
Di r ecci ó n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto : digital@bl.fcen.uba.ar

Tesis Doctoral

Algoritmos y complejidad para
algunos problemas de dominación

Mizrahi, Michel Jonathan

2014-11-21

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

Mizrahi, Michel Jonathan. (2014-11-21). Algoritmos y complejidad para algunos problemas de
dominación. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Cita tipo Chicago:

Mizrahi, Michel Jonathan. "Algoritmos y complejidad para algunos problemas de dominación".
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2014-11-21.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar

UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de computación

Algoritmos y complejidad para algunos problemas de dominación

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires en el

área Ciencias de la Computación

Michel Jonathan Mizrahi

Director de Tesis: Dr. Min Chih Lin

Consejero de Estudios: Dr. Min Chih Lin

Lugar de trabajo: Instituto de Cálculo, FCEyN, Universidad de Buenos Aires

Fecha de defensa: 21 de Noviembre, 2014

Buenos Aires, 2014

Algoritmos y complejidad para algunos problemas de dominación

Resumen

Los problemas de dominación forman un área de investigación en crecimiento, debido

a la cantidad de aplicaciones que pueden modelar, entre las cuales podemos nombrar

redes sociales, sistemas distribuidos, redes biológicas, problemas de localización de

instalaciones, etc. En esta tesis estudiamos los siguientes problemas de dominación

(i) el conjunto dominante mı́nimo, (ii) dominación romana, (iii) dominación eficiente

por vértices, (iv) dominación eficiente por aristas (también conocida como matching

inducido dominante), (v) dominación perfecta por vértices (vi) dominación perfecta

por aristas, y (vii) subgrafo cordal máximo inducido sin vertices propiamente

dominados (también conocido como eliminación de vértices para formar clusters).

Para el problema (i) determinamos su complejidad para clases de grafos donde se

prohiben subgrafos inducidos con a lo sumo cuatro vértices. Estudiamos los problemas

(i) y (ii) para varias subclases de grafos P5-free, dando algoritmos eficientes, robustos y

simples en ambos casos. Algoritmos de complejidad lineal para grafos arco-circulares

fueron presentados para los problemas (iv), (v), (vi) usando algoritmos existentes

para el problema (iii). Damos tres algoritmos de tiempo exponencial para resolver

el problema (iv) en grafos generales. Además, para el problema (iv), presentamos

algoritmos de complejidad O(n) restringidos a grafos cordales, dualmente-cordales, bi-

convexos, y claw-free. Estudiamos cuatro variantes del problema (vii) y presentamos

algoritmos eficientes para todos ellos cuando nos restringimos a grafos de intervalos

propios, grafos de intervalos, grafos arco-circulares, grafos de permutación, y grafos

trapezoide. Por otro lado, probamos que las cuatro variantes son NP-Dificil para

grafos bipartitos. Finalmente, mostramos que dos variantes son NP-Dificil para grafos

split, mientras que las otras dos variantes se pueden resolver en tiempo polinomial.

palabras clave: algoritmos, teoŕıa de grafos, conjunto dominante, complejidad

computacional

Introducción

Muchos de los problemas interesantes que surgen de aplicaciones en diversas

disciplinas son dif́ıciles de computar. La noción de la dificultad de cómputo de un

problema fue formalizada por el famoso trabajo [36], donde se funda la teoŕıa de la

NP-Completitud.

Dado que la pregunta P=NP sigue abierta, es valioso encontrar maneras de atacar

problemas dificiles de computar (también llamados NP-Completos) aunque no sea con

algoritmos polinomiales que encuentren la solución óptima.

Una de las maneras de atacar problemas dificiles es con una búsqueda exhaustiva,

que consiste en un algoritmo de fuerza bruta que toma decisiones inteligentes de

modo de obtener una respuesta lo antes posible. Esto usualmente implicia descartar

soluciones candidatas que llevan a resultados no óptimos. Esta técnica da la garant́ıa

de encontrar la solución óptima, pero no hay garant́ıas de que el tiempo que necesite

el algoritmo sea polinomial. El no tener garant́ıas de tiempo puede ser prohibitivo

para determinado tipo de aplicaciones.

