Bb −→6 Bl, thus no block in [Bl, Br] is adjacent
to a block in [Ba, Bb]. If B ∈ (Bb, Bp) is adjacent to Bl, then B,Bl, {w}, Bb is a hole
of semiblocks in G∪{vw}, and the semiblock {v} is adjacent to all these semiblocks
in G ∪ {vw}, a contradiction. So, no block in [Ba, Bp) is adjacent to a block in
[Bl, Bq) and, similarly, no block in (Bp, Br] is adjacent to a block in (Bq, Bb].
Finally, if B ∈ (Bb, Bp) is adjacent to B′ ∈ (Bp, Bl), then B,B′, Bl, {w}, Bb is an
induced hole of semiblocks in G ∪ {vw}, and the semiblock {v} is adjacent to all
these semiblocks in G ∪ {vw} which is impossible. Similarly, no block in (Br, Bq)
is adjacent to a block in (Bq, Ba). Summing up, no block in (Bp, Bq) is adjacent
to a block in (Bq, Bp).

Claim 2: Bp and Bq are singletons, i.e., Bp = {v} and Bq = {w}. To obtain a contra-
diction, suppose that Bp contains a vertex u 6= v. By Claim 1, Br is not adjacent
to Bb, so {u, v}, Br, {w} and Bb induce a hole of semiblocks in G. But then,
{v}, {u}, Br, {w}, Bb is an induced wheel of semiblocks in G ∪ {vw}, a contradic-
tion.

Claim 3: if (Bp, Bl) 6= ∅, then (Bb, Bp) = ∅. Suppose not, so there is a blockB ∈ (Bp, Bl)
and there is another block B′ ∈ (Bb, Bp). By definition, (Bb, Bl) = N(Bq), so
neither B nor B′ are adjacent to Bq. Also, by Claim 1, B is not adjacent to B′, so
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{v}, B, {w}, B′ form an induced K1,3 of semiblocks in G ∪ {vw}, a contradiction.

Claim 4: if (Bq, Ba) 6= ∅, then (Br, Bq) = ∅. The proof is analogous to Claim 3.

Claim 5: if (Bp, Bl) 6= ∅, then (Br, Bq) = ∅. Suppose not, so there is a block B ∈
(Bp, Bl) and there is another block B′ ∈ (Br, Bq). If B is adjacent to B′ then
{v}, B,B′, {w} is a hole of semiblocks in G ∪ {vw} and Bl is adjacent to all these
semiblocks in G ∪ {vw}, a contradiction. When B is not adjacent to B′ then
{v}, B,Bl, B

′, {w}, Ba induce a 3-sun of semiblocks in G∪{vw} since, by Claim 1,
Ba is not adjacent to the blocks in (Bp, Bq). This is also impossible.

Claim 6: if (Bq, Ba) 6= ∅, then (Bb, Bp) = ∅. The proof is analogous to Claim 5.

By Claim 2, Bp = {v} and Bq = {w}. By Claim 1, Fl(Bl) = Fl(Br) = Bp and
Fr(Bl) = Fr(Br) = Bq, so Bl = Br because both Bl and Br are blocks. Similarly,
Ba = Bb. By Claims 3–6, either (Bp, Bl) and (Bq, Ba) are empty or (Bl, Bq) and (Ba, Bp)
are empty. Without loss of generality, assume that (Bp, Bl) and (Bq, Ba) are empty. But
then, Fl(B) = Bl for every block B ∈ (Bl, Bq) while, by Claim 1, Fr(B) = Bq for every
B ∈ (Bl, Bq). This implies that (Bl, Bq) is either empty or it has exactly one block.
Similarly, (Ba, Bp) is either empty or it has exactly one block.

Define B1 = Bp, B2 = Bl, B4 = Bq and B5 = Ba. If (Bl, Bq) = ∅, then define B3 = ∅,
otherwise define B3 as the unique block in (Bl, Bq). Finally, if (Ba, Bp) = ∅, then define
B6 = ∅, otherwise define B6 as the unique block in (Ba, Bp). Sets B1, . . . , B6 form a
partition of V (G) that satisfies the conditions (i) to (vi). Moreover, Φ = [B1, B6]\∅ (see
Figure 6.6.4).

The last case is very similar to Lemma 4.2 in [HSS01].

Lemma 6.6.5. Let Φ be a locally straight ring of a graph G, Bp and Bq be two non-
adjacent blocks of Φ, and v ∈ Bp and w ∈ Bq. If Φ is not straight and Fr(Bq) −→6 Bp,
then G ∪ {vw} is a PHCA graph if and only if Fr(Bp) = Bq−1 and Fl(Bq) = Bp+1.

Proof. Suppose that Fr(Bp) 6= Bq−1. By hypothesis Bp −→6 Bq, so Fr(Bp) ∈ [Bp, Bq−1)
and Fl(Bq−1) ∈ (Bp, Bq−1]. Consider the following alternatives for the rightmost neighbor
of Bp+1.

Case 1: Bp+1 −→ Bq. In this case, Fl(Bq−1) = Fl(Bq) = Bp+1 since Bp −→6 Bq−1.
Then, Bq−1 is not adjacent to Fr(Bq) and neither is Bp because Fr(Bq) −→6 Bp.
Consequently, {w}, {v}, Bq−1 and Fr(Bq) form an induced K1,3 of semiblocks in
G ∪ {vw}, so G ∪ {vw} is not a PCA graph.

Case 2: Bp −→ Fr(Bp+1). In this case, Bp+1 −→6 Bq, so Bp+1 and Bq are not adjacent.
As before, Bp+1 is not adjacent to Fl(Bp) and neither is Bq because Fr(Bq) −→6 Bp.
Then, {v}, {w}, Bp+1, Fl(Bp+1) form an induced K1,3 of semiblocks in G ∪ {vw},
so G ∪ {vw} is not a PCA graph.
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Case 3: Bp+1 −→6 Bq and Bp −→6 Fr(Bp+1). Since Φ is not straight, there is an induced
path of blocks between Fr(Bp+1) and Bq whose blocks all belong to [Fr(Bp+1), Bq].
Then, Φ contains an induced path P = Bp, Bp+1,P

′, Ba, Bq that has at least four
blocks and such that P ⊆ [Bp, Bq]. On the other hand, since Φ is not straight
and Fr(Bq) −→6 Bp, Φ contains also an induced path Q = Bq, Bb,Q

′, Bc, Bp that
contains at least four blocks and such that Q ⊆ [Bq, Bp]. If Bp+1 is not adjacent
to Bc, then {v}, {w}, Bp+1, Bc form an induced K1,3 of semiblocks in G ∪ {vw},
hence G ∪ {vw} is not a PCA graph. Similarly, if Ba is not adjacent to Bb, then
{w}, {v}, Ba, Bb form an induced K1,3 of semiblocks in G∪{vw}. Suppose, for the
last case, that Bp+1 is adjacent to Bc and Ba is adjacent to Bb. If both P ′ and Q′

are empty, then {v}, Bp+1, Ba, {w}, Bb, Bc induce a C6 in G ∪ {vw}, so G ∪ {vw}
is not a PCA graph. If Q′ 6= ∅, then {v}, Bp+1,P

′, Ba, {w} is an induced hole
of G ∪ {vw} and the blocks in Q′ are not adjacent to the blocks of this hole, so
G ∪ {vw} is not a PCA graph. Similarly, if P ′ 6= ∅, then G ∪ {vw} is not a PCA
graph.

Summing up, if Fr(Bp) 6= Bq−1, then G ∪ {vw} is not a PCA graph. The proof that
G ∪ {vw} is not a PCA graph when Fl(Bq) 6= Bp+1 is analogous.

For the converse, suppose that Fr(Bp) = Bq−1 and Bp+1 = Fl(Bq). A locally straight
ring of G ∪ {vw} can be obtained as in Lemma 4.2 of [HSS01]. For completeness, we
show how can Φ be transformed into such a ring. Apply the following operations in
order.

1. If |Bp| = 1, Fr(Bq) = Fr(Bq−1), and Fl(Bq−1) = Bp, then insert w into Bq−1.
Otherwise, insert w into a new block immediately to the left of Bq.

2. If |Bq| = 1, Fl(Bp) = Fl(Bp+1), and Fr(Bp+1) = Bq, then insert v into Bp+1.
Otherwise, insert v into a new block immediately to the right of Bp.

3. Remove v from Bp. If Bp = ∅, then remove Bp from Φ.

4. Remove w from Bq. If Bq = ∅, then remove Bq from Φ.

The resulting ordering of semiblocks Ψ is a ring of G ∪ {vw}. The details are the same
as in Lemma 4.2 of [HSS01]. Observe that the new blocks that now contain v and w do
not belong to a directed triangle because otherwise there would be a block B such that
Bq −→ B −→ Bp, contradicting the lemma’s hypothesis. So, Φ is locally straight.

6.6.1 The impact of a new edge

In this section we describe an algorithm that can be used to update the representation of
the PHCA graph G when a new edge vw is inserted. The first step of the algorithm is to
test if G is connected or not. Recall that G is connected if and only if its representation
Φ is composed by a unique ring. If G is not connected, then G∪{vw} is a PHCA graph
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if and only if G ∪ {vw} is a PIG graph, by Lemma 6.6.1. So, in this case we can test
in O(1) time whether G ∪ {vw} is a PHCA graph by running the HSS algorithm on Φ.
Furthermore, Φ is updated into a representation Ψ of G ∪ {vw}, when G ∪ {vw} is a
PHCA graph. For the rest of this section we consider that G is connected, so Φ is a ring.
Let Bp and Bq be the blocks of Φ that contain v and w, respectively.

The second step of the algorithm is to test whether Φ is straight or not, so as to evaluate
which of the lemmas in the previous section applies for Φ. We have already discussed
how can we test in O(1) time whether a ring of G is straight or not. According to the
output of this test, there are two alternatives.

Case 1: Φ = B1, . . . , Bk is straight. By exchanging v and w if required, assume that
p < q. Suppose first that 1 < p or q < k, i.e., one among Bp, Bq is not an end
block. By Lemma 6.6.3, G ∪ {vw} is a PHCA graph only if N(Bp) ∩ N(Bq) = ∅.
So, by Lemma 6.6.2, G∪ {vw} is a PHCA graph only if G∪ {vw} is a PIG graph.
We can figure out in O(1) time whether G ∪ {vw} is a PIG graph by running the
HSS algorithm on Φ. If the HSS algorithm is successful, then Φ is updated into a
contig of G∪{vw}. When the HSS algorithm is unsuccessful, we can conclude that
G ∪ {vw} is not a PHCA graph. Suppose now that p = 1 and q = k. In this case,
we can determine whether N(Bp)∩N(Bq) = ∅ by testing whether Fr(Bp) −→ Bq.
This test takes O(1) time because Fr(Bp) −→ Bq if and only if Fr(Fr(B1)) = Bk.
Again, by Lemma 6.6.2, if Fr(Bp) −→ Bq then G ∪ {vw} is a PHCA graph if
and only if G ∪ {vw} is a PIG graph. So, we can also call the HSS algorithm for
this case. Finally, if Fr(Bp) −→6 Bk, then G ∪ {vw} is PHCA by Lemma 6.6.3.
Moreover, we can update Φ in O(1) time into the representation Ψ of G∪{v} that
appears in Lemma 6.6.3, as follows.

Near pointers. If |B1| > 1, then insert a new block B0 = {v} and set Nr(B0) :=
B1; otherwise, let B0 = B1. If |Bk| > 1, then insert a new block Bk+1 = {w}
and set Nl(Bk+1) = Bk; otherwise, let Bk+1 = Bk. Finally, set Nl(B0) := Bk+1

and Nr(Bk+1) := B0.

Far pointers. Set Fr(B0) := Fr(B1), Fl(Bk+1) := Fl(Bk), Fl(B0) := Sl(Bk+1), and
Fr(Bk+1) := Sr(B0).

Self pointers. If B is a block such that F φ
l (B) = B1, then the far pointer of B has

to be updated so as to point to Sl(B0) in Ψ. All these updates can be done
in O(1) time with the technique of nested pointer, by exchanging Sl(B0) and
Sl(B1). Similarly, all the blocks whose right far pointer references Bk have to
be updated so as to reference Bk+1. For this, swap Sr(Bk+1) with Sr(Bk).

End pointers. Set the end pointers of B1 and Bk to NULL.

Case 2: Φ = B1, . . . , Bk is not straight. The first step of the algorithm in this case
is to test whether Φ satisfies the conditions of Lemma 6.6.4. This check can be
done in O(1) time because Φ satisfies the conditions of Lemma 6.6.4 only if Φ has
at most six blocks. When Φ satisfies the conditions of Lemma 6.6.4, G ∪ {vw}
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6.7 The decremental algorithm for PHCA graphs

is a PHCA graph, and it is trivial to update Φ into a contig of G ∪ {vw} as in
Lemma 6.6.4. When Φ does not satisfy the conditions of Lemma 6.6.4, G ∪ {vw}
is a PHCA graph only if Fr(Bp) −→6 Bq or Fr(Bq) −→6 Bp, by Lemma 6.6.4. If
neither Fr(Bp) = Bq−1 and Fl(Bq) = Bp+1, nor Fr(Bq) = Bp−1 and Fl(Bp) = Bq+1,
then we can conclude that G ∪ {vw} is not PHCA, by Lemma 6.6.5. We can
check these conditions in O(1) time by using the near and far pointers as usual.
Suppose that Fr(Bp) = Bq−1 and Fl(Bq) = Bp+1, thus Fr(Bp) −→ Bq. Under these
conditions, G ∪ {vw} is a PHCA graph if and only if Fr(Bq) −→6 Bp, by Lemmas
6.6.4 and 6.6.5. Since Φ is locally straight then Fr(Bq) −→6 Bp+1 or, otherwise,
Bq, Fr(Bq) and Bp+1 would form a directed triangle in Φ. Then, Fr(Bq) −→ Bp

if and only if Fr(Fr(Bq)) = Bp. This condition is easily tested in O(1) time and,
when Fr(Bq) −→6 Bp, we can update Φ into a ring of G ∪ {vw} in O(1) time as
in [HSS01].

Summing up, the update of Φ into a locally straight enumeration of G∪{vw} takes O(1)
time when G ∪ {vw} is a PHCA graph and Φ is equipped with the end pointers (the
end pointers are used by the HSS algorithm). So, the incremental PHCA recognition
problem, both for vertices and edges, can be solved in O(1) time per edge inserted. When
the end pointers of Φ are replaced with the connectivity structure then the insertion takes
O(log n) time.

6.7 The decremental algorithm for PHCA graphs

The last operation that we consider is the removal of an edge from a PHCA graph.
That is, given a PHCA graph H and an edge vw, the question is whether H \ {vw}
is a PHCA graph. If affirmative, then the representation Ψ of H has to be updated
into a locally straight representation Φ of H \ {vw}. As in the previous section, the
decremental algorithm is divided into four cases, according to the existence of common
neighbors between v and w. These cases are somehow the inverse versions of the cases
in the previous section. We begin with the case in which H is a PIG graph and v and w
have no common neighbors.

Lemma 6.7.1. Let H be a straight graph and v, w be two adjacent vertices of H. If
N(v) ∩ N(w) = ∅, then H \ {vw} is a PHCA graph if and only if H \ {vw} is a PIG
graph.

Proof. Suppose that H \ {vw} is a PHCA graph but not a PIG graph, so H \ {vw} has
some induced hole C. Then, since H is a PIG graph, both v and w belong to C and,
moreover, vw is the only chord of C in H. This means that C has exactly four vertices,
so v and w have at least two common neighbors in H. The converse is trivial.
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The second case is when H is a PIG graph and v and w have some common neighbor.

Lemma 6.7.2. Let H be a PIG graph and v, w be two adjacent vertices of H. If N(v)∩
N(w) 6= ∅, then H \ {vw} is a PHCA graph if and only if:

(i) H \ {vw} is straight or

(ii) the vertices of H can be partitioned into six sets B1, . . . , B6 that satisfy the condi-
tions (i) to (vi) of Lemma 6.6.4 together with the condition that B1 is adjacent to
B4. Furthermore, Φ = [B1, B6] \ {∅} is a locally straight ring of H \ {vw}.