Otra manera de atacar problemas es restringir el dominio. Los datos provenientes

de aplicaciones que surgen en distintas diciplinas no suelen ser datos arbitrarios,

sino que muchas restricciones pueden ser asumidas sobre ellos. Estas restricciones

suelen estar reflejadas en propiedades estructurales que los datos deben cumplir.

Esto permite restringir el problema a casos donde el cómputo de la solución puede

ser llevado a cabo de manera óptima con un algoritmo polinomial. Esta técnica

es particularmente usada en el área de teoŕıa de grafos, debido a que los grafos

i

generales (sin restricciones) permiten modelar estructuras muy generales, y por lo

tanto los problemas originales pueden ser representados con grafos que cumplan varias

restricciones muy particulares. Esto impulsó el estudio de los grafos restringidos

a determinadas estructuras, las cuales fueron formalizadas de muchas maneras,

principalmente a través de la representación usando intersección de conjuntos [50].

Esto llevó al estudio de familias de grafos definidas por conjuntos, donde cada

conjunto representa un vértice de un grafo, y dos vértices son adyacentes si los

conjuntos tienen intersección no vaćıa.

Estas dos técnicas, búsqueda exhaustiva y restricción del dominio han sido las

principales herramientas usadas para atacar los problemas planteados en esta tesis,

pero no son las únicas posibles, entre las técnicas alternativas podemos nombrar

la programación lineal entera [72], complejidad parametrizada [46], algoritmos

aproximados [95], Monte-Carlo and Las-Vegas methods [37], y heuristicas como

algoritmos genéticos, búsqueda local, entre otras [90].

En esta tesis nos enfocamos en el problema del conjunto dominante de cardinalidad

mı́nima, ampliamente estudiado en teoŕıa de grafos, que consiste en encontrar un

conjunto de vértices de mı́nima cardinalidad tal que cada vértice del grafo pertenezca

al conjunto encontrado, o sea adyacentes a algún vértice del mismo.

Durante el segundo caṕıtulo identificamos la complejidad del problema re-

stringiendo el dominio a determinadas familias de grafos. En particular, estudiamos

la complejidad para grafos prohibiendo como subgrafo inducido algún grafo de orden

menor a cinco.

En el tercer caṕıtulo, hacemos un análisis enfocado en la parte algoŕıtmica del

problema, estudiando lo que ocurre para subclases de grafos que tienen prohibido

contener a un P5 como subgrafo inducido. Estudiamos para estas mismas clases

de grafos, una variante del problema, denominada dominación romana, proveniente

de una manera de optimizar la acomodación de legiones del ejército romano, que

puede ser fácilmente adaptado a un problema de alocación de recursos. Mostramos

ii

algoritmos extremadamente simples y eficientes para resolver el problema en varias

de estas subclases.

En el cuarto caṕıtulo mostramos tres algoritmos exactos para resolver una variante

del problema de dominación, donde se pide dominar las aristas del grafo. Los

algoritmos usan la técnica de búsqueda exhaustiva, pero probamos además que para

dos de ellos, dados ciertas restricciones sobre los datos de entrada, el algoritmo se

comporta polinomial.

También mostramos como mejorar los algoritmos ya estudiados para resolver este

problema en diversas clases de grafos: cordales, dualmente-cordales, biconvexos, y

claw-free.

En el quinto caṕıtulo mostramos como resolver dos variantes de dominación

ampliamente estudiadas, llamadas dominación eficiente y dominación perfecta en

grafos arco-circulares.