Proof. Suppose that H \ {vw} is a PHCA graph. Let Φ be a locally straight block
enumeration of H \ {vw}, v ∈ Bp, and w ∈ Bq. If Φ is straight, then (i) follows.
Suppose, then, that Φ is not straight. If either Fr(Bp) −→6 Bq or Fr(Bq) −→6 Bp,
then, by Lemma 6.6.5, H = (H \ {vw}) ∪ {vw} admits a non-straight ring. So, by
Theorem 3.3.4, H has no straight block enumerations, a contradiction. On the other
hand, if both Fr(Bp) −→ Bq and Fr(Bq) −→ Bp, then, by Lemma 6.6.4, the blocks of
H \ {vw} can be partitioned into six sets that satisfy the conditions of Lemma 6.6.4.
Furthermore, by Theorem 3.3.4, Φ is equal to either [B1, B6] \ {∅} or to its reversal, so
(ii) follows.

The converse is trivial since H \ {vw} is a locally straight graph by (i) and (ii).

The third case is when H is not a PIG graph and v and w have no common neighbors.

Lemma 6.7.3. Let Ψ be a locally straight ring of a graph H, Bp and Bq be blocks such
that either Bp = Bq or Bq −→ Bp, and v ∈ Bp and w ∈ Bq. If Ψ is not straight and
N(v) ∩N(w) = ∅, then H \ {vw} is a PIG graph. Furthermore, [Bp, Bq] is a semiblock
contig of H \ {vw} whose semiblocks that are not blocks belong to {Bp, Bp+1, Bq−1, Bq}.

Proof. Suppose that H \ {vw} admits a locally straight ring Φ, and let BΦ
p and BΦ

q be
the blocks of Φ that contain v and w, respectively. Certainly, N [BΦ

p ] ∩ N [BΦ
q ] = ∅,

thus FΦ
r (BΦ

p ) 6= Nl(B
Φ
q ) and FΦ

r (BΦ
q ) 6= NΦ

l (BΦ
p ). Then, by Lemma 6.6.5, Φ must be a

contig of H \ {vw}. Therefore, BΦ
p and BΦ

q are the end blocks of Φ by Lemma 6.6.3.
Furthermore, by reversing Φ if required, we can assume that Ψ is obtained from Φ as in
Lemma 6.6.3 since, by Theorem 3.3.4, the locally straight enumeration of H is unique
up to full reversal. Then, BΦ

p is the leftmost end block of Φ, BΦ
q is the rightmost end

block of Φ, and all the blocks of Ψ in (Bp, Bq) are in a one-to-one correspondence with
the blocks of Φ in (BΦ

p , B
Φ
q ). That is, [Bp, Bq] is a semiblock contig of H \ {vw} whose

only semiblocks that could not be blocks are Bp and Bp+1 (when BΦ
p = Bp ∪Bp+1), and

Bq−1 and Bq (when BΦ
q = Bq−1 ∪Bq).

Finally, we consider the case in which H is not a PIG graph and v and w have common
neighbors. This is the equivalent of Lemma 5.2 in [HSS01] for locally straight graphs.
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Lemma 6.7.4. Let Ψ be a locally straight ring of a graph H, Bp and Bq be blocks such
that either Bp = Bq or Bp −→ Bq, and v ∈ Bp and w ∈ Bq. If Ψ is not straight and
N(v) ∩ N(w) 6= ∅, then H \ {vw} is a PHCA graph if and only if Fr(Bp) = Bq and
Fl(Bq) = Bp.

Proof. Suppose that H \ {vw} admits a locally straight ring Φ, and let BΦ
p and BΦ

q be
the blocks of Φ that contain v and w, respectively. By hypothesis, BΦ

p and BΦ
q have a

common neighbor, so either FΦ
r (BΦ

p ) −→ BΦ
q or FΦ

r (BΦ
q ) −→ BΦ

p . If FΦ
r (BΦ

p ) −→ BΦ
q

and FΦ
r (BΦ

q ) −→ BΦ
p , then H is a PIG graph by Lemma 6.6.4, contradicting the fact

that Ψ and its reversal are the unique locally straight rings of H by Theorem 3.3.4.
Otherwise, either FΦ

r (BΦ
p ) = NΦ

l (BΦ
q ) and FΦ

l (BΦ
q ) = NΦ

r (BΦ
p ), or FΦ

r (BΦ
q ) = NΦ

l (BΦ
p )

and FΦ
l (BΦ

p ) = NΦ
r (BΦ

q ) by Lemma 6.6.5. Furthermore, since Ψ is the unique ring of H
up to full reversal, then we may assume that Ψ is obtained from Φ as in the proof of
Lemma 6.6.5. Consequently, since Bp −→Ψ Bq, we obtain that FΦ

r (BΦ
p ) = NΦ

l (BΦ
q ) and

FΦ
l (BΦ

q ) = NΦ
r (BΦ

p ), so FΨ
r (Bp) = Bq and FΨ

l (Bq) = Bp.

For the converse, suppose that Fr(Bp) = Bq and Fl(Bq) = Bp. A ring of H \ {vw} can
be found exactly as in Lemma 5.2 of [HSS01]. For completeness, we show how can Ψ be
transformed into such a ring. Apply the following operations in order.

1. If |Bp| = 1, Fl(Bq+1) = Bp+1 and Fr(Bq) = Fr(Bq+1), then insert w into Bq+1.
Otherwise, insert w into a new block immediately to the right of Bq.

2. If |Bq| = 1, Fl(Bp) = Fl(Bp−1) and Fr(Bp−1) = Bq−1, then insert v into Bp−1.
Otherwise, insert v into a new block immediately to the right of Bp.

3. Remove v from Bp. If Bp = ∅, then remove Bp from Ψ.

4. Remove w from Bq. If Bq = ∅, then remove Bq from Ψ.

The resulting ordering Φ is a ring of H \{vw}. The details are the same as in Lemma 5.2
of [HSS01]. Observe that no directed triangle could be created by this procedure, so Φ
is locally straight.

The algorithm to remove the edge {vw} from H is similar to the incremental algorithm;
first we need to find out which of the lemmas above applies, and then we have to modify
the data structure accordingly. The first step is to check whether Φ is straight or not.
As we already discussed, this test takes O(1). The algorithm then splits in two cases.

Case 1: Ψ is straight. If H has at most six blocks then a ring of H \ {vw} is easily
obtained in O(1) when H \ {vw} is a PHCA graph. Otherwise, H \ {vw} is a
PHCA graph if and only if H \ {vw} is a PIG graph, by Lemmas 6.7.1 and 6.7.2.
We can figure out in O(1) time if H \ {vw} is a PIG graph by executing the HSS
algorithm on Ψ. If affirmative, then a straight block enumeration of H \ {vw} is
obtained within the same time as a by-product.
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Case 2: Ψ = B1, . . . , Bk is not straight. Let Bp and Bq be the blocks that contain
v and w, respectively. By exchanging v and w, assume that either Bp = Bq or
Bp −→ Bq. The first step of the algorithm in this case is to check whether v and w
have a common neighbor. We claim that N(v)∩N(w) = ∅ if and only if Bp = {v},
Bq = {w}, Nr(Bp) = Bq, Fr(Bp) = Bq, and Fl(Bq) = Bp. Indeed, if Bp = Bq,
then all the vertices in Bp+1 are common neighbors of v and w, while if |Bp| > 1 or
|Bq| > 1, then v and w have common neighbors in (Bp ∪Bq) \ {v, w}. Similarly, if
Bp 6= Bq and Nr(Bp) 6= Bq, then all the vertices in Bp+1 are common neighbors of v
and w. When Nr(Bp) = Bq and either Fl(Bq) 6= Bp or Fr(Bp) 6= Bq, then v and w
have common neighbors in Bp−1∪Bq+1. Finally, observe that if Nr(Bp) = Bq, then
Fr(Bq) −→6 Bp or, otherwise, Bp, Bq, and Fr(Bq) would form a directed triangle.
So, the claim is true, and we can test whether N(v)∩N(w) = ∅ in O(1) time. When
N(v) ∩ N(w) 6= ∅, we can determine if H \ {vw} is a PHCA graph by checking
whether Fr(Bp) = Bq and Fl(Bq) = Bp, by Lemma 6.7.4. If affirmative, then we
can update Ψ into a ring of H \ {vw} in O(1) time as in [HSS01]. Finally, when
N(v)∩N(w) = ∅ then H \ {vw} is a PIG graph by Lemma 6.7.3. In this case, we
can transform Ψ into a contig of H \ {vw} as follows.

Near pointers. If Fl(Bp) = Fl(Bp−1), then move v from Bp to Bp−1 and set Bv :=
Bp−1; otherwise, set Bv := Bp. If Fr(Bq) = Fr(Bq+1), then move w from Bq

to Bq+1 and set Bw := Bq+1; otherwise, set Bw := Bq. Set Nr(Bp) := Bp and
Nl(Bq) := Bq.

Far pointers. Set Fr(Bv) := Bv and Fl(Bw) := Bw.

Self pointers. If B is a block such that F φ
r (B) = Bp, then the far pointer of B has

to be updated so as to point to Sr(Bv) in Ψ. Similarly, the right far pointers
referencing Bq have to be updated so as to reference Bw. With this purpose,
set Sr(Bv) := Sr(Bp) and Sl(Bw) := Sr(Bq).

Blocks. If Bp = ∅ (i.e., v was moved to Bp−1), then remove Bp from Ψ. Similarly,
remove Bq form Ψ when Bq = ∅.

Summing up, the removal of an edge in a PHCA graph takes O(1) time. Thus, the
decremental PHCA recognition problem, both for vertices and edges, can be solved in
O(1) time per edge removed.

6.8 Maintaining the connected components

Recall that the incremental and decremental algorithms use different data structures.
Each block of the incremental data structure is equipped with two end pointers that link
together the end blocks of a ring. These pointers are not present in the decremental data
structure because their maintenance is expensive when a vertex or edge is removed. A
replacement for the end pointers is required to combine the incremental and decremental
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algorithms into one fully dynamic algorithm. It turns out that the only purpose of the
end pointers is to evaluate whether two end blocks belong to the same ring or not. Is for
this reason that Hell et al. replace the end pointers with an efficient connectivity data
structure for PIG graphs. In this section we describe this data structure, and we adapt
it for the PCA recognition algorithms.

Let G be a graph with a straight enumeration Φ. For the connectivity structure, the
HSS algorithm stores a spanning path for each component of the block-reduction of G.
Each of these paths is composed by one vertex for each block of the component and
two blocks are adjacent in the path if and only if they are consecutive in Φ. That is,
the connectivity structure is a graph B(G) with one vertex vi for each block Bi ∈ Φ,
and two different vertices vi and vj are adjacent in B(G) if and only if NΦ

r (Bi) = Bj or
NΦ

l (Bi) = Bj. For the implementation, each component of B(G) is stored as a balanced
binary tree (e.g. a red-black tree), so the query of whether two blocks belong to the same
component can be answered in O(log n) time.

The crucial observation is that only O(1) vertices and edges are inserted to or removed
from B(G), for each of the operations supported by the incremental and decremental
algorithms. Indeed, each insertion of a vertex in B(G) corresponds to the creation of
a new block in Φ, each removal of a vertex in B(G) corresponds to the deletion of a
block from Φ, each insertion of an edge of B(G) corresponds to a new linking of two
blocks via the near pointers of Φ, and each removal of an edge of B(G) corresponds to
the disappearance of the near pointer link between two blocks. In terms of the balanced
trees data structure, all these operations correspond either to the creation and removal
of trivial trees, or to the join and split of trees. So, B(G) is updated in O(log n) time
after each operation of the dynamic PIG recognition algorithm.

The adaptation of the connectivity data structure to the PCA case is really simple. Let
G be a PCA graph and Φ be a round block enumeration of G. The connectivity data
structure in this case is also the graph B(G), defined exactly as for the PIG graphs.
That is, there is one vertex per each block and two vertices of B(G) are adjacent when
their corresponding blocks are consecutive and adjacent in Φ. As we already argued,
O(1) updates of B(G) are required for each operation of the dynamic algorithm when Φ
is straight. Going through all the algorithms in this chapter, we can observe that there
are also O(1) updates in B(G) for each operation supported by the dynamic algorithm
when Φ is not straight. As for the implementation, when Φ is not straight then B(G) is
a cycle, so it can be implemented as a path B(G) \ e and an edge e. The path B(G) \ e
is stored, exactly as in the PIG case, as a balanced binary tree. When Φ is straight then
e is nullified and B(G) is just as in the HSS algorithm. The following actions are taken
each time a new edge e′ is inserted into B(G):

• If B(G) is disconnected, then e′ is inserted as in the HSS algorithm. Note that
in this case e′ must be an edge that joins two vertices of different components of
B(G).
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• If B(G) is connected, then e is set to e′. Observe that in this case B(G) is not a
cycle or otherwise e would not be inserted into B(G).

Each time an edge e′ is removed, the following actions are taken:

• If e is NULL, then e′ is removed as in the HSS algorithm.

• If e = e′, then e is set to NULL.

• Otherwise, e′ is removed from B(G)\{e} as in the HSS algorithm, then e is inserted
to (B(G) \ {e}) \ {e′}, and, finally, e is nullified.

The connectivity query can then be answered according to whether e is NULL or not. If
e = NULL, then the query is answered, as in the HSS algorithm, with a traversal from
the vertices of B(G) to the root. If e 6= NULL, then Φ is not straight, so G is connected
and the answer to the query is true.

Using this connectivity data structure, the vertex-only fully dynamic PCA recognition
problem can be solved in O(d+log n) time per operation, while the fully dynamic PHCA
recognition problem can be solved in O(d+log n) time per vertex operation and O(log n)
time per edge operation.
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7 Isomorphism of proper circular-arc

graphs

Recall that two graphs are isomorphic when they have the same structure. The iso-
morphism problem is the problem of deciding whether two graphs G and H are iso-
morphic. Up to this date, no polynomial time algorithm was developed to solve the
isomorphism problem, and it seems unlikely to find a proof that the problem is NP-
hard [BHZ87, KST93, Sch88]. The conventional wisdom is that this problem lies in a
class between the P and NP-hard classes, if such a class exists. There is even a special
complexity class that groups all the problems that are polynomially equivalent to the
isomorphism problem.

A labeled graph is a graph G in which the vertices are numbers from 1 to n. Two labeled
graphs G andH are equal when ij ∈ E(G) if and only if ij ∈ E(H) for every 1 ≤ i, j ≤ n.
The canonization problem consists of finding, for each graph G, a labeled graph C(G)
that is isomorphic to G in such a way that two graphs G and H are isomorphic if and
only if C(G) is equal to C(H). The graph C(G) is referred to as the canonical form of G.
The equality of graphs is easily tested in polynomial time, so solving the canonization
problem is enough to solve the isomorphism problem. In fact, many isomorphism testing
algorithms build canonical forms of the input graphs.

Although no polynomial time algorithm is known for computing a canonical form of the
input graph, there are many algorithms that compute a canonical labeling for random
graphs with high probability [BK79, BES80, CP08]. The canonization problem can
also be solved in polynomial time for several classes of graphs [GJ79]. In particular,
labeled PQ-trees can be used to obtain a canonical form of an interval graph in linear
time [LB79], labeled PC-trees can be used to obtain a canonical form of an HCA graph
in linear time [Cur07], and a canonical form of a circular-arc graph can be obtained in
O(mn) time as in [Hsu95].

In this chapter we present a linear-time algorithm for the isomorphism problem restricted
to PCA graphs. Our algorithm takes as input a PCA model M of a graph G, and it
transforms M into a canonical PCA model of G. This canonical model is obtained by
rotating, reflecting and sorting the components and co-components of the input model.