Finalmente en el sexto caṕıtulo planteamos una variante de uno de los problemas

más estudiados de clustering, que puede ser descripto a partir de conceptos de

dominación de vértices. Damos resultados para este problema cuando se restringen los

datos de entrada, en particular, damos algoritmos eficientes para grafos de intervalos-

propios, intervalos, arco-circulares, trapezoides. También mostramos la complejidad

del problema en grafos split y grafos bipartitos.

iii

Complejidad restringida por

subgrafos inducidos prohibidos

En este caṕıtulo estudiamos la complejidad computacional del problema conjunto

dominante de cardinalidad mı́nima en grafos caracterizados por subgrafos inducidos

prohibidos. Damos una serie de resultados para el problema en grafos definidos

para cualquier combinacion de subgrafos inducidos prohibidos con a lo sumo cuatro

vértices, resultando en una pruba de NP-Completitud o un algoritmo polinomial para

cada caso. Finalmente, extendemos los resultados mostrando que el problema sigue

siendo NP-Dificil, incluso para grafos planares, de grado máximo tres, y sin claw,

diamantes, K4 o ciclos de longitud 4,5,7,8,9,19, y 11, todos ellos inducidos.

Comenzamos mostrando algunos resultados conocidos sobre la complejidad del

problema, cuando se prohiben algunos subgrafos inducidos de tamaño menor o igual

a cuatro [6, 32, 70]. Luego, enumeramos los resultados conocidos, más algunos otros

que son fácilmente deducibles, para dar una descripción clara de lo que se conoce

hasta el momento, y lo que falta. Mostramos también la información en forma visual,

para facilitar la búsqueda de resultados conocidos, y no conocidos. Explicamos cuales

resultados deben ser provistos para tener un esquema completo que permita saber,

dado cualquier conjunto C de grafos de orden a lo sumo cuatro, cuál es la complejidad

del problema en un grafo C-free (es decir, un grafo donde los elementos de C están

prohibidos como subgrafos inducidos).

iv

Finalmente, procedemos a hacer las demostraciones necesarias para poder com-

pletar el esquema, y extendemos una de esas demostraciones a un resultado más

general.

v

Algoritmos restringidos a grafos

P5-free

El problema de dominación romana mı́nima es una variante del problema de conjunto

dominante mı́nimo. Ambos problemas son NP-Completos cuando se los restringe a

grafos P5-free (grafos sin P5 inducidos) [6, 35]. En este caṕıtulo estudiamos ambos

problemas para algunas subclases de los grafos P5-free.

Hemos propuesto algoritmos muy simples para determinar la solución a ambos

problemas, de modo que corra en tiempo polinomial si el resultado es una constante.

El mismo algoritmo es extendido para resolver el problema eficientemente en cografos

y en grafos (P5,(s,t)-net)-free. Nuestros algoritmos mejoran resultados previos sobre

(P5,bull)-free [70], y (Kp, P5)-free, con p constante [105]. Si bien ya exist́ıan algoritmos

eficientes para resolver el problema en cografos [32, 51, 75, 87], todos ellos dependen

de estructuras de datos sofisticadas como cotrees, descomposiciones modulares,

extensiones homogeneas, etc. o requieren obtener un modelo apropiado del grafo

original para luego poder aplicar el algoritmo. Nuestra propuesta es extremadamente

simple, y usa los mismos procedimientos que para el resto de los algoritmos.

vi

Dominación eficiente por aristas

En este caṕıtulo desarrollamos algoritmos exactos para la versión por pesos y de

conteo del problema de dominación eficiente por aristas, también conocida como

Matching Inducido Dominante. Este problema ha sido estudiado de manera extensiva

[20, 22, 24, 27, 28, 29, 69, 80, 81]. También desarrollamos algoritmos para el problema

restringido a diversas clases de grafos. Este problema está motivado por diversas

aplicaciones en las áreas de teoŕıa de códigos, ruteos en redes, y alocación de recursos.

Más detalles del problema, asi como sus aplicaciones relacionadas, pueden encontrarse

en [61, 78].

Dada una arista e ∈ E, decimos que e se domina a si misma, y a cada arista

que comparte un vértice con e. Un subconjunto E ′ ⊆ E es un matching inducido de

G si cada arista de G es dominada por a lo sumo una arista en E ′. Un Matching

Inducido Dominante de G es un subconjunto de aristas que domina a todas las aristas

de G y a la vez, es un Matching Inducido. El problema, en su variante más simple,

consiste en identificar si un grafo G contiene algún Matching Inducido Dominante.

Este problema es NP-Dificil. Dada una función E(G) → R, la versión pesada del

problema es encontrar el Matching Inducido Domnante tal que la suma de pesos de sus

aristas sea mı́nima. La versión de conteo consiste en contar la cantidad de Matchings

Inducidos Dominantes que existen en el grafo. Los algoritmos desarrollados en este

caṕıtulo resuelven la versión con pesos y pueden ser adaptados fácilmente para la

versión de conteo del problema. El primer algoritmo presentado corre en tiempo

lineal, dado un conjunto dominante de cardinalidad constante. El segundo algoritmo

vii

corre en tiempo polinomial, en caso que la cantidad de conjuntos independientes del

grafo de entrada sea polinomial. El tercero tiene complejidad temporal O∗(1.1939n),

y complejidad espacial lineal.

Finalmente mostramos como se pueden mejorar algoritmos para resolver este

problema grafos cordales, dualmente-cordales, biconvexos y claw-free.

viii

Dominación Perfecta y Eficiente

En el caṕıtulo anterior mostramos algoritmos para el problema de dominación eficiente

por aristas (también conocido como Matching Inducido Dominante). Este problema

proviene de un problema más general, que son la dominación eficiente y perfecta.

Dado un grafo G = (V,E), un conjunto dominante perfecto es un subconjunto de

vértices V ′ ⊆ V (G) tal que cada vértice v ∈ V (G) \ V ′ es dominado por exactamente

un vértice v′ ∈ V ′. Un conjunto dominante eficiente es un conjunto dominante

perfecto V ′, tal que V ′ es un conjunto independiente. Todo grafo G contiene un

conjunto dominante perfecto, por ejemplo, V (G) es un conjunto dominante perfecto

para cualquier grafo G. Pero no todo grafo contiene un conjunto dominante eficiente.

Los problemas consisten en minimizar la cantidad de vértices de los conjuntos

dominantes (perfecto y/o eficientes). Estos problemas, incluso restringidos a familias

de grafos, son NP-Dificil. La versión pesada consiste en un grafo donde cada vértice

v tiene un peso, y se quiere minimizar la suma de pesos de los vértices.

Todo lo dicho anteriormente puede ser aplicado en aristas, en lugar de vértices.

En el caso de dominación eficiente por aristas, el problema es equivalente al Matching

Inducido Dominante.

En este caṕıtulo, mostramos algoritmos para los cuatro problemas, cuando se

restringe a grafos arco-circulares.

ix

Eliminación de vértices para

formar clusters

Muchos problemas de clustering consisten en identificar objetos similares en cate-

goŕıas, y excluir los objetos que no pertenecen a ningúna de ellas. Esos elementos

pueden provenir de errores de medición, o pueden ser simplemente elementos fuera de

la norma. El objetivo es erradicar esos elementos de modo que el resultado sean grupos

de elementos bien categorizados. Muchas aplicaciones surgen de obtener clusters a

partir de estudiar la relación entre cada par de objetos [4, 5, 45].

En este caṕıtulo estudiamos el problema de eliminación de vertices para formar

clusters. El problema consiste en obtener la mı́nima cantidad de vértices que deben

ser eliminados de modo que el grafo resultante sea una unión disjunta de cliques,

también conocido como grafo cluster. Presentamos algoritmos polinomiales para el

problema en sus cuatro variantes: con o sin pesos, y con o sin número fijo de cliques.

En el caso de la versión con pesos, el problema consiste ahora en un grafo con pesos en

los vértices, y se quiere minimizar la suma de los pesos de los vértices eliminados, en

lugar de su cardinalidad. En el caso del número fijo de cliques, el problema contiene un

parámetro adicional que restringe a la cantidad exactas de cliques disjuntas que debe

tener el grafo cluster resultante. Es importante destacar que el caso pesado es más

general que la variante sin pesos (pués es equivalente a resolver el problema utilizando

peso 1 en cada vértice). Del mismo modo, la variante que establece una cantidad

exacta de cliques (representado por un parámetro que denotamos D) para el grafo

x

resultante, es más dificil que la versión que no esta restringida por este parámetro,

debido a que resolver el problema con todos los parámetros posibles desde D = 1

hasta D = n sirve para encontrar la solución de la versión sin parámetros.