This chapter is organized in four sections. In Section 7.1 we discuss how to encode a
PCA model as a string. In Section 7.2 we show how to compute a canonical encoding
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7 Isomorphism of proper circular-arc graphs

of a given PCA model in linear time, while in Section 7.3 we show how to compute a
canonical PCA model of a PCA graph. Finally, in Section 7.4 we combine all the previous
results to compute a canonical encoding of a canonical PCA model of any PCA graph.
The isomorphism problem is then reduced to testing whether two strings that encode
PCA graphs are equal or not. In the rest of this section we introduce the terminology
that we use for working with strings.

An alphabet Σ is a finite set of elements called symbols. Symbols are just unspecified
objects with an equality operation. A string S (over Σ) is a sequence s0, . . . , s|S|−1 of
symbols of Σ, where |S| is the length of S. The elements of {0, . . . , |S| − 1} are the
positions of S, and the symbol si is represented by S(i). Recall that, as explained in
Chapter 2, we may use negative numbers or numbers greater that |S| − 1 to refer to
the positions of S. In such cases, the position must be understood modulo |S|. Also,
we extend the range notation to strings, i.e., [si, sj] is the string si, . . . , sj for every
1 ≤ i, j ≤ n. As usual, if j < i, then [si, sj] = [si, sn], [s1, sj]. Given a total order < over
Σ, we denote by <lex the lexicographic order between strings, i.e., S <lex T if and only if
there exists a position k ≤ min{|S| − 1, |T | − 2} such that S(i) = T (i), for all 1 ≤ i ≤ k,
and either k = |S| or S(k + 1) < T (k + 1). For a position i, we represent by S ≪ i
the i-th rotation of S, i.e., S ≪ i = [si, si−1]. A position i is canonical (with respect to
<) when S ≪ i ≤lex S ≪ j for every position j of S. Observe that, since < is a total
order, S ≪ i = S ≪ j for every pair i, j of canonical positions. The minimum circular
string problem consists of finding every canonical position of S. For this it is enough to
find one canonical position i and a period w such that i+ kw is a canonical position for
every k ≥ 0. This problem can be solved in O(n) evaluations of < [Boo80, Shi81].

7.1 PCA encodings

In the previous chapters we developed a lot of algorithms on circular-arc models. Except
for the dynamic recognition algorithm, we did not discuss how can a circular-arc model
be stored in the memory of a RAM machine; we took for granted that one data structure
representing a circular-arc model is available, and that many operations were supported
by this data structure. For instance, we assumed that a traversal of the extreme points
of a circular-arc model takes O(n) time, that given a beginning point we can compute its
corresponding ending point in O(1) time, that we can remove an arc from the circular-arc
model in O(1) time, etcetera. Of course, it is not difficult to implement a PCA model that
supports these operations using basic data structures. However, we cannot expect that
the end users of our algorithms provide such a data structure. The input model has to
be encoded in the simpler and more general form as possible, and it should only contain
the amount of information required so as to guess the positions of the beginning and
ending points of each arc. Then, there should be some algorithms that transform these
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A1

A2 A3

A4

A5

A6
A7

A8

R(A2k+1) = a1b7b8a2a3b1b2a4a5b3b4a6a7b5b6a8

R(A2k) = a1a2b8b1a3a4b2b3a5a6b4b5a7a8b6b7

〈E(A2k+1), t(A2k+1)〉 = 〈abbaabbaabbaabba, 5〉

〈E(A2k), t(A2k)〉 = 〈aabbaabbaabbaabb, 3〉

Figure 7.1: A circular arc model and all its arc and extreme encodings.

encodings into powerful data structures. In this section we show two simple encodings
for circular-arc models that are commonly used for PCA graphs.

Let M be a circular-arc model with arcs A1, . . . , An such that s(A1), . . . , s(An) appear in
this order in M. The arc encoding R(Ai,M) of M is the string obtained by traversing
C(M) from s(Ai) and writing the symbol ‘aj+1’ and ‘bj+1’ when s(Ai+j) and t(Ai+j) are
respectively reached (see Figure 7.1). Thus, the j-th beginning point that appears after
s(Ai) is designated with the symbol ‘aj+1’ while the j-th ending point that appears after
ti is designated with the symbol ‘bj+1’. The alphabet used for the encoding of R(Ai,M)
has 2n symbols and, therefore, Θ(n log n) bits are consumed by R(Ai,M).

Usually, the input for the algorithms that work on circular-arc graphs is some sort of
linear-time preprocessing of an arc representation; for example, it could be a round
enumeration as in [BHH96]. In theory, each circular ordering of the beginning points is
unique; the circular ordering s(A1), . . ., s(An) is equal to the circular ordering s(A2),
. . ., s(An), s(A1) which in turn is equal to the circular ordering s(A3), . . ., s(An), s(A1),
s(A2), and so on. However, in the computer’s memory, the extreme points are stored
in a fixed linear ordering, corresponding to the string that encodes the data structure.
When arc encodings are used, this order is given by the appearance order of the ‘a’ and
‘b’ symbols, and algorithms usually assume that s(Aj) corresponds to the symbol ‘aj’
and t(Aj) corresponds to the symbol ‘bj’. So, there could be n different arc encodings
of a given circular-arc model M, one for each arc Ai, and an algorithm can make no
assumptions on which arc encoding of a model is received as input.

Although arc encodings are asymptotically the most space efficient representation for
general circular-arc models, they are not space efficient for the representation of PCA
models. In a PCA model, the order of the beginning points is the same as the order
of the ending points, so we can reduce the alphabet of the model to just two symbols.
For A ∈ A(M), the extreme sequence E(A,M) of M is the string that is obtained by
replacing in R(A,M) each symbol ‘aj’ with a symbol ‘a’ and each symbol ‘bj’ with a
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7 Isomorphism of proper circular-arc graphs

symbol ‘b’, for 1 ≤ j ≤ n (see Figure 7.1). In other words, E(A,M) is the string obtained
by traversing C from s(A) and writing the symbols ‘a’ and ‘b’ when a beginning point
and an ending point are respectively reached. The mark point T (A,M) of M is the
position where ‘b1’ appears in R(A,M), i.e., T (A,M) is the number of extreme points
between s(A) and t(A) plus one.

By definition, the extreme sequence E(A,M) and the mark point T (A,M) are obtained
from a PCA model M with a single traversal of R(A,M). The arc encoding R(A,M)
can also be obtained from E(A,M) and T (A,M), by applying the inverse algorithm.
That is, traverse E(A,M) and replace the j-th symbol ‘a’ with the symbol ‘aj’, and then
traverse E(A,M) in a circular manner from T (A,M) and replace the j-th symbol ‘b’
with the symbol ‘bj’. This decoding is correct because if s(A1), . . . , s(An) is the order of
the beginning points of M, then t(A1), . . . , t(An) is the order of its ending points. We
record this observation for future references.

Remark 7.1.1. For every PCA model M and every A ∈ A(M), the arc encoding
R(A,M) can be obtained from E(A,M) and T (A,M) by replacing the j-th symbol ‘a’
of E(A,M) with the symbol ‘aj’ and the j-th symbol ‘b’ that appears after T (A,M),
in a circular traversal of E(A,M), with the symbol ‘bj’.

From now on we will not write the parameter A for R, E, and T when we want to
refer to an arc encoding, extreme sequence, and mark point of an unspecified arc. We
will also omit the parameter M when the model is understood. In view of the previous
remark, we will refer to the pair 〈E, T 〉 as an extreme encoding of M. The advantage of
the extreme encoding over the arc encoding for PCA models is that extreme encodings
require only 2n+Θ(logn) bits instead of the Θ(n log n) bits required by the arc encoding.
Despite this advantage, extreme encodings are not frequently used by those algorithms
that work with PCA models for two reasons. First, some operations, as taking the ending
point of some arc when the beginning point is given, are hard to implement so that they
run in O(1) time without spending the Θ(n log n) extra space. The second reason (see
e.g. [BHH96]) is that the recognition algorithms build a powerful data structure within
the same time that is required for the recognition (see Chapter 6).

Some caution about the terminology is required before we move on. By Remark 7.1.1
we can build the arc encoding from the extreme encoding with only O(n) operations.
However, the size of the arc encoding is not linear with respect to the size of the extreme
encoding, so the algorithm is not linear, it just requires a linear amount of non-constant
operations. Our canonization algorithm will use the arc encoding, or even the round
enumeration data structure. So, we cannot claim that our isomorphism algorithm runs
in linear time when the input models are encoded with extreme encodings. Of course,
neither those algorithms that use a round enumeration data structure or an arc encoding
for PCA models are strictly linear. Nevertheless, we will use the term linear to refer to
those algorithms that require O(n) operations on words of size O(log n), as it is the usual
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meaning of this expression for circular-arc models1 That is, an algorithm whose input
is a circular-arc model is linear if it runs in a time proportional to the size of the arc
encoding. We do not consider the problem of finding a succinct data structure for PCA
models that supports the operations required in O(1) time.

To end this section, we show how the arc encoding R can be transformed into a round
enumeration data structure φ of G, and vice versa. Recall that the round enumeration
data structure comprises a circular ordering v1, . . . , vn and two functions fl and fr such
that vi is adjacent to vj if and only if vi ∈ [vj, fr(vj)] and vj ∈ [fl(vi), vi]. Algorithm 7.1
can be used to compute the functions fl and fr in O(n) time. The arrays computed by
Algorithm 7.1 can be transformed into a round enumeration data structure (implemented
over doubly-linked circular lists) in O(n) time with the usual techniques.

Algorithm 7.1 Round enumeration of an arc encoding.

Input: An arc encoding R of a PCA model M, for some A ∈ A(M).
Output: The functions fl and fr that define the round block enumeration corresponding
to the intersection graph of M.

1. Define two arrays fl and fr with n positions, and an integer last.

2. Traverse R from ‘a1’ and apply the following operations for each symbol e ∈ R:

3. If e = ‘aj’ for some j, then set last := j.

4. If e = ‘bj’ for some j, then set fr(j) := last.

5. Traverse R in reverse from ‘b1’ and apply the following operations for each symbol e ∈ R:

6. If e = ‘bj’ for some j, then set last := j.

7. If e = ‘aj’ for some j, then set fl(j) := last.

Finally, an extreme encoding can be obtained from a round enumeration by running
Algorithm 7.2. The construction is based on the proof of Propositions 2.1 and 2.6
in [DHH96], and the time complexity is clearly O(n).

7.2 Canonical encodings of PCA models

Let M1 and M2 be two circular-arc models. In this chapter we say that M1 is equal to
M2 if there are two arcs A1 ∈ M1 and A2 ∈ M2 such that R(A1,M1) = R(A2,M2).

1We have already done this when we discussed the complexity of the algorithm that transforms a PCA
model into a PHCA model.
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7 Isomorphism of proper circular-arc graphs

Algorithm 7.2 Extreme encoding of round enumeration.

Input: A round enumeration φ = v1, . . . , vn of a PCA graph G.
Output: An extreme encoding of M.

1. Define an array E with 2n positions, set p := 1, and set sr(vi) := 0 for 1 ≤ i ≤ n.

2. For each vi ∈ φ, increase sr(fr(vi)) by one.

3. For p := 1, . . . , n do:

4. Set E[p] := ‘a’ and E[p+ i] := ‘b’ for every 1 ≤ i ≤ sr(vi).

5. Set p := p+ sr(vi) + 1.

6. Set T := 1 +
∑

v∈[v1,fr(v1)) (sr(v) + 1).

7. Output 〈E, T 〉

We write M1 =M M2 to indicate that M1 and M2 are equal and M1 6=M M2 when M1

and M2 are not equal. This definition is equivalent to the equality definition given in
Chapter 2, and it reflects what one would intuitively assume as equality of models, i.e.,
do the extremes of M1 and M2 appear in the same order? Clearly, if two circular-arc
models are equal then their intersection graphs are isomorphic, but the converse is not
always true. The question of whether M1 and M2 are equal can be answered in O(n2)
time by traversing every arc A ∈ M, and checking whether R(A,M1) = R(A2,M2) for
any fixed arc A2 ∈ M2.

In this section we describe how to obtain a canonical encoding of a PCA model, so that
the equality of models can be tested in O(n) time by comparing the encodings. The goal
is to find a linear-time function C, mapping models to arc encodings, so that M1 =M M2

if and only if C(M1) = C(M2). The idea is to take the “minimum” arc encoding of a
PCA model as its canonical representation.

Let < be the total ordering on the alphabet {‘a’, ‘b’} where ‘a’ < ‘b’. Define the relation
� between the arcs of a model so that A � A′ if and only if either E(A) <lex E(A′) or
E(A) = E(A′) and T (A) ≤ T (A′). Those arcs that are minimum under the � relation
are called canonical. That is, A is a canonical arc if and only if A � A′ for every
arc A′ ∈ M. For a canonical arc A, we say that R(A) is a canonical arc encoding
and that 〈E(A), T (A)〉 is a canonical extreme encoding. By definition, the canonical
extreme encoding of a PCA model is unique and, since a canonical encoding uniquely
determines an arc encoding, the canonical arc encoding of a PCA model is also unique.
The following lemma shows how can a canonical extreme encoding be obtained from any
extreme encoding.
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Proposition 7.2.1. Let M be a PCA model with arcs A1, . . . , An where s(A1), . . . , s(An)
appear in this order, and let Ai ∈ A. If p is the position of the j-th symbol ‘a’ in E(Ai),
then E(Ai+j) = E(Ai) ≪ p for every 1 ≤ j ≤ n.

Proof. By definition, E(Ai) is the string that is obtained by traversing C(M) from
s(Ai), and writing the symbols ‘a’ and ‘b’ each time a beginning and an ending point
are respectively reached. If C(M) is traversed from s(Ai+j) and the same procedure
is applied, then the string obtained is E(Ai) ≪ p which, by definition, is equal to
E(Ai+j).

Lemma 7.2.2. Let M be a PCA model with arcs A1, . . . , An where s(A1), . . . , s(An)
appear in this order, and let Ai ∈ A(M). Then the following are equivalent:

(i) Ai is a canonical arc.

(ii) E(Ai) ≤lex E(Aj) for every Aj ∈ A(M).

(iii) For Aj ∈ A(M), the position of the (i− j)-th symbol ‘a’ in E(Aj) is canonical.

Proof. (i) =⇒ (ii). It follows from the definition.

(ii) =⇒ (iii). Let q be any canonical position of E(Aj), and define p as the position of
the (i − j)-th symbol ‘a’ in E(Aj). By definition, E(Aj) ≪ q ≤lex E(Aj) ≪ p. Since
E(Aj) ≪ p begins with a symbol ‘a’, then the q-th position of E(Aj) corresponds to a
symbol ‘a’. So, the q-th position represents the beginning point of some arc, say Ak.
By Proposition 7.2.1, E(Ai) = E(Aj) ≪ p and E(Ak) = E(Aj) ≪ q, so either p is a
canonical position of E(Aj) (when E(Ai) = E(Ak)) or E(Ak) <lex E(Ai).

(iii) =⇒ (i). Call E = E(Ai), and let Ai+j be any canonical arc of M and p be the
position of the (j + 1)-th symbol ‘a’ in E. By Proposition 7.2.1, E(Ai+j) = E ≪ p and,
by definition of canonical arc, E ≪ p ≤lex E. Since position 0 is a canonical position of
E, it follows that E ≤lex E ≪ p, thus E = E ≪ p. Consequently, E = E ≪ kp for every
k ≥ 0. So, for every position x, the number of symbols ‘a’ in [E(x), E(p + x)) is equal
to the number of symbols ‘b’ in [E(x), E(p + x)), since there are exactly n symbols ‘a’
and n symbols ‘b’ in E. Furthermore, p = 2j because there are exactly j symbols ‘a’
in [E(0), E(p)). So, the p-th symbol that appears after t(Ai) in E is exactly the j-th
symbol ‘b’ that appears after T (Ai) in E. Since this symbol represents the ending point
of Aj in E, then T (Aj) = T (Ai), thus Ai is canonical.

From now on, we denote by C(M) the canonical extreme encoding of M, by E∗(M) the
extreme sequence corresponding to C(M), and by T ∗(M) the mark point corresponding
to C(M). That is, E∗(M) = E(A,M) and T ∗(M) = T (A,M) for some canonical arc
A ∈ M. The canonization procedure for extreme encodings is presented in Algorithm 7.3.
The input of the algorithm is any extreme encoding 〈E, T 〉. The first step computes a

147



7 Isomorphism of proper circular-arc graphs

canonical position p of E that corresponds to the position of the i-th symbol ‘a’, for
some 1 ≤ i ≤ n. The value i is computed at the second step of the algorithm. By
Lemma 7.2.2, Ai is a canonical arc of M and, by Proposition 7.2.1, E(Ai) = E ≪ p.
As already argued, the ending points of the arcs appear in the same order of as the
beginning points in a PCA model. Thus, the i-th symbol ‘b’ after the position T is the
symbol that represents t(Ai). Its position q is found in the third step, so T (Ai) = q−p by
definition. Consequently, the output of Algorithm 7.3 is the canonical extreme encoding
C(M).

Algorithm 7.3 Canonization of an extreme encoding.

Input: An extreme encoding 〈E, T 〉 of a PCA model M, for some A ∈ A(M).
Output: The canonical extreme encoding of M.

1. Compute a canonical position p of E with respect to the order ‘a’ < ‘b’.

2. Count the number i of symbols ‘a’ in [E(0), E(p)).

3. Find the position q of the i-th symbol ‘b’ that appears in E after the position T .

4. Output 〈E ≪ p, q − p〉

With respect to the time complexity, the first step takes O(n) evaluations of < [Shi81],
and, since the alphabet has only two symbols, each evaluation of < takes O(1) time. The
second and third steps consist of a single traversal of E, and thus require O(n) time2.
Therefore, C(M) is computed in O(n) time and, by Remark 7.1.1, the canonical arc
encoding is also computed in O(n) time.

7.3 Canonical models of PCA graphs

In the previous section we developed an algorithm to compute a canonical encoding
of a PCA model. In this section we take one step further, to compute a canonical
model of a PCA graph. The goal is to find a linear-time function M , mapping PCA
graphs to PCA models, so that two PCA graphs G1 and G2 are isomorphic if and only
if M(G1) =M M(G2). The ultimate goal is to test whether G1 is isomorphic to G2 by
checking whether C(M(G1)) = C(M(G2)). As before, the idea to find the canonical
model is to compute the “minimum” PCA model of a graph.

Define the relation � between PCA models where M � M′ if and only if either
E∗(M) <lex E∗(M′) or E∗(M) = E∗(M′) and T ∗(M) ≤ T ∗(M′). Relation � is

2recall the Θ(logn) word size assumption.

148



7.3 Canonical models of PCA graphs

the generalization to PCA models of the relation � between arcs. Note that two models
M and M′ are equal if and only if M � M′ and M′ � M. Since � is also transitive,
� is a total order between PCA models. The following proposition shows how can two
PCA models be compared efficiently.

Proposition 7.3.1. Let M1 and M2 be two PCA models, and < be the total order on
the alphabet {‘a’, ‘m’, ‘b’} where ‘a’ < ‘m’ < ‘b’. Define the string Si that is obtained
from E∗(Mi) by replacing the symbol ‘b’ that appears at position T ∗(Mi) with the symbol
‘m’, for i ∈ {1, 2}. Then, M1 � M2 if and only if S1 ≤lex S2.

By the above proposition, we can sort a family of PCA models {M1, . . . ,Mk} in
O(

∑k

i=1 |E
∗(Mi)|) time as follows. First, compute the string Si from E∗(Mi) by re-

placing the symbol at position T ∗(Mi) with the symbol ‘m’, for every 1 ≤ i ≤ k.
Second, radix sort the set {S1, . . . , Sk} to obtain the permutation S ′

1 ≤lex . . . ≤lex S
′
k.

Finally, translate the order between the strings to the family of models. We record this
discussion as a remark.

Remark 7.3.2. A family {M1, . . . ,Mk} of PCA models can be sorted with respect to
the total order � in O(

∑k

i=1 |E
∗(Mi)|) time.

We are now ready to define the canonical PCA model of a PCA graph. The canonical
model is built differently according to whether the graph is a PIG graph or not. When
the graph is not PIG, then we have to compute all the co-components of the graph. All
the tools that we developed to work with co-components of PCA graph are described
in terms of round enumerations, so we use the round enumeration terminology once
again to describe our algorithms. We also use this terminology for PIG graphs, so as
to highlight the similarities between the PIG and non-PIG cases. We note, however,
that the transformations between PCA models and round enumerations are not strictly
required (see [LSS08]).

PIG graphs

Suppose that G is a PIG graph. By Theorem 3.3.2, each component H of G has at most
two PIG orders, one the reverse of the other. Each of these PIG orders of H corresponds
to one of the two PIG models of H, as in the proof of Proposition 2.1 in [DHH96].
Let G1, . . . , Gk be the components of G. For i = 1, . . . , k, let φi be the PIG order
that corresponds to the PIG model Ii of Gi such that Ii � I−1

i (see Figure 7.2 (b)).
Furthermore, suppose that Ii � Ii+1 for every 1 ≤ i < k (see Figure 7.2 (c)). It is not
hard to see that φ(G) = φ1, . . . , φk is a PIG order of G. Moreover, φ(G) is a canonical
PIG order of G in the sense that φ(G) = φ(H) for every graph H isomorphic to G.
Indeed, Ii is uniquely determined for Gi because � is a total order between models; the
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7 Isomorphism of proper circular-arc graphs

ordering I1, . . . , Ik is unique because � is a total order; and φi is uniquely determined
from Ii. Therefore, φ(G) = φ(H) for every pair of isomorphic PIG graphs G and H. The
canonical model M(G) of G is the PIG model corresponding to the PIG order φ(G).

s t s ts ts ts t s ts ts t s ts ts ts ts t

(a) A PIG model Ia.

s t s ts ts ts t s ts ts t s ts ts ts ts t

(b) A model Ib with components I1, . . . , Ik such that Ii � I−1
i .

s ts ts ts ts t s ts ts ts t s ts ts t s t

(c) A model Ic with components I1, . . . , Ik such that Ii � I−1
i and Ii � Ii+1.

Figure 7.2: Canonization of a PIG model. First, the components of the input model Ia

are canonized so as to obtain an equivalent model Ib. Then, the components
of Ib are sorted so as to obtain an equivalent canonical model Ic.

Algorithm 7.4 can be used to find the canonical model of a PIG graph G. The algorithm
has three main steps. First, a canonical PIG order of each component of G is computed.
Then, these PIG orders are sorted according to the operation � of their corresponding
PCA models. Finally, these sorted PIG orders are concatenated into φ(G), and the
corresponding model M(G) is computed.

Consider the time complexity of Algorithm 7.4 when the input is a PIG order as in
Step 1. A component of a PIG order φ is just a range [v, w] of φ such that v is a leftmost
end vertex (i.e., fl(v) = v), w is a rightmost end vertex (i.e., fr(w) = w), and (v, w)
contains no end vertices. Thus, an O(n) time traversal of φ is enough to compute all the
components at Step 2. The comparison at Step 4 can be done as in Proposition 7.3.1,
with a global cost of O(n) time. Step 5 takes O(n) time if a radix sort is used as in
Remark 7.3.2. Therefore, M(G) is computed in O(n) time for PIG graphs.
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Algorithm 7.4 Canonical model of a PIG graph.

Input: A PIG graph G.
Output: An extreme encoding of M(G).

1. Let φ be a PIG order of G.

2. Compute the components φ1, . . . , φk of φ.

3. Invoke Algorithm 7.2 to find the model Ii corresponding to φi.

4. Define I(i) := min�{Ii, I
−1
i } for 1 ≤ i ≤ k.

5. Sort the family {I(1), . . . ,I(k)} so that I(i) � I(i+ 1), for every 1 ≤ i < k.

6. Invoke Algorithm 7.1 to find the round enumeration φ(i) corresponding to I(i).

7. Compute ψ := φ(1), . . . , φ(k).

8. Output the result of Algorithm 7.2 with input Ψ.

Non-interval PCA graphs

The procedure for the canonization of non-interval PCA graphs is similar to the proce-
dure for the canonization of PIG graphs. The main difference is that the graph is split
into co-components instead of being split into components.

Suppose that G is a non-interval universal-free graph, thus G is connected. By Proposi-
tion 6.3.1, either G is co-connected or each co-component is a co-bipartite graph. Hence,
each co-component of G is either connected or it is the union of two complete sets.
Whichever the case, each co-component H of G has at most two round enumerations,
one the reverse of the other, by Theorem 3.3.3. Each of these round enumerations of H
corresponds to one of the two PCA models of H, as in Proposition 2.6 of [DHH96]. Let
G1, . . . , Gk be the co-components of G. For i = 1, . . . , k, let φi be the round enumera-
tion that corresponds to the PCA model Mi of Gi such that Mi � M−1

i . Furthermore,
suppose that Mi � Mi+1 for every 1 ≤ i < k. Since φi (1 ≤ i ≤ k) is co-bipartite,
and G contains no universal vertices, then φi has two co-bipartite ranges, namely Xi and
Xi. Without loss of generality, suppose that Xi contains a vertex that corresponds to a
canonical arc of Mi. Define the enumeration

φ(G) = X1, . . . ,Xk,X1, . . . ,Xk.

By Proposition 6.3.17, the enumeration φ(G) is a round enumeration of G since φ(G) is
equal to the enumeration ψk that is computed with the equations below.
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7 Isomorphism of proper circular-arc graphs

• ψ1 = φ1 and Y1 = X1.

• ψi = 〈Yi−1,Xi,Yi−1,Xi〉 and Yi = Yi−1,Xi, for 1 < i ≤ k.

Furthermore, φ(G) is a canonical round enumeration ofG, in the sense that φ(G) = φ(H)
for every graph H isomorphic to G. Indeed, the ordering φ1, . . . , φk is unique as before;
each φi has exactly two co-bipartite ranges because it is co-connected, and if both co-
bipartite ranges contain a vertex corresponding to a canonical arc, then these ranges are
equal because canonical arcs are indistinguishable. Therefore, φ(G) = φ(H) for every
pair of isomorphic universal-free non-interval PCA graphs G and H. The canonical
model M(G) of G is the PCA model corresponding to the round enumeration φ(G).

Algorithm 7.5 can be used to find a canonical PCA model M(G) for every non-interval
PCA graphG. The first step is to remove the universal vertices from a round enumeration
φ of G. Then, we compute a round enumeration for each co-component of G, and we
sort them according to the operation � of their corresponding PCA models. After these
round enumerations are sorted, we compute φ(G) as in the above equation and we insert
back all the universal vertices. Finally, we transform the obtained enumeration into an
extreme encoding.

Consider the time complexity of Algorithm 7.5 when the input is a round enumeration
as in Step 1. For Step 2, we can compute the universal vertices as in Lemma 2.4.9,
or we can take advantage of the invocation of Algorithm 6.2 at Step 3 so as to remove
the singleton co-components. Arguments similar to those in the previous paragraph are
enough to conclude that Steps 4–6 take O(n) time. Finally, note that the vertex v(i)
of Step 8 is just the first vertex of the enumeration φ(i) computed by Algorithm 7.2,
because the extreme encoding E∗(M(i)) is some encoding E(A,M(i)) for a canonical
arc A. Since all the other algorithms that are invoked by Algorithm 7.5 run in linear
time, we obtain that Algorithm 7.5 finds a canonical model in O(n) time.

7.4 Putting it all together

By construction, two PCA graphs G and H are isomorphic if and only if their canonical
models M(G) and M(H) are equal. Moreover, M(G) and M(H) are equal if and only
if their canonical extreme encodings C(M(G)) and C(M(H)) are equal. Thus, we can
conclude that the isomorphism problem can be reduced to testing the equality of two
strings.

Theorem 7.4.1. Let G and H be two PCA graphs. Then the following are equivalent:

1. G and H are isomorphic,

2. M(G) =M M(H),
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7.4 Putting it all together

Algorithm 7.5 Canonical model of a non-interval PCA graph.

Input: a non-interval PCA graph G.
Output: An extreme encoding of M(G).

1. Let φ be a round enumeration of G.

2. Remove the universal vertices from φ and insert them into a block B.

3. Invoke Algorithm 6.2 to find the co-components φ1, . . . , φk of φ.

4. Invoke Algorithm 7.2 to find the model Mi corresponding to φi.

5. Define M(i) := min�{Mi,M
−1
i } for 1 ≤ i ≤ k.

6. Sort the family {M(1), . . . ,M(k)} so that M(i) � M(i+ 1), for every 1 ≤ i < k.

7. Invoke Algorithm 7.1 to find the round enumeration φ(i) corresponding to M(i).

8. Let v(i) be the vertex of φ(i) corresponding to a canonical arc of M(i).

9. Invoke Algorithm 6.2 with input φ(i) and v(i) to find the co-bipartite ranges X (i) and X (i),
for 1 ≤ i ≤ k.

10. Let ψ := φ(1) and Y := X(1).

11. For i := 1, . . . , k:

12. Compute ψ := 〈Y,X (i),Y,X (i)〉 as in Proposition 6.3.17 and set Y := Y,X (i).

13. Compute Ψ := 〈Y, B,Y, ∅〉 as in Proposition 6.3.17.

14. Replace Ψ in B with |B| universal vertices.

15. Output the result of Algorithm 7.2 with input Ψ.

3. C(M(G)) = C(M(G)).

Let M be a PCA model of a graph G. The canonical model M(G) can be obtained from
M in O(n) time with a four step procedure. The first step is to transform M into a
PIG model when G is a PIG graph. For this, we can run Algorithm 5.6 on M; a PIG
model of G is obtained if G is a PIG graph, while G is not a PIG graph otherwise. The
second step is to run Algorithm 7.1 on M so as to obtain a round enumeration φ of G.
Note that φ is a PIG order whenever M is a PIG model. The third step is to determine
whether φ is a PIG order, by traversing φ so as to find out whether φ has an end vertex.
The last step is to obtain the model M(G) by running either Algorithm 7.4 or 7.5 with
input φ, according to whether φ is a PIG order or not. Clearly, this procedure takes
O(n) time, so we obtain the main theorems of this chapter.
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7 Isomorphism of proper circular-arc graphs

Theorem 7.4.2. The canonical model of a PCA graph can be obtained in O(n + m)
time. Furthermore, if a PCA model of the input graph is given then the canonical model
of the graph can be found in O(n) time.

Corollary 7.4.3. The isomorphism problem for PCA graph can be solved in O(n+m)
time. Furthermore, if PCA models of the input graphs are given then the isomorphism
problem can be solved in O(n) time.
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8 The clique operator on circular-arc

graphs

In this chapter we consider three problems on clique graphs of circular-arc graphs. The
first problem is to characterize the class of clique graphs of HCA, NHCA, and PHCA
graphs. The second problem investigates how to compute all the cliques of an HCA
graph. The third problem is to characterize the graph to which a general circular-arc
graph K-converges, if the graph is K-convergent. For the second problem we develop a
linear-time algorithm, while for the other two problems we propose new characterizations
that lead to linear-time algorithms for the associated recognition problems. To begin
this chapter, we introduce the terminology of clique graphs and some notions that we
require.

The clique graph K(G) of a graph G is the intersection graph of the cliques of G. That
is, K(G) has one vertex for each clique of G and two vertices of K(G) are adjacent
when their corresponding cliques in G have nonempty intersection. A graph is a clique
graph if it is isomorphic to K(G), for some graph G [Ham68, RS71]. If C is a class of
graphs, we denote by K(C) the class of graphs which are clique graphs of the members
of C. One of the common questions on clique graphs is to characterize and recognize
clique graphs of classes of graphs. In fact, clique graphs of several classes have been
characterized and several algorithms are known for testing if a graph is a clique graph
of some class (see [Szw03]). For many of these classes there are also polynomial-time
recognition algorithms. However, recently the complexity of the recognition of clique
graphs of arbitrary graphs was proved to be NP-Hard [AFdFG09]. A class of graphs C is
K-fixed when K(C) = C, and it is K-closed when K(C) ⊂ C. In [Szw03] it is remarked
that a large number of the classes whose clique graphs have been characterized so far
are K-fixed or K-closed. This, for instance, is the case for interval graphs (cf. below).