Estudios anteriores analizaron este problema en términos de algoritmos parametriza-

dos [13, 17].

Mostramos algoritmos de complejidad temporal y espacial polinomial para las

cuatro variantes del problema en diversas clases de grafos, entre ellas, intervalos-

propios, intervalos, arco-circulares, permutación y trapezoides.

Luego, mostramos que la variante sin cliques fijas para grafos split se puede

resolver en tiempo polinomial, mientras que al agregar el parámetro D, el problema

se vuelve NP-completo.

Finalmente damos una demostración de que el problema en su variante más sencilla

es NP-Completo para grafos bipartitos, en consecuencia, el problema es dificil para

todas sus variantes.

xi

Conclusiones

En esta tesis presentamos nuevos resultados en diversos problemas de dominación.

Además, pusimos énfasis en hacer muchos de los algoritmos descriptos útiles para

fines prácticos, es decir, simplificando los algoritmos y las estructuras de datos usadas,

manteniendo la misma complejidad temporal y espacial.

Al comienzo de la tesis, mostramos algunos resultados teóricos interesantes, dando

un resultado de complejidad para el problema general en diversas familias de grafos

muy estudiadas.

Luego mostramos una variante, llamada dominación romana, y vimos como

algunos algoritmos sencillos pueden servir para resolver el problema de dominación, y

de dominación romana para subclases de grafos P5-free. Una gran ventaja en este caso

es la simpleza de los algoritmos, que luego son usados para dar un nuevo algoritmo

para cografos, que no mejora la performance de los anteriores, pero simplifica mucho

su implementación y demostración.

En el siguiente caṕıtulo, mostramos diferentes maneras de atacar el problema de

dominación eficiente por aristas. Mostramos algoritmos exponenciales no triviales

que sirven para resolver el problema en grafos generales, y demostramos que bajo

ciertas circunstancias, los algoritmos encuentran el resultado en tiempo polinomial.

Adicionalmente, estudiamos los problemas de dominación perfecta y eficiente por

vértices y aristas, problemas que forman casos más generales que lo hecho en el

caṕıtulo anterior. En este sentido, damos los resultados para estos cuatro problemas

en grafos arco-circulares.

xii

El problema de Cluster-Vertex-Deletion es estudiado en términos de restricciones

en el dominio de entrada, esto es, restringido a determinadas familias de grafos.

Mostramos resultados interesantes para el problema en varias de las familias de grafos

más estudiadas, y presentamos algoritmos de complejidad óptima en algunos casos,

aśı como resultados de su complejidad en los casos que encontramos el problema es

NP-Completo.

xiii

Algorithms and complexity for some domination problems

Abstract

Domination is a growing research area in graph theory, with a vast number of

applications across different disciplines, which include social networks, distributed

computing, biological networks, facility location problems, etc. In this thesis we

studied the following domination problems (i) minimum dominating set problem (ii)

Roman domination (iii) efficient vertex domination (iv) efficient edge domination

(also known as dominating induced matching or DIM) (v) perfect vertex domination

(vi) perfect edge domination (vii) maximum induced chordal subgraph without

properly dominated vertices (also known as cluster vertex deletion). For problem

(i) we determined its complexity for graph classes defined by forbidding as induced

subgraphs all graphs with at most four vertices. We studied problems (i) and (ii) for

some subclasses of P5-free graphs, giving efficient, robust and simple algorithms for

both of them. Linear time algorithms restricted to circular-arc graphs were presented

for problems (iv), (v), (vi) using existent linear algorithms from problem (iii). We

described three exact exponential time algorithms solving problem (iv) for general

graphs. Also, for problem (iv), O(n) time algorithms were given restricted to chordal,

dually-chordal, bi-convex and claw-free graphs. We studied four variants of problem

(vii) and presented efficient algorithms for all variants whenever the graphs were

proper-interval graphs, interval graphs, circular-arc graphs, permutation graphs and

trapezoid graphs. On the other hand we proved that the four variants are NP-Hard

for bipartite graphs. Finally we showed that two of the variants are NP-Hard for split

graphs while the other two variants are polynomially solvable.

keywords: algorithms, graph theory, dominating set, computational complexity

Agradecimientos

Primero y principal, quiero agradecer a mi director, Oscar (Min Chih Lin), ya que sin

él nada de esto hubiese sido posible. Me siento extremadamente afortunado de haberlo

tenido como director, no solo aprend́ı como alumno, sino también como persona.