The iterated clique graph is defined by K0(G) = G and Ki+1(G) = K(Ki(G)). The
analysis of the K-behavior of a clique graph is one of the main topics about iterated
clique graphs. A graph G is K-null if Ki(G) is the trivial graph, for some i ≥ 0. Say
that G is K-periodic with period i if Ki(G) = G for some i > 0. When the period is 1,
the K-periodic graph is called self-clique. A graph is K-convergent when it is K-null
or Ki(G) is K-periodic for some i ≥ 0. If G is not K-convergent, then |V (Ki(G))| is
unbounded when i −→ ∞; in this case G is K-divergent. To determine the K-behavior
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8 The clique operator on circular-arc graphs

of a graph G means to decide if G is K-null, K-convergent or K-divergent. Other ques-
tions related to iterated graphs include determining the speed of convergence, its period,
or the speed of divergence (see [Szw03]). For the general case, the problem of deter-
mining the K-behavior of a graph is not known even to be computable. Nevertheless,
polynomial-time algorithms to decide the K-behavior of a few classes are known. This
is the case for cographs [LdMM+04], P4-tidy graphs [dMML06], and complete multi-
partite graphs [NL78]. Clique-Helly graphs K-converge to graphs with period either
1 or 2 [Esc73], interval graphs are K-null, and octahedra of dimension at least three
K-diverge (the octahedra of dimension n is the graph nK2). In this chapter we show
how to combine the results by [FANLP04], [GH88], and [LNLP09] in order to obtain a
linear-time algorithm for deciding the K-behavior of a circular-arc graph.

The dismantling of a graph G is the graph obtained by iteratively removing one dom-
inated vertex of G, until no more dominated vertices remain. It is not hard to see
that the dismantling of a graph is unique, up to isomorphism. Those vertices that are
not removed while computing a dismantling of G form a dismantling set. Note that G
could have many dismantling sets, although all of them induce the dismantling of G.
In [FANLP04] it is proved that the K-behavior is the same for a graph and its disman-
tling, i.e., they are both K-null, or they are both K-convergent and not K-null, or they
are both K-divergent. By definition, the dismantling of any graph can be computed in
polynomial-time. We show that a procedure similar to the one in [GH88] can be used to
compute the dismantling in O(n) time when a circular-arc model is given.

The first problem that we consider is the characterization and recognition of clique graphs
of HCA, NHCA, and PHCA graphs. As we already mentioned, the characterization and
recognition of clique graphs of interval and PIG graphs were solved by Hedman [Hed84],
who proved that K(IG) = K(PIG) = PIG. In relation to HCA graphs, Durán and Lin
proved in [DL01] that K(HCA) ⊂ PCA ∩ HCA, thus the HCA class is K-closed. The
same paper also describes characterizations for the clique graphs of HCA graphs, but
these characterizations did not lead to a polynomial-time recognition algorithm, and the
time complexity of recognizing clique graphs of HCA graphs remained so far open. We
characterize the clique graph of an HCA graphG, by proving that eitherK(G) is a PHCA
graph or K(G) \ U is a co-bipartite PHCA graph with |U | ≥ 2, where U is the set of
universal vertices ofK(G). In addition, we prove thatK(NHCA) = K(PHCA) = PHCA,
obtaining a result that resembles the one by Hedman. These characterizations lead to
linear-time recognition algorithms for the classes of clique graphs of HCA, NHCA, and
PHCA graphs.

The second problem that we consider in this chapter is the computation of the clique
graph of an HCA graph. The number of cliques of a general circular-arc graph could be
exponential with respect to the number of vertices of the graph. So, this problem is not
tractable1 for general circular-arc graphs. However, HCA graphs have O(n) cliques, thus

1at least when the vertices and the edges have to be explicitly enumerated.
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8.1 Characterization of clique graphs of HCA graphs

the lower bound for the time complexity is Ω(n) in this case. Durán et al. [DLMS06]
developed a two phase algorithm to build the clique graph of an HCA graph. The first
phase finds all the cliques in O(n2) time, and the second phase builds the clique graph in
O(n) time. We will improve the first phase of this algorithm so as to find all the cliques
in O(n) time.

The last problem that we consider is the characterization of the graph to which a general
circular-arc graph K-converges, when it does K-converge. This problem was partially
solved by Bonomo [Bon06], who proved that an HCA graph G is K-periodic if and only
if G is isomorphic to Ck

n with n > 3k. Moreover, K-periodic Helly circular-arc graphs are
always self-clique. In a recent paper [LNLP09], Larrión et al. proved that the graph Ck

n is
K-convergent if and only if n > 3k. By combining this result with Theorem 1 in [GH88]
(see Theorem 4.1.1), we conclude that G is K-null if and only if its dismantling is K-null;
G is K-convergent and not K-null if and only if its dismantling is Ck

n, with n > 3k; and
G is K-divergent otherwise. We will prove that every K-convergent circular-arc graph
always K-converges to its dismantling. Furthermore, we characterize the K-convergent
circular-arc graphs which are not K-null, by showing that the class is exactly the class
of NHCA graphs which are not interval graphs. Finally, we describe how the algorithm
in [GH88] can be adapted to compute the dismantling of a circular-arc graph in O(n)
time, given a circular-arc model of it. This algorithm implies that the K-behavior of a
circular-arc graph can be decided in linear time.

The characterizations of the clique graphs of HCA, NHCA, and PHCA are described
in Section 8.1, the algorithm to compute all the cliques of an HCA graph appears in
Section 8.2, and Section 8.3 contains the results on the K-behavior of circular-arc graphs.
Section 8.2 is a joint work with Ross McConnell.

8.1 Characterization of clique graphs of HCA graphs

In this section we characterize the K(HCA), K(NHCA), and K(PHCA) classes, relating
them to the PHCA class. In this sense, the characterizations are very similar to those
given by Hedman [Hed84] for the characterization of the clique graphs of interval and
PIG graphs. Recall that K(HCA) ⊂ PCA [DL01]. For the characterizations we need to
describe the PCA models of the clique graphs, both for HCA and for NHCA graphs.

Fix an HCA model M. In this chapter we denote by A(p) the collection of arcs of M
that contain the point p ∈ C. Clearly, A(p) is a complete set of M, and it is a clique
if and only if p is a clique point. For points p 6= p′ on the circle, say that p dominates
p′ if A(p′) ⊆ A(p). Say that p properly dominates p′ when the inclusion is proper, while
p is equivalent to p′ when A(p) = A(p′). In M, every non properly dominated point is
a clique point and vice versa, therefore, there is a one-to-one correspondence between
cliques of M and non-equivalent clique points (see Figure 8.1 (a)). An intersection
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8 The clique operator on circular-arc graphs

b

bb

bb b

bb

(a) Clique points (b) Non-clique
intersection points

(c) A clique model

Figure 8.1: Example of the construction of a clique model, given an HCA model M. In
(a), the clique points of M are shown, and they are all intersection points.
In (b) there are two intersection points that are properly dominated and in
(c) the clique model of M (w.r.t. the set of clique points) is shown.

segment (s, t) is a pair of consecutive extremes where s is a beginning point and t is an
ending point. Points inside intersection segments are called intersection points. Every
clique point of M must be an intersection point [DLMS06], but the converse is not
necessarily true because there can be multiple intersection segments that are contained
in exactly the same set of arcs (see Figure 8.1 (b)). However, when M is an NHCA
model, then every intersection point is also a clique point because (s, t) is exactly the
intersection between the arc whose beginning point is s and the arc whose ending point
is t.

The arc reduction of a clique point p is the arc (s, t(Ak)) where s is the beginning point
of the intersection segment that contains p, and Ak ∈ A(p) is the arc whose ending
point is farthest from p when traversing C(M). Observe that if s = s(Ak), then the
arc reduction of p is precisely Ak. In such cases, we say that p and its arc reduction Ak

are strong. Non-strong clique points as well as non-strong arc reductions are referred to
as weak. If M is an NPHCA model, then every clique point is strong, i.e., all the arc
reductions of M are arcs of M. A clique point representation of M is a maximal set of
non-equivalent clique points. Define the clique model of M, with respect to a clique point
representation Q, as the model formed by the arc reductions of Q (see Figure 8.1 (c)).
Durán et al. [DLMS06] proved that any clique model of the intersection graph G of M
is a PCA model of K(G). Furthermore, when M is an NHCA graph, then all its clique
models are PHCA because every arc reduction is included in some arc of M. We sum
up this discussion with two results for future reference.

Theorem 8.1.1 ([DLMS06]). Let M be an HCA model of a graph G. Then, every
clique model of M is a PCA model of K(G). Furthermore, if M is an NHCA model,
then every clique model of M is also NPHCA.

158



8.1 Characterization of clique graphs of HCA graphs

Proposition 8.1.2. The clique model of every NPHCA model M is the submodel of M
induced by its strong arcs.

Durán et al. [DLMS06] developed an O(n2) time algorithm for building the clique model
of an HCA model M. This algorithm is composed by two steps: first compute a clique
point representation of M in O(n2) time, and then compute the arc reductions of all the
clique points in O(n) time. In the next section we show how to improve the first step so
as to run in O(n) time.

A graph G is clique-Helly if every family of pairwise intersecting cliques of G has
nonempty intersection. Every clique-Helly graph that contains an induced 3-sun H
must contain an induced K1,3 [Dra89, Szw97]. In [DL01] it is not only proved that
K(HCA) ⊂ PCA, but also it is proved that every graph in K(HCA) is clique-Helly.
Therefore, graphs in K(HCA) contain no induced 3-sun, because K1,3 is not a PCA
graph. We remark this fact for future reference, and analyze how does the center of a
4-wheel look like in clique graphs of HCA graphs. The center of a 4-wheel is the vertex
of degree four.

Lemma 8.1.3. Graphs in K(HCA) contain no 3-suns as induced subgraphs.

Lemma 8.1.4. Let M be an HCA model of a graph G. If K(G) contains a 4-wheel as
an induced subgraph, then

(i) M has two arcs covering the circle,

(ii) K(G) has at least two universal vertices, and

(iii) the center of every induced 4-wheel of K(G) is universal.

Proof. Let v1, v2, v3, v4, u be vertices of H = K(G) that induce a 4-wheel, where v1, v2, v3

and v4 induce a hole in that order and u is adjacent to all the vertices of the hole. Since
M is HCA, it follows that vi (1 ≤ i ≤ 4) is represented by a clique point pi ∈ C(M),
and u is represented by a clique point q ∈ C(M). In every circular-arc model, p1, p2, p3,
and p4 should be in that circular order, or in the reverse one. Without loss of generality,
assume the former, and suppose that q lies between p1 and p2 (see Figure 8.2 (a)). Since
u is adjacent to v4 in H, then there exists some arc U1 ∈ A crossing both q and p4. But
v4 is not adjacent to v2, so U1 does not cross p2. Then, U1 crosses p1 and, since v1 is
not adjacent to v3, it follows that U1 does not cross p3. The same argument can be used
to show that there is an arc U2 ∈ A crossing q and p3, but not p1 and p4 (see Figure
8.2 (b)). Since v3 is adjacent to v4 in H, then there is an arc A34 ∈ A crossing p3 and p4

and, since v3 is not adjacent to v1 and v4 is not adjacent to v2, it follows that A34 crosses
neither p1 nor p2. Analogously, there is an arc A12 ∈ A crossing p1 and p2 that crosses
neither p3 nor p4. As a consequence of these facts, U1, U2, A12, and A34 are all different
(see Figure 8.2 (c)). Now, since M is Helly and U1, U2, A34 cover the circle, then U1, U2

must share a common point inside A34, i.e., U1, U2 cover the circle. Also, A12 and A34
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Figure 8.2: Proof of Lemma 8.1.4

do not intersect since otherwise A12, A34, U1, and U2 correspond to a complete set with
no common point, which is impossible. Then there are at least two different cliques,
one containing U1, U2, A12 and the other containing U1, U2, A34, that are both universal,
because every clique point is crossed by either U1 or U2. In other words, H has two
universal vertices. Finally, point q is crossed by both U1 and U2, so u is universal in
H.

We are now ready to give both characterizations of K(PHCA) and K(HCA). As a
corollary we will also obtain that K(NHCA) = K(PHCA) which resembles the fact that
K(IG) = K(PIG).

Theorem 8.1.5. Let H be a graph. Then H = K(G) for some PHCA graph G if and
only if H is a PHCA graph.

Proof. Fix a PHCA graph G with a PHCA model M. Graph H = K(G) is PCA [DL01]
and it does not contain 3-suns as induced subgraphs by Lemma 8.1.3. If two arcs of M
cover the circle, then these two are universal arcs by Lemma 2.4.7, thus H is a clique
which is clearly a PHCA graph. Otherwise, by Lemma 8.1.4, H has no 4-wheels as
induced subgraphs. Hence, by Corollary 3.2.11, H is a PHCA graph.

For the converse, let H be a PHCA graph. If H is a PIG graph, then there exists a PIG
graph G such that K(G) = H [Hed84], and so the result follows. Suppose otherwise,
and let M be an NPHCA model of H. Recall that such a model must always exist
by Theorem 2.4.8. By Theorem 8.1.1, it suffices to find an NPHCA supermodel of M
whose clique model is M. Let Q be the set of arc reductions of A and N = A \ Q. By
Proposition 8.1.2, Q is a subset of arcs of A. Note that, since H is not an interval graph,
every arc of A contains at least one ending point of some other arc.
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s(Ai)s(Aj)

s(Bi)
t(Bi)

Figure 8.3: Example of the arc Bi associated to Ai in Theorem 8.1.5, where Aj =
NEXTt(Ai).

Fix a small enough ǫ. For Ai ∈ A, call NEXTt(Ai) to the arc whose ending point
appears first when traversing C from s(Ai). For each arc Ai ∈ N let Bi be the arc
(s(NEXTt(Ai))− ǫ, s(Ai) + ǫ) (see Figure 8.3). If two arcs Bi, Bj share their beginning
points, then modify one of them so that none of them is included in the other. We claim
that M′ = (C,A∪{Bi : Ai ∈ N}) is an NPHCA model that has M as its clique model.

First we prove that M′ is a proper model, i.e., no arc of M′ is contained in some other
arc. Fix some Bi for 1 ≤ i ≤ n. First observe that every arc Aj containing s(Bi) does
not cross s(Ai), because the first arc crossing s(Ai) is NEXTt(Ai). Thus Bi 6⊂ Aj for
1 ≤ i, j ≤ n. Also Ai 6⊂ Bj for 1 ≤ i, j ≤ n, because every beginning point that lies
in Bj crosses s(Aj), and ǫ is small enough. Finally, if Bi is contained in Bj, then s(Bi)
appears after s(NEXTt(Aj)) = s(Bj)+ǫ because ǫ is small enough. Since t(NEXTt(Aj))
appears after t(Bj), we obtain that NEXTt(Aj) contains Bi, a contradiction. Thus, M′

is a proper model.

We must now see that M′ is Helly and normal, and for this it is enough to show that
there are no two nor three arcs covering the circle. If Bi together with a set of arcs cover
the circle, then NEXTt(Ai) with this set of arcs also cover the circle, because ǫ is small
enough. Model M is Helly and normal, thus the smallest set of arcs covering the circle
has size at least four and the same holds for M′. Therefore, M′ is an NPHCA model.

Finally, we have to prove that M′ has M as its clique model. Every arc Ai ∈ N is
strong, because M′ is NPHCA and the first ending point that appears from s(Ai) is
t(Bi). Also, the next ending point that appears from s(Bi) is the beginning point of
either NEXTt(Ai) or some Bj for 1 ≤ j ≤ n, thus Bi is not strong. Last, the extreme
that appears after s(Ai) is not changed for Ai ∈ Q, so it must be an ending point.
Consequently, M is the submodel of M′ induced by the strong arcs and the result
follows from Proposition 8.1.2.

Theorem 8.1.6. Let H be a graph and U the set of universal vertices of H. Then,
H = K(G) for some HCA graph G if and only if:

(i) H is a PHCA graph or

(ii) H \ U is a co-bipartite PHCA graph and |U | ≥ 2.
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Figure 8.4: Positions of the beginning points in Theorem 8.1.6

Proof. Fix an HCA graph G with an HCA model M. As in Theorem 8.1.5, H is a
PCA graph and it contains no 3-suns as induced subgraphs. By condition (iii) of Theo-
rem 8.1.4, the center of every induced 4-wheel ofH is universal, thusH\U has no 4-wheels
as induced subgraphs and consequently H \ U is a PHCA graph, by Corollary 3.2.11.
Then, if U = ∅, it follows that H is a PHCA graph. Otherwise, by conditions (i) and (ii)
of Lemma 8.1.4, two arcs U1, U2 of M cover the circle, and H has at least two universal
vertices. Then, every clique point of M is crossed by at least one of U1, U2, so the cliques
of M can be partitioned into families Q1 and Q2 such that all the cliques in Qi contain
Ui, for i ∈ {1, 2}. In other words, the set of vertices of H corresponding to Qi is a
complete set for i ∈ {1, 2}, thus condition (ii) of this theorem holds.

For the converse, if H is a PHCA graph then the result follows from Theorem 8.1.5.
Suppose, then, that H \ U is a co-bipartite PHCA graph and that |U | ≥ 2. Let 〈V1, V2〉
be a co-bipartition ofH\U and MH be a PHCA model ofH\U . Each Vi is a complete set,
therefore MH has one point pi that is crossed by all the arcs corresponding to the vertices
in Vi, for i ∈ {1, 2}. Also, since H\U has no universal vertices, no arc crosses both points
p1 and p2. Let A1, . . . , An be the arcs of M such that s(A1), . . . , s(An) appear in this
order in a traversal of C(M) where, w.l.o.g., p2 lies in the segment (s(An), s(A1)) and
p1 lies in the segment (s(Ax), s(Ax+1)), for some 1 ≤ x ≤ n (see Figure 8.4). Note that
A1, . . . , Ax are the arcs corresponding to V1 and Ax+1, . . . , An are the arcs corresponding
to V2.

Fix some small enough ǫ, and define the arc Bi = (s(Ai)− ǫ, s(Ai) + ǫ) for each arc Ai ∈
A(M). Let M1 be the model obtained from MH by adding every Bi, for Ai ∈ A(M).
Clearly, M1 is Helly and each of its intersection segments is of the form (s(Ai), t(Bi)).
Also, every Bi contains only one intersection segment which is (s(Ai), t(Bi)). Then, it
follows that every intersection point is a clique point, and the arc reduction of the points
in (s(Ai), t(Bi)) is Ai. In other words, MH is the clique model of M1. Therefore, by
Theorem 8.1.1, the intersection graph G1 of M1 is an HCA graph whose clique graph is
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H \ U .

Let U1 = (s(A1)−3ǫ, s(Ax+1)−2ǫ) and U2 = (s(Ax+1)−3ǫ, s(A1)−2ǫ), and define M2 as
the model obtained from M1 by adding U1 and U2. Suppose, to obtain a contradiction,
that M2 is not Helly. By definition, Ui, Aj do not cover the circle for i ∈ {1, 2} and
1 ≤ j ≤ n. Then neither Ui and Bj can cover the circle. The only pair of arcs that cover
the circle is U1 and U2, and, therefore, the minimal non-Helly complete sets have exactly
three arcs by Theorem 3.0.3. If one of these arcs is Bi, then we can exchange it for Ai,
for 1 ≤ i ≤ n. Hence, we assume w.l.o.g. that one of the arcs is U1 and the other two
arcs are Ai, Aj, where Ai crosses t(U1) and Aj crosses s(U1). No arc in A1, . . . , Ax crosses
s(A1) − 3ǫ = s(U1), and no arc in Ax+1, . . . , An crosses s(Ax+1) − 2ǫ = t(U1). Hence,
1 ≤ i ≤ x and x + 1 ≤ j ≤ n. Now, since ǫ is small enough and Aj crosses s(A1) − 3ǫ,
we obtain that Aj intersects A1. But then A1, Ai, Aj cover the circle, which contradicts
the fact that MH is PHCA. Therefore, the intersection graph G2 of M2 is HCA.

Let Q1, Q2 be two cliques of G1, corresponding to vertices v1, v2 of H \ U . The clique
points of M1 are still clique points in M2, because in M2 each Bi contains only the
intersection segment (s(Ai), t(Bi)). So, Q1 and Q2 are also cliques of G2. Even more,
since Ui crosses only clique points corresponding to vertices of Vi (i ∈ {1, 2}), then Q1

and Q2 intersect if and only if they intersect in G1. That is, Q1 and Q2 intersect in G2

if and only if v1 is adjacent to v2 in H \U , thus H \U is an induced subgraph of K(G2).
Now, M2 has at most two more clique points than M1, because the inclusion of U1 and
U2 has only two more intersection segments, (s(U1), t(U2)) and (s(U2), t(U1)). On the
other hand, there is at least one more clique point in M2 because {U1, U2} is contained
in one universal clique, and G1 has no universal cliques. Hence, G2 is isomorphic to
H \ U plus one or two universal vertices. Adding at most |U | pairwise disjoint arcs into
(s(U1), t(U2)), we can obtain an HCA model of a graph G, where K(G) = H.

Corollary 8.1.7. Let H be a graph. Then, H = K(G) for some NHCA graph G if and
only if H is a PHCA graph.

Proof. By Theorem 8.1.1, the clique model of any NHCA model of G is a PHCA model
of K(G). The converse follows from Theorem 8.1.5.

Let M be a PCA model of a graphH. Recall that we can test whether M is equivalent to
a PHCA model in O(n) time, by running Algorithm 5.6 on M. Thus, we can test whether
H ∈ K(PHCA) in O(n) time, when a PCA model of H is given. For the recognition of
graphs in K(HCA) we need to take into account the universal arcs. By Lemma 2.4.9, the
universal arcs of M are precisely those arcs that contain at least n− 1 extremes of the
other arcs. Thus, the removal of the universal arcs from M can be done in O(n) time,
while counting how many universal arcs are there (see, e.g., Algorithm 5.1). If M has
exactly one universal arc, then H 6∈ K(HCA); otherwise, let M′ be the obtained model.
Graph H is in K(HCA) if and only if H \U is a PHCA graph, and either U = ∅ or H \U
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is co-bipartite. Testing if H \ U is co-bipartite can be done in O(n) time by running
Algorithm 6.2 on (the corresponding round enumeration of) M′, while testing if H \U is
a PHCA graph is done in O(n) time with an invocation of Algorithm 5.6 on M′. To sum
up, we can test whether H ∈ K(HCA) in O(n) time when a PCA model of H is given.
When H is given without a PCA model, we can run the algorithms in [DHH96, KN09]
to test whether H is a PCA graph and obtain a PCA model as a by-product, when H is
PCA.

Theorems 8.1.5 and 8.1.6 also yield procedures to compute an inverse graph with respect
to the operator K. That is, given a graph H in K(HCA) or in K(PHCA), find a graph
G such that K(G) = H. We omit the details here but it is not hard to see that both
algorithms can be implemented so as to run in O(n) time when the input is an HCA or
PHCA model of H.

8.2 Cliques of an HCA graph

In [DLMS06], an O(n2) algorithm for constructing a clique model of an HCA model is
described. The algorithm consists of two well defined procedures: 1) Find a clique point
representation Q of the model, and 2) build the clique model with respect to Q. The
first procedure is the bottleneck of the algorithm, and it takes O(n2) time, while the
second procedure can be done in O(n) time. In this section we develop a linear-time
algorithm that reduces the time of the bottleneck step to O(n). Given a set P of points
in an arbitrary circular-arc model, our algorithm finds, in O(n + |P |) time, a minimum
set P ∗ ⊆ P such that every point in P \P ∗ is dominated by some point in P ∗. Letting P
be one intersection point in each of the O(n) intersection segments solves the bottleneck
step.

Let M be a circular-arc model and P = {p1, . . . , pk} be a set of points of C(M) where
p1, . . . , pk appear in this order in a traversal of C(M). Say that P ′ ⊆ P is a P -dominating
set if every point in P \ P ′ is dominated by some point in P ′. The purpose of our
algorithm is to find a minimum P -dominating sequence. For this, the algorithm first
traverses C(M) so as to remove from P all those points pi that are dominated by some
point pj, for 1 ≤ i < j ≤ k. After these dominated points are removed, the algorithm
traverses C(M) once again so as to remove all those points pj that are dominated by
some point pi, for 1 ≤ i < j ≤ k. We define the semi-dominating sequences to formalize
this idea.

The ascendant semi-dominating sequence of P is the subset

SD+(P ) = {pi ∈ P | A(pi) 6⊆ A(pj) for all pj ∈ P such that 1 ≤ i < j ≤ k}.
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In other words, SD+(P ) is the set of points that survive the first traversal, i.e., SD+(P )
contains the points pi ∈ P that are not dominated by a point pj ∈ P such that j > i.
Similarly, the descendant semi-dominating sequence of P is the subset

SD−(P ) = {pj ∈ P | A(pj) 6⊆ A(pi) for all pi ∈ P such that 1 ≤ i < j ≤ k}.

The following is the key lemma that guaranties the correctness of our algorithm.

Lemma 8.2.1. Let M be a circular-arc model and P be a set of points. Then, both
SD−(SD+(P )) and SD+(SD−(P )) are minimum P -dominating sequences.

Proof. We will only prove that P ∗ = SD+(SD−(P )) is a minimum P -dominating se-
quence since the proof for SD−(SD+(P )) can be obtained by taking the reverse model
of M. Let p1, . . . , pk be the points comprising P , where p1, . . . , pk appear in this order
in a traversal of C(M). We first prove that P ∗ is in fact a P -dominating sequence.

By definition, every point pj ∈ P \SD−(P ) is dominated by some point pi ∈ P for some
1 ≤ i < j. If i is the minimum such that pi dominates pj, then no point p ∈ {p1, . . . , pi−1}
can dominate pi because otherwise p would dominate pj, breaking the minimality of i.
Therefore, every point in P \ SD−(P ) is dominated by some point in SD−(P ). We
can apply the same arguments to SD−(P ) and P ∗ to conclude that every point in
SD−(P )\P ∗ is dominated by some point in P ∗. Since domination is a transitive relation,
every point of P is also dominated by some point in P ∗, i.e., P ∗ is a P -dominating
sequence.

We now show that P ∗ is minimum. Observe that it is enough to show that P ∗ is
minimal because P ∗ is a P -dominating sequence and the domination relation is transitive.
Suppose that pi ∈ P is dominated by pj ∈ P ∗. If j < i then pi 6∈ SD−(P ), hence pi 6∈ P ∗.
Otherwise, pi 6∈ P ∗ because it is dominated by pj ∈ SD−(P ) and j > i. Therefore, P ∗

is minimal and thus minimum.

Algorithms to find SD+ and SD− are symmetric. We describe the one to find SD+.
The algorithm works by induction on the size of a Pi = {p1, p2, . . . , pi}. After the step i,
the algorithm partitions the elements of SD+(Pi) into two sets Di and Qi such that:

• The points in Di are crossed by some arc of A(M) that is entirely contained in
the segment (pk, pi), hence these points cannot be dominated by a point in {pi+1,
pi+2, . . . , pk}. These points are already known to be members of SD+(P ).

• The set Qi contains those points in SD+(Pi) \Di, stored in clockwise order q1, q2,
. . . , qj, where q1 is the first point that appears from pk in a traversal of C(M).
Their status as members of SD+(P ) is uncertain; though they are in SD+(Pi),
they might be dominated by points in {pi+1, pi+2, . . . , pk}.
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After the step k, the algorithm returns SD+(P ) = Dk ∪Qk. It remains to describe how
to obtain Di+1 and Qi+1 from Di and Qi. The first step is to find those points in Qi

that must be added to Di so as to obtain Di+1. By definition, these points are crossed
by some arc that is entirely contained in (pk, pi+1), but are crossed by no arc entirely
contained in (pk, pi). So, the points in Di+1 \Di are exactly those points of Qi that are
crossed by some arc whose beginning point lies in (pk, pi+1) and whose ending point lies
in (pi, pi+1). Of all these arcs, let B be the one whose beginning point is closest to pk.
That is, B is the arc contained in (pk, pi+1) that crosses the most members of Qi and,
so, Di+1 \Di is precisely the set of points in Qi that are crossed by B.

The second step is to find those members of Qi that belong to Qi+1. By definition,
Qi+1 = SD+(Pi+1) \ Di+1, and no point qa ∈ Qi is dominated by a point qb ∈ Qi such
that b > a. Thus, Qi+1 is composed by those points of Qi \Di+1 that are not dominated
by pi+1, plus pi+1. So, a point q ∈ Qi \ Di+1 is in Qi+1 if and only if it is contained
in some arc A that does not contain pi+1 (since otherwise it would be dominated by
pi+1) and that contains pk (since otherwise it would already be identified as a member
of Di+1). Of all such arcs, let A be the one whose ending point is farthest from pk. Since
A is the arc that covers the most members of Qi \Di+1, it follows that Qi+1 is just the
points of Qi \Di+1 that are contained in A.

The procedure to obtain SD+(P ) from P is depicted as Algorithm 8.1. In the algorithm,
Q is implemented as a stack of points (q1, . . . , qj), where q1, . . . , qj appear in this order
in a traversal of C(M), q1 is the first point of Q that appears in a traversal of C(M)
from pk, and qj is the element at the top of Q. Each point q ∈ Q is stored jointly with an
arc A(q). When A(pi) and pi are inserted into Q at Step 5, A(pi) is the arc that crosses
pk, whose ending point lies in (pi, pi+1), and whose beginning point is closest to pk (or
empty if such an arc does not exist). Suppose that this condition also holds for all the
other points of Q. That is, if q, q′ are two consecutive points of Q, then A(q) is the arc
whose ending point lies in (q, q′) and whose beginning point is closest to pk. Observe
that A(q) crosses pk, because otherwise q would not be in Q.

The loop from Steps 6 to 8 moves those points in Q that are covered by the arc B. To
preserve the invariant conditions, at Step 8 we have to update the arcA(q), corresponding
to the point q at the top of the stack, so that its beginning point is the closest to pk

from those with ending point in (q, pi+1). The loop from Steps 9 to 10 removes those
points q that are dominated by pi+1. Observe that if A(q) crosses pi+1 then every arc
that crosses q also crosses pi+1. There is no need to update the arc corresponding to the
point q′ that remains at the top of the stack after q is popped, because if s(A(q′)) is not
closer to pk than A(q) then q′ is also dominated by pi+1.

To sum up, Algorithm 8.1 correctly finds SD+(P ). With respect to the time complexity,
the main loop is executed |P | times. Inside the main loop, Steps 3 and 4 traverse all the
extremes of M. Each extreme is traversed twice, the first time to find the arc B, and
the second time to find the arc Ai. Hence, Steps 3 and 4 take overall O(n) time. The
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Algorithm 8.1 Ascending semi-dominating sequence

Input: An HCA model M and a set P = {p1, . . . , pk} of points of C(M) such that
p1, . . . , pk appear in this order in a traversal of C(M).
Output: SD+(P ).

1. Let D := ∅ be a set of points and Q := ∅ be a stack of pairs. Each item of Q is a point
q ∈ P , together with an arc A ∈ A(M). Let q(Q) be a function that returns the point at
the top of Q, and A(Q) be a function that returns the arc at the top of Q.

2. For i := 1, . . . , k − 1:

3. Find the arc B such that t(B) ∈ (pi, pi+1) and s(B) ∈ (p1, pi) is closest to pk. If such
an arc does not exist, then set B := ∅.

4. Find the arc Ai such that t(D) ∈ (pi, pi+1), pk ∈ Ai and s(Ai) is closest to pk. If such
an arc does not exist, then set Ai := ∅.