Oscar me abrió las puertas desde el primer d́ıa, desde el primer email comentándole

sobre mi interés en investigación, cuando aún no teńıa definido si iba a hacer un

doctorado con él. Con los años confirmé que es excelente como persona, y como

director. Me supo guiar durante todo momento, y me dió la libertad de explorar,

buscar e investigar sobre temas y ĺıneas de investigación que yo créıa interesantes. Me

puso una prioridad que nunca hubiese esperado, gracias a lo cual esta tesis prosperó, y

además hizo lo imposible para asegurarse que pueda viajar y presentar los resultados

en congresos internacionales, lo cual fue esencial en mi formación. Gracias!

A Jayme Szwarcfiter, con quien trabajé durante gran parte de mi tesis. Agradezco

el conocimiento que me supo transmitir, y la humildad con la cual lo hizo. La estad́ıa

en Brasil para trabajar junto a él fue más que gratificante, no sólo aprend́ı mucho

trabajando frente a una persona de semejante trayectoria académica, sino que también

aprend́ı lo que es ser una gran persona en todos los aspectos. Gracias por recibirme

en tu casa, y gracias por todas las enseñanzas en todos los ámbitos.

A mi familia, Marvin, Pa y Ma, les agradezco eternamente por su amor

incondicional.

A Dan, porque sin él nunca hubiese conocido esta facultad. A Mich, por ser

de esos valiosos amigos que sabes que siempre está cuando lo necesitas. Al grupete

i

de siempre, Maru, Pablox, Fer, Luigi, Nahuel, Ale, y Vicky con quien compart́ı una

inumerable cantidad de salidas, anécdotas y vivencias, que hicieron este camino mucho

más divertido. A mis compañeros de oficina porque disfruto hablar y actualizarme de

todo, las pocas veces que voy a la oficina. A Saveli, porque es de las pocas personas

con las que puedo me quedar hablando de poĺıtica o filosof́ıa, hasta las 4 am.

A todos los que fueron compañeros, ayudantes, estudiantes, docentes, o amigos

porque ayudaron a mi formación en todos los aspectos de mi vida.

Por último, y no menos importante, quiero agradecer al CONICET por la beca

que me permitió realizar esta tesis. Al Instituto de Cálculo por brindarme un lugar

ameno donde trabajar, al Departamento de Computación (FCEyN) de la Universidad

de Buenos Aires, porque es a quien debo mi formación como estudiante, docente e

investigador.

I want to add special thanks to the jury members for their thorough review, which

helped to improving the quality of this thesis.