5. Push 〈pi, Ai〉 into Q.

6. Do while Q 6= ∅ and q(Q) ∈ B:

7. Pop 〈q, A〉 := 〈q(Q), A(Q)〉 from Q, and insert q into D.

8. If Q 6= ∅ and A is closer to pk than A(Q), then set A(Q) := A.

9. Do while Q 6= ∅ and A(Q) crosses pi+1:

10. Pop the pair at the top of Q.

11. Return SD+(P ) := D ∪Q ∪ {pk}.

operations at Steps 5, 6 and 9 take O(1) time. Finally, the operations inside the inner
loops are applied only to elements of Q that are popped from Q. Thus, executing these
steps take a time proportional to the time that took all the insertions, which is O(|P |).
Hence, Algorithm 8.1 takes O(n+ |P |) time.

Once all the clique points are found, it is easy to find the maximum clique. If the arcs of
M have weights, then the maximum weight (maximal) clique can also be found easily,
even when some edge is negative. We record these facts as a simple corollary.

Theorem 8.2.2. The maximum clique problem and the maximum weight clique problem
can be solved in O(n) time for HCA graph, when an HCA model is given as input.
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8.3 K-behavior of circular-arc graphs

In this section we develop an algorithm to find out to which graph does a circular-arc
graph K-converge, when it does K-converge. Powers of cycles play an important role
in this section. Recall that, by Theorem 1 in [GH88] (see also Theorem 4.1.1), the
dismantling of a circular-arc graph is isomorphic either to the trivial graph or to the
power of a cycle. This theorem can be combined with the following two results by Frias
et al. and Larrión et al., to actually decide the K-behavior of a general circular-arc graph
in polynomial time.

Theorem 8.3.1 ([FANLP04]). A graph G has the same K-behavior as its dismantling
H. That is, G is K-null if and only if H is K-null; G is K-convergent and not K-null
if and only if H is K-convergent and not K-null; and G is K-divergent if and only if H
is K-divergent.

Theorem 8.3.2 ([LNLP09]). Graph Ck
n is K-convergent if and only if it is a complete

graph or n > 3k.

By the theorems above, a circular-arc graph is K-null if its dismantling is the trivial
graph; it K-converges to a graph which is not K-null if its dismantling is Ck

n with
n > 3k; or it K-diverges otherwise. However, much more can be said about the graph
to which G K-converges when it does, because this graph is self-clique and thus unique.
We start with two useful propositions that are easy enough to prove.

Proposition 8.3.3. For every graph G, there exists a dismantling set that contains no
properly dominated vertex of G.

Proposition 8.3.4. Let W be a dismantling set of a graph G. If G′ is an induced
subgraph of G that contains every vertex of W and the vertices of G \G′ are dominated
by vertices of G′, then W is a dismantling set of G′.

Next, we show that every circular-arc graph that is neither K-null nor K-divergent must
be NHCA. For this we need to show how can the dismantling of a circular-arc graph
be computed when a circular-arc model M is given. The CA-dismantling algorithm
can be divided into two steps. First remove every arc Ai that is contained in some
arc Aj to obtain a PCA submodel M′ of M. Clearly, every removed arc corresponds
to a dominated vertex. Second, iteratively remove every arc whose beginning point is
immediately followed by some other beginning point. Since M′ is PCA, all such arcs
are dominated. At the end, every beginning point is followed by an ending point. If
M′ has some non-universal arc, then the model so obtained has no dominated arcs by
Theorem 4.1.1. Otherwise, the dismantling of M is any trivial model.

Theorem 8.3.5. A circular-arc graph G is K-convergent and not K-null if and only if
G is a non-interval NHCA graph.
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Proof. Suppose first that G is K-convergent and not K-null, and let W be some of
its dismantling sets. By Theorem 8.3.1 (see also [Pri92]) |W | > 1. Then, W is not a
complete set and, by Theorem 4.1.1, G[W ] is isomorphic to Ck

n for some pair of values
n, k. If n ≤ 3k then G is K-divergent by Theorem 8.3.2, which is also impossible, so
n > 3k. Then G contains an induced cycle of length at least 4, that is, G is not an
interval graph. Let M be a circular-arc model of G, and call MW to the submodel of
M induced by the arcs corresponding to vertices of W . We can assume, w.l.o.g., that
MW was computed by the CA-dismantling algorithm. Call N1, . . . , Ns to the arcs of G
that were removed by the CA-dismantling algorithm, where Ni was removed after Ni+1

for 1 ≤ i ≤ s − 1. We prove by induction on i that Mi = MW ∪ {N1 . . . , Ni} is an
NHCA model.

For the base case i = 0, W is isomorphic to Ck
n with n > 3k and so, by Theorem 4.1.1,

MH has no two nor three arcs that together cover the circle, i.e., MW is normal and
HCA. For the inductive case, observe that by constructionNi is either properly contained
in some arc A ∈ Mi−1, or Mi is proper and s(Ni) is followed by the beginning point
of some arc A ∈ Mi−1. In either case, if Ni together with a subset of arcs A in Mi

cover the circle, then also A covers the circle with A. Consequently, by the inductive
hypothesis, |A ∪ {Ni}| ≥ 4, i.e., Mi is NHCA.

For the converse, assume that G is a non-interval NHCA graph. We employ induction to
show that in every step of the dismantling process, the subgraph so far obtained contains
an induced hole. Since G is NHCA and non-interval, G itself contains at least one hole.
By the induction hypothesis the subgraph obtained after a certain number of removals of
dominated vertices also contains a hole. Let M be the circular-arc model corresponding
to this subgraph, and let A = {A1, . . . , Ak} be the set of arcs of some minimum hole,
where Ai intersects Ai−1 and Ai+1 for 1 ≤ i ≤ k. Examine the removal of the next
dominated arc. If the removed arc is not one of A, then the hole in M is preserved
in the next step. Otherwise, some arc Ai ∈ A is either contained in an arc Bi or M
is proper and s(Ai) is followed by s(Bi). In either case, Bi intersects Ai−1 and Ai+1,
and, since A induces a minimum hole, Bi is adjacent to either none or all of the arcs in
A \ {Ai−1, Ai+1}. In the former case, (A\ {Ai})∪ {Bi} induces a hole and the invariant
is preserved. In the latter case, A together with Bi induce a k-wheel, contradicting
Theorem 3.2.9. Consequently, the dismantling of G contains a hole, meaning that it is
neither a single vertex nor isomorphic to Cn,k for n ≤ 3k, i.e., G is K-convergent and
not K-null.

Now we proceed to prove that every K-convergent circular-arc graph K-converges to its
dismantling, which is the main theorem of this section.

Theorem 8.3.6. If a circular-arc graph is K-convergent, then it K-converges to its
dismantling.
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Proof. If G is K-null, then the dismantling of G is the trivial graph by Theorem 8.3.1
(see also [Pri92]), and thus G K-converges to its dismantling. So, assume that G is not
K-null, which implies that G admits an NHCA model M by Theorem 8.3.5. We prove
the theorem by induction on k, where k is the minimum number such that Kk(G) =
Kk+1(G). This induction is well defined because K-periodic circular-arc graphs are self-
clique [Bon06].

In the base case, K(G) = G. By Theorem 8.1.1, the clique model MQ of M is an
NPHCA model ofK(G), thus M = MQ is a NPHCA model. Then, by Proposition 8.1.2,
MQ = M has only strong arcs, implying that every beginning point of M is followed
by an ending point. Hence, by Theorem 4.1.1, G contains no dominated arcs, i.e.,
G[W ] = G = K(G) for any dismantling set W of G.

Now we proceed with the inductive case. Let W be a dismantling set of G. Observe that
W must contain at least two vertices by Theorem 8.3.1, because G is not K-null. Let
M = (C,A ∪ N ) be an NHCA model of G where A is the set of arcs corresponding to
W . Without loss of generality, we may assume that if an arc A contains another arc B,
then there is some ending point between s(A) and s(B). We refer to this condition of M
as the s-ordering condition. Also, by Proposition 8.3.3, we may assume that no vertex
of W is properly dominated in G, hence if A ∈ A is dominated by N ∈ N then they
must be twins. In the case that A and N are twins, assume that s(N), s(A), t(N), t(A)
appear in this order in a traversal of C(M).

Claim 1: Every arc of A is strong. Let p be the first clique point of M that appears from
s(A), for A ∈ A, and let B be the arc crossing p whose ending point is farthest
from p. By Proposition 8.3.3, we have assumed that B does not properly dominate
A in M. Then, B crosses exactly the same clique points as A. If A 6= B, then B
and A are twins. But we have also assumed that, in this case, t(A) appears farther
from p than t(B), a contradiction. Then p is a strong clique point and A is its arc
reduction. Therefore, every arc of A is strong and the claim is proved.

Claim 2: Every arc that belongs to M but not to its clique model MQ is dominated by
some strong arc in M. If B belongs to M but not to MQ, it is because B is not
an arc reduction. Then, either s(B) is followed by some beginning point s(B′) in
M, or (s(B), t) is an intersection segment which contains weak clique points, for
some ending point t. In the former case, B does not contain B′ by the s-ordering
condition of M, thus B is dominated by B′. In the latter case, there is some arc
B′ that crosses s(B) and that reaches farther than t(B), i.e., B is contained B′. If
B′ is strong, then the proof of the claim is complete. Otherwise, by applying this
reasoning iteratively and using the fact that domination is a transitive relation, we
obtain that B is dominated by some strong arc of M.

Claim 3: Every arc reduction of a weak clique point of M is dominated by a strong arc of
M. Suppose that B is the arc reduction of the weak clique point p, and let A be the
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arc of M that crosses p and reaches farthest. By definition, B = (s, t(A)), where s
is the first beginning point that appears from p in a counter-clockwise traversal of
C(M). Since p is weak, then A crosses s, and by the s-ordering condition of M,
there is some ending point between s(A) and s. Hence, A crosses the clique point
q that appears first from p in a counter-clockwise traversal of C. By definition, the
arc reduction of q has t(A) as its ending point, so the arc reduction of q dominates
B. If q is a strong clique point, then the claim is proved. Otherwise, as in Claim 2,
we can apply this reasoning and use the fact that domination is transitive to obtain
that B is dominated by some strong arc of M.

By Theorem 8.1.1, the clique model MQ of M is an NPHCA model of K(G). By
definition, the arcs of MQ are precisely the arc reductions of M, thus MQ contains
all the strong arcs of M. By Claim 3, we can compute the dismantling of MQ by
first removing all the arcs that are weak arc reductions of M, and then computing the
dismantling in the resulting model. In terms of vertices and graphs, the dismantling of
K(G) is isomorphic to the dismantling of G[S], where S ⊆ V (G) is the set of vertices
that correspond to strong arcs of M. Since MQ contains all the strong arcs of M, then,
by Claim 1, A is a subset of arcs of MQ. That is, W is both a subset of vertices of
K(G) and a subset of S. Finally, by Claim 2, the vertices of G \G[S] are all dominated
by some vertex of S. Thus, by Proposition 8.3.4, W is a dismantling set of G[S] and
therefore it is also a dismantling set of K(G). Hence, by the induction hypothesis, K(G)
is K-convergent to G[W ] which concludes the proof.

To end this section, we describe an implementation of the CA-dismantling algorithm
which runs in O(n) time. This implementation is rather similar to the one in [GH88] for
computing the maximum independent set of a circular-arc graph. The main difference
is that our algorithm eliminates all the dominated arcs, while the algorithm in [GH88]
eliminates all the dominating arcs. The input of our algorithm is some circular-arc model
M and the output is an induced submodel of it. Recall that the algorithm is divided
into two steps. The first one is the removal of included arcs and the second step is the
removal of arcs whose beginning points are followed by another beginning point. For
the first step of the algorithm, traverse twice C(M) from some beginning point s(A),
while maintaining the position of the farthest ending point t viewed so far. This farthest
ending point is initialized to t(A). When a beginning point s(Ai) is reached, check if
t(Ai) reaches farthest than t. If so, then set t := t(Ai); otherwise, Ai is contained in the
arc whose ending point is t, so we can remove it. Since the circle is traversed twice, then
every contained arc is eventually removed and we obtain a model M′.

For the second step of the algorithm, first initialize a set S containing each non-singleton
s-sequence. Each s-sequence can be represented as we usually represent ranges, by
storing the first and last beginning points of the s-sequence. Now, choose some s-
sequence s1, . . . , sk of S. The beginning point s1 is followed by the beginning point s2,
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8 The clique operator on circular-arc graphs

thus we need to remove A = (s1, t(A)) from M′, and update (s1, sk) in S to (s2, sk). Let
e1 and e2 be the previous and next extremes of t(A) in M′, respectively. If e1 or e2 is not
a beginning point, then every non-singleton s-sequence is contained in S. Otherwise, we
may have to remove the s-sequences S1 containing e1 and S2 containing e2 from S, and
insert the non-singleton s-sequence S1 ∪S2. These operations can be done in O(1) if two
references are maintained in the first and last beginning points of each s-sequence. The
first reference of each beginning point informs the position of its s-sequence in S. The
second reference links the first and last beginning points of the s-sequence. Hence, the
whole algorithm can be implemented so as to run O(n) time.
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9 Open problems and further remarks

In this last chapter we describe many open problems related to the work we have done.
We have briefly thought some of these problems, and tried to solve others with no success.
For such problems, we describe some of our ideas which are vague, incomplete, and
possibly wrong, with the hope that someone transforms our futile efforts into worthwhile
contributions.

Characterization of circular-arc graphs and subclasses. In Chapter 3 we showed sev-
eral characterizations that state which circular-arc graphs do not belong to a restricted
class of circular-arc graphs. The only class treated in this thesis for which such charac-
terization is still unknown is the class of NCA graphs. In [Mül97], Müller conjectured
that a graph is both co-bipartite and NCA if and only if its complement contains no
“insect” graph and no graph from a family F . Hell and Huang [HH04] disproved this
conjecture by showing a family of “bug” graphs that are co-bipartite but not NCA. They
also claimed that there are others co-bipartite graphs that are neither NCA, bugs, nor
belong to the family F . One of the difficulties about the family of forbidden graphs is
that it contains many graphs of large order that are hard to arrange into a manageable
structure; insects and bug are examples of such forbidden graphs.

Problem 1. Show the family of circular-arc graphs that are not NCA.

Problem 2. Show the family of co-bipartite circular-arc graphs that are not NCA.

Besides knowing which circular-arc graphs belong to a restricted class, there is also a
motivation for characterizing all those graphs that belong to a given class. As we already
mentioned, such a characterization is unknown for circular-arc graphs. But, in this case,
the characterization is also unknown for HCA and NCA graphs.

Problem 3. Show the family of minimally forbidden circular-arc graphs.

Problem 4. Show the family of minimally forbidden HCA graphs.

Problem 5. Show the family of minimally forbidden NCA graphs.

All the problems listed above have been open for a long time and they could be too hard
problems to begin with. Perhaps, it would be better to begin with the class of NHCA
graphs because they retain a lot of properties of interval graphs.

Problem 6. Show the family of minimally forbidden NHCA graphs.
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9 Open problems and further remarks

Concave-round graphs. Recall that a PIG order of a graph G is a linear ordering
v1, . . . , vn of V (G) such that, for every 1 ≤ i ≤ n, there exist two non-negative values
l, r such that N [vi] = Lin[vi−l, vi+r], and both Lin[vi−l, vi] and Lin[vi, vi+r] are complete
sets. Note that we can drop the conditions asking both of Lin[vi−l, vi] and Lin[vi, vi+r]
to be complete sets. Indeed, if vi is adjacent to vj and j > i + 1, then vj has to be
adjacent to all the vertices of [vi, vj) because N [vj] must be a range.

Concave-round graphs are defined as the generalization of PIG orders, where the linear
ordering v1, . . . , vn is replaced with a circular ordering. That is, a graph G is concave-
round if there is a circular ordering φ = v1, . . . , vn of V (G) such that, for every 1 ≤ i ≤ n,
there exist two non-negative values l, r such that N [vi] = [vi−l, vi+r]. The enumeration
φ is said to be a concave-round order of G. Concave-round graphs were introduced by
Bang-Jensen et al. [BJHY00] as a generalization of PCA graphs. Clearly, every concave-
round order is a circular-arc order, thus every concave-round graph is a circular-arc graph
as well.