ii

Contents

1 Introduction 1

1.1 Background . 4

1.2 Notations and Definitions . 5

1.3 Overview . 11

2 Complexity restricted by forbidden induced subgraphs 14

2.1 Preliminaries and Previous Results 14

2.2 Completing hierarchy . 18

2.3 Results . 26

3 Domination and Roman-Domination algorithms 28

3.1 Preliminaries . 29

3.2 Algorithms for general graphs . 31

3.2.1 Domination . 31

3.2.2 Roman Domination . 32

3.3 Algorithms for P4-free graphs . 33

3.4 Algorithms for (P5, (s, t)-net)-free graphs 34

3.4.1 Domination . 34

3.4.2 Roman Domination . 37

4 Efficient Edge Domination 40

4.1 Preliminaries . 41

iii

4.2 Previous results . 42

4.3 Efficient Edge Domination on general graphs 43

4.3.1 Colorings and Extensions . 43

4.3.2 An algorithm based on vertex domination 49

4.3.3 An algorithm based on maximal independent sets 54

4.3.4 An O∗(1.1939n) algorithm for DIMΩ(G) and DIMC(G) . . . 56

4.4 Efficient Edge Domination on several restricted graph classes 66

4.4.1 Chordal, Dually Chordal and Biconvex graphs 66

4.4.2 Claw-free graphs . 70

4.5 Counting DIMs . 76

5 Efficient and Perfect Domination 79

5.1 Preliminaries . 79

5.2 Circular-Arc graphs . 80

5.3 Minimum weighted efficient vertex domination 82

5.4 Minimum weighted efficient edge domination 82

5.4.1 maxp∈C |A(p)| = 2 . 85

5.4.2 maxp∈C |A(p)| = 3 . 86

5.5 Minimum weighted perfect vertex Domination 89

5.5.1 MWPVD algorithm for CA-graphs 91

5.6 Minimum weighted perfect edge domination 95

5.6.1 A set of two or three arcs cover the entire circle 96

5.6.2 No set of two or three arcs cover the entire circle C 99

6 Cluster Vertex Deletion 105

6.1 Preliminaries . 105

6.2 Previous results . 106

6.3 Algorithms and Complexity . 107

6.3.1 Interval graphs . 107

6.3.2 Circular-arc graphs . 113

iv

6.3.3 Permutation graphs . 116

6.3.4 Trapezoid graphs . 121

6.3.5 Split graphs . 122

6.3.6 Bipartite graphs . 127

7 Conclusions 129

ii

Chapter 1

Introduction

Many of the interesting problems that arise from applications in different disciplines

have been proved to be hard to compute. The hardness of the problems were

formalized by the seminal paper [36], which laid the foundations for the theory of

NP-Completeness. It became clear that the hard questions that many computer

scientists were trying to solve belong to the NP-Complete class, and pose the question

of P=NP. Actually no one knows if the hardest problems from the NP class can be

computed in polynomial time on the input size, but many people assumes it is highly

improbable to solve these problems in an optimal way within a reasonable time (i.e.

polynomial time). Moreover, even if this can be accomplished in the future, no one

is expecting a practical polynomial time universal algorithm that behaves well for

problems from the whole NP class. Therefore it is valuable to be able to solve many

of those problems now with the current tools and knowledge that is available. The

fact that it is not currently possible to solve them in a reasonable time lead to different

approaches in order to give solutions that may serve for practical purposes. One of

these approaches is the intelligent exhaustive search, which consists on a brute force

search algorithm that makes some smart decisions in order to obtain an answer as

soon as possible. This usually involves discarding candidate solutions that lead to

non optimal results, which ultimately saves computing time. This technique is usually

1

referred as Backtracking or Branch & Reduce. It guarantees that the optimal solution

will be found, which makes it a useful approach for certain applications. The main

drawback of an exhaustive search approach is that it gives no guarantee that the time

it needs to find the optimal solution is bounded by a polynomial function in the size of

the input, that is, the worst case of the algorithm could take an exponential number

of steps (in size of the input), which may be an unreasonable amount of time. This

is not acceptable for many problems where certain time guarantees are needed.

Another common approach is to restrict the problem domain. It turns out

that many times the input is not arbitrary data, and a lot of assumptions over

the input instances can be made according to the field where the problem came

from. These restrictions come often in the form of structural properties that each

input instance must satisfy. The structural properties restrictions have been widely

studied, particularly in graph theory. It is known that graph theory is useful to model

problems, to the point that it is even hard to come up with problems that cannot

be modeled with graph theory. The fact that graph theory is so powerful is also

a weakness per se, since solving problems on graphs means solving problems for so

many different models that it may be very hard to deal with all of them. Most of

the times, the problem we want to solve may be able to be modeled with certain

restricted graphs. This was the case for many interesting problems, which lead to the

interesting field of studying graph problems restricted to certain graph structures.

These structures became formalized in many ways, one of the most commonly used

being the representation of graphs using set intersections [50] which lead to graph

families defined by the possible sets to be used (also known as graph classes). The

number of graph families have grown exponentially over the last decades [21] with

hundreds of graph classes being studied nowadays. Many of these classes arise from

practical interests, and many others from theoretical interests. Among graph classes

with practical interests we can name the interval graphs [21, 74], circular-arc graphs,

[21, 58], permutation graphs [3, 21], split graphs [21, 84], bipartite graphs [1, 21], all

of which have been studied in this thesis.

2

These approaches were mainly used at this thesis, but they are not the only ones

that exist. The following are widely used, but this thesis makes no use of them.

Techniques such as branch and bound and integer programming [72] rely on the

same principles of intelligent exhaustive search, by making smart decisions in order

to minimize the time needed to find the solution. They make a heavy use of linear

algebra language in order to pose the problems and the solutions.

The related parameterized complexity field has grow interest recently, where the

algorithm may behave within exponential time on some parameters of the instance

instead of the total size of the input. The complexity of the problem can be measured

as a function of those parameters. A foundational book on the topic is [46].

Alternative approaches include the probabilistic algorithms such as Monte-Carlo

method whose running time is deterministic but whose output may be incorrect

with a certain probability [37], and Las-Vegas [37] which is a randomized algorithm

whose running time is not deterministic, this is, it may take very long time with

a certain probability, but the answer is deterministic and always correct. One of

the most popular approaches is that of approximation algorithms [95]. The method

sacrifices the optimality of the solution in order to obtain a polynomial time algorithm,

nonetheless the solution is within a certain threshold from the optimal solution, thus

the solution is no worse than some guarantee that the method gives.

Note that previous approaches give some guarantee of time complexity or solution

correctness, but there is a basic trade-off that cannot be surpassed unless P =

NP. The alternative approach is the use of heuristic methods such as local search,

simulated annealing, genetic algorithms, etc. [90] which give no guarantee of runtime

or correctness of the solution. It turns out that many times the problems from real life

are so messy and hard to deal with, that to ensure guarantees of time or correctness

there is a need of time and resources which are not usually available, or even worst,

no one could give any guarantees for those problems yet. Hence the most practical

solution for these cases is to use heuristics which may give very good results, in short

time and may be easier to implement.

3

1.1 Background

The graph theory discipline started several centuries ago, many referring to Leonard

Euler being one of the founders by studying the problem of the seven bridges of

Köningsberg [7], being this the first paper that effectively uses graph-theoretic ideas.

A graph is a mathematical structure that serves as a representation of relations among

different objects. The usual convention is to say the objects are vertices (represented

by points) and the relations are edges (represented by lines that joins those points).

The graphs are useful as a tool for modeling problems that come from very different

sources, allowing to use the same theoretical properties to solve problems that may

seem totally unrelated. Ultimately many problems can be described by a set of

relations among different elements or processes, as may be a social network described

by people and their friendship or biological data where the elements may be different

DNA data and the relations are among similar elements (same specie data). There

is no restriction on the objects and their relationship, this is, a graph can be any

set of objects and any two objects may be related or not, even an infinite number of

objects. It turns out problems from real life usually do not contain infinite elements,

and moreover, usually can be modeled with graphs which satisfy several properties

that impose a lot of restrictions to the represented graphs. This leads to the study of

graphs defined by set intersection [50], which serve to restrict the number of models

that can be represented, as we already mentioned before. The advantage of having

graphs that are more restricted and can represent only a restricted subset of models is

that it is easier to work on solutions for these restricted representations. An overview

of the intersection graph theory can be found in [21].

Many of the problems that are posed in terms of graph theory seem to appear

repeatedly, such is the case of the minimum dominating set problem. The minimum

dominating set problem along with some variations emerges from numerous problems

on diverse areas. A good source with several applications of domination problems

can be found in [89]. The minimum dominating set problem, along with many of the

4

interesting variations of this problem, was proved to be NP-Complete [57]. It was

also shown that it is polynomial time approximable with factor 1 + lg |V | using it as

a special case of the minimum set cover [65], however, it is not approximable within

(1 − ǫ) ln |V | for any ǫ > 0 unless NP ⊆ DTIME [52]. The problem can be solved

by a polynomial-time algorithm when the input domain is restricted, for instance, for

graph families such as interval graphs [30], permutation graphs [32], trees, etc. These

facts lead to an interesting field of study which consists on identifying the domains

where the instances can be solved in polynomial-time. The restrictions on the input

are usually