Not every concave-round enumeration is an out-round enumeration. Consider, for in-
stance, the path graph H with vertices v1, v2, v3, v4 where vi is adjacent to vi+1 for
1 ≤ i ≤ 3. Graph H admits the concave-round enumeration φ = v3, v1, v2, v4, but φ is
not an out-round enumeration of any orientation of H. The problem for orienting H,
with φ as an enumeration, is that v4 has to be oriented to v3 and v3 has to be oriented
to v4. Nevertheless, H admits an out-round orientation. Bang-Jensen et al. proved that
if G is a concave-round graph whose complement is not bipartite, then G is a PCA
graph.

Problem 7. Study the relationship between concave-round graphs and NCA graphs.

Distance and circulant graphs. Circulant graphs are a natural and important gener-
alization of powers of cycles. A graph G is a circulant graph if there is a circular ordering
v1, . . . , vn of V (G) and a set D ⊆ N such that N(vi) = {vi+d | d ∈ D} ∪ {vi−d | d ∈ D},
for every 1 ≤ i ≤ n. Circulant graphs are the Cayley graphs of cyclic groups and due to
their symmetry and connectivity properties they have been proposed for various practical
applications [BCH95].

A similarly defined class of graphs are distance graphs. A graph G is a distance graph if
there is a linear ordering v1, . . . , vn of V (G) and a set D ⊆ N such that N(vi) = {vi+d |
d ∈ D and i+ d ≤ n} ∪ {vi−d | d ∈ D and i− d ≥ 1}. Distance graphs are motivated in
a research due to Eggleton et al. [EES85, EES90] who considered coloring problems for
infinite distance graphs.

In the folklore of graph theory, it is known that every graph is an induced subgraph of
a circulant graph. Distance graphs are a generalization of circulant graphs. In fact, if G
is a circulant graph for some set D, then G is a distance graph for D ∪ {n− d | d ∈ D}.
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Therefore, every graph is an induced subgraph of some distance graph as well (a proof
is given in [LRSS09]). The inconvenient aspect of the proof in [LRSS09] is that the
generated distance graph has an exponential number of vertices with respect to the size
of the graph.

Theorems 4.2.1 and 4.3.1 are interesting because they show how some well studied classes
of graphs can be obtained as induced subgraphs of special distance graphs, by restricting
the set D. Even more, both UCA and PIG graphs are induced subgraphs of a power of
a path with polynomial number of vertices. This is because every UCA graph admits
a UCA model whose extremes are integer and whose arcs are of length between 0 and
O(n2) [LS08]. In view of these results, it would be interesting to find more classes which
can be defined as induced subgraphs of special distance graphs, and if these classes are
generated by polynomial size distance graphs.

Problem 8. Study special classes of circulant and distance graphs, and the classes
defined by their induced subgraphs.

Polynomial-time recognition of NCA graphs. Recall that a circular-arc order of a
graph G is a circular ordering v1, . . . , vn of V (G) such that, for every pair vi, vj of
adjacent vertices, either vi is adjacent to all the vertices in (vi, vj] or vj is adjacent to
all the vertices in (vj, vi]. Those graphs that admit a circular-arc order are precisely the
circular-arc graphs. We proved in Chapter 3 that if we change the previous definition
by adding an orientation, then the class of NCA graphs is obtained. That is, a graph G
is an NCA if and only if it admits an out-round orientation.

Observe that it is easy to transform a circular-arc model of a graph G into a circular-arc
order; just take the order induced by the beginning points of the model. Every circular-
arc order φ = v1, . . . , vn is associated with a digraph D such that vi −→ vj if and only
if vi is adjacent to all the vertices in (vi, vj]. If the digraph D is an oriented graph, then
D is an orientation of G and φ is an out-round enumeration of D, i.e., G is an NCA
graph. Even when G is an NCA graph and φ is an out-round enumeration of one of its
orientations, the digraph D can fail to be an oriented graph. First, it could happen that
some edges are oriented both ways; for instance, every universal vertex is oriented to all
the other vertices. In this case, the duplicated edges have to be removed, if possible.
This raises the second problem, it is impossible to remove some of the duplicated edges
without changing the order of some of the vertices.

Problem 9. Find a polynomial-time algorithm to transform a circular-arc model into
an NCA model.

Problem 10. Characterize all those (universal-free) circular-arc graphs for which any
circular-arc order induces an out-round orientation as described above.

175



9 Open problems and further remarks

Linear-time transformation of circular-arc graphs into interval graphs. Recall that
our algorithm to transform a circular-arc model M into an NHCA model has two steps.
First, test whether M is an NHCA model. If so, there is nothing to be done. Otherwise,
transform M into an interval model. We did not find an O(n) time algorithm for this
problem. Note that it is enough to consider only the case in which M is an HCA
model.

Problem 11. Devise an O(n) time algorithm to transform an HCA model into an
interval model. If possible, output a negative certificate when such transformation is not
possible.

Direct recognition of HCA and NHCA graphs. The recognition of HCA graphs is
well solved from the viewpoint of time complexity, when a graph G is given as input.
First build a circular-arc model M of G in O(n+m) time and, if successful, transform
this model into an HCA model. NHCA graphs can be recognized in O(n + m) time
with a similar procedure. The problem with these algorithms is that they require the
construction of a circular-arc model, which is not a simple task.

By Theorem 3.0.1, a graph G is an interval graph if and only if there is a linear ordering
of the cliques of G such that, for every vertex v, the cliques containing v appear consec-
utively in the ordering. That is, a graph is an interval graph if its clique matrix has the
consecutive-ones property. This theorem justifies the use of the PQ-tree data structure
for the recognition of interval graphs. First find the clique matrix of the graph, and
then use the PQ-tree data structure to test whether the matrix has the consecutive-ones
property. Note that the clique matrix is not really required, only the family of cliques is
used, and this family is found in O(n+m) time.

The generalization of Theorem 3.0.1 is given in Theorem 3.0.2. That is, a graph G is an
HCA graph if and only if its clique matrix has the circular-ones property. So, we can
extend the algorithm of Booth and Lueker, by replacing the PQ-tree with a PC-tree.
The PC-tree data structure was introduced by Shih and Hsu [SH99] as a generalization
of PQ-trees, with the purpose of recognizing planar graphs. The PC-tree data structure
can be efficiently used to test if the clique matrix satisfies the circular-ones property. The
major difficulty with this algorithm is that it is not easy to find the family of cliques of an
HCA graph. The only algorithm that takes this approach is the one by Gavril [Gav74],
and he finds all the cliques by running a general algorithm, at the cost of O(n3) time.

Problem 12. Find a linear-time algorithm for the recognition of HCA graphs, without
computing a circular-arc model of the graph.

Problem 13. Find a linear-time algorithm for computing all the cliques of an HCA
graph, without computing an HCA model of the graph.
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A less ambitious project is to develop a direct algorithm for the recognition of NHCA
graphs. The advantage of restricting the problem to NHCA graphs is that the scope of
each vertex looks like an interval graph. The idea for a recognition algorithm could be
as follows. First, test whether G is an interval graph. If so, output the interval model of
G. Otherwise, try to split G into several interval graphs, resembling the process done by
Deng et al. in [DHH96]. Then, recognize each part as an interval graph and “rebuild”
the model. Other possibility is to find the cliques of each part so as to build a PC-tree
latter. The next possibility is to extend the incremental data structure used by Korte
and Möhring [KM89] in their interval graph recognition algorithm. Also, it could be
interesting to generalize the incremental algorithm by Crespelle [Cre09], so as to insert
each vertex in O(n) time. Here, a dynamic PC-tree data structure should be designed.

Problem 14. Find a linear-time algorithm for the recognition of NHCA graphs, without
computing a circular-arc model of the graph.

Problem 15. Find an algorithm for computing all the cliques of an NHCA graph,
without computing an HCA model of the graph.

Problem 16. Extend the MPQ-tree data structure by Korte and Mohring, or the
dynamic PQ-tree data structure by Crespelle, so as to recognize NHCA graphs.

Minimal UIG models. In Chapter 5 we developed a new algorithm for transforming a
PIG model into a UIG model. The advantage of our algorithm over some of the previous
algorithms is that it consumes O(n) space. In the same chapter, we also showed that
the algorithm by Corneil et al. [CKN+95] can be implemented so as to run in O(n) time
and space. We believe that our algorithm is simpler to implement, but its correctness is
harder to prove. Also, the simplicity is not such an advantage, taking into account that
the algorithm by Corneil et al. is also simple to implement.

There is another aspect in which the algorithms can be compared: the length of the
generated model. Say that a UIG model M of a graph G is shorter than the UIG model
M′ of G if the length of the intervals in M is lower than or equal to the length of the
intervals in M′. When M is a shortest model of G, then M is a minimal UIG model. Of
course, we assume that the intervals have integer extremes. Although both algorithms
have guaranties with respect to the length of the intervals, the algorithms not always
provide a minimal UIG model. When comparing both algorithms from the worst case
viewpoint, the algorithm by Corneil et al. is better than ours; the length of an interval
is always n for the algorithm by Corneil et al., while our algorithm sometimes requires
intervals of length 2n. However, our algorithm always finds a minimal UIG model when
G is a power of a path, while the algorithm by Corneil et al. does not.

Problem 17. Find an O(n) time and space algorithm to compute a minimal UIG model
of a graph, when a PIG model is given as input.
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9 Open problems and further remarks

In [Mit94], Mitas devised an algorithm to find a minimal UIG model of a graph G. The
focus of his algorithm is on semiorders, instead of being on UIG graphs. The algorithm
takes an acyclic directed graph G such that its transitive closure represents an ordering
<, and it outputs a UIG model representing <. That is, v < w if and only if the interval
corresponding to t(v) < s(w). The algorithm takes O(n+m) time, so it is linear when G
is given as input. (Note that the transitive closure G is in fact the complement of a UIG
graph.) We believe that it should be possible to reduce its complexity to O(n), when a
PIG representation of < is given. In such case, the algorithm could be used to transform
any PIG model into a minimal UIG model. Nevertheless, the algorithm assumes that
the intervals may share the values for their extremes, and so twin intervals are removed.
Thus, this algorithm cannot be used to obtain a well formed minimal interval model. It
would be interesting to adapt the algorithm by Mitas so as to solve the problem above,
or at least the following problem.

Problem 18. Find an O(n) time and space algorithm to compute a minimal UIG model
of a twin-free graph, when a PIG model is given as input.

Lin and Szwarcfiter also ask for an algorithm that builds a minimal UCA model in linear
time [LS09].

Fully dynamic algorithm for the PCA recognition problem. In Chapter 6 we de-
scribed a vertex-only fully dynamic algorithm for the recognition of PCA graphs. In
that chapter, we did not deal with the problem of inserting and removing edges from the
graph. Certainly, we can insert an edge vw into a graph G by first removing the vertex v,
and then inserting v with neighborhood NG(v)∪ {w}. Similarly, we can remove an edge
vw by first removing the vertex v, and then inserting v with neighborhood NG(v) \ {w}.
It is not hard to implement these algorithms so as to run in O(n) time.

Problem 19. Implement a fully dynamic algorithm for the recognition of PCA graphs
where the edge operations take o(n) time.

One of the difficulties of the above problem lies in how to manage the co-components of
the input graph. Recall that a round block enumeration Φ of a co-bipartite graph can
be partitioned into co-bipartite ranges X1, . . . ,Xs, where Xi and Xi+1 form a range of
Φ. When an edge vw is removed, for v ∈ Xi and w ∈ Xj with i 6= j, the co-bipartite
range Xi has to be joined with Xj (or with its reversal) so as to form a new co-bipartite
range. Similarly, the co-bipartite range Xj has to be joined with Xi (or its reversal). To
implement such a join, we need to move some blocks of Φ so as to make Xi (resp. Xj)
consecutive with Xj (resp. Xi). On the other hand, when a new edge vw is inserted,
for v ∈ Xi and w ∈ Xi, we could need to split Xi and Xi into two co-bipartite ranges
each. So, a priori, we need to solve a Union-Find-Split problem to efficiently include the
edge operations into our algorithms. Of course, the Union-Find-Split problem is also
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present when we need to join or split two contigs of G. So, we could try to use some
kind of balanced tree to solve this problem, as it is done for the contigs. The problem
in this case is that we chose not to break the co-components into separate structures
as it is done with the contigs, so as to simplify the data structures. There are at least
two options left: solve the removal and insertion of a co-bipartite range into a ring; or
modify the data structure of the algorithm to keep the co-components apart. Of course,
a characterization of when is G ∪ {vw} (resp. G \ {vw}) a PCA graph should also be
provided.

Computation of the minimally non-PCA induced subgraph. Kaplan and Nussbaum
proposed a linear-time algorithm for computing a negative certificate of a non-PCA
graph in [KN09]. The output of their algorithm is either a cycle of odd length in some
incompatibility graph, or a minimally forbidden induced subgraph. There is, yet, no
algorithm for computing a forbidden induced subgraph of a non-PCA graph.

Problem 20. Devise an O(n+m) time algorithm to find a minimally non-PCA induced
subgraph of a non-PCA graph.

In Chapter 6 we provided a characterization of those refinable PCA models. When the
input graph G is co-connected, the Incremental Refinement Lemma provides a complete
characterization of when is G∪{v} a PCA graph. We believe that the algorithms of that
chapter could be adapted so as to find a forbidden induced subgraph of G ∪ {v}. When
G is not co-connected, the problem is harder because knowing that a PCA model of G is
not refinable is not enough to conclude that G∪{v} is not a PCA graph. For simplicity,
we solved the insertion problem by looking all the models formed by the co-components
co-adjacent to v. However, we think that some models could be discarded, so as to
analyze only one or two models. In that case, it could be possible to characterize when
is G∪ {v} a PCA graph. Furthermore, we believe that our algorithm could be modified
so as to solve the following problem (perhaps with some tedious case by case analysis).

Problem 21. Find an algorithm for computing, in O(d(v)) time, a minimally non-PCA
induced subgraph of a non-PCA graph G ∪ {v}, when a round block enumeration Φ of
G is given.

Characterization of clique graphs of circular-arc graphs. In Chapter 8 we described
the structure of clique graphs of HCA graphs, by relating them to the class of PHCA
graphs. Theorem 8.1.6 is like the end of the road for a work started by Durán and Lin
in [DL01], not only because they set the direction towards this theorem, but also because
all the results in their paper follow as corollaries of this theorem. At this point, it seems
like a good idea to consider other classes of circular-arc graphs so as to characterize their
clique graphs.
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9 Open problems and further remarks
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Figure 9.1: A circular-arc graph whose clique graph is not circular-arc.

Problem 22. Give a structural characterization for clique graphs of (normal, proper,
unit) circular-arc graphs.

Problem 23. Prove or disprove: the recognition problem for clique graphs of (normal,
proper, unit) circular-arc graphs can be solved in polynomial time.

As it is remarked in [Szw03], a large number of the classes whose clique graphs have been
characterized so far are K-fixed or K-closed. This is the case for HCA graphs because
they are K-closed. One of the difficulties for solving the above problems for circular-arc
graphs is the fact that the class is not K-closed (see e.g. Figure 9.1). In [Szw03] it is
also mentioned that many of the characterized classes C that are neither K-fixed nor
K-closed are such that K(K(C)) ⊆ C. For instance, clique graphs of chordal graphs are
dually chordal, and clique graphs of dually chordal graphs are chordal.

Problem 24. Is there a circular-arc graph G such that Ki(G) is not a circular-arc graph
for every i > 0?

Problem 25. Describe the family of circular-arc graphs whose clique graph is also a
circular-arc graph.

Problem 26. Characterize those circular-arc graphs that are also clique graphs.

Problem 27. Prove or disprove: the recognition of clique graphs restricted to the class
of circular-arc graphs can be solved in polynomial time.
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[Esc73] F. Escalante – “Über iterierte Clique-Graphen”, Abh. Math. Sem. Univ.
Hamburg 39 (1973), p. 59–68.
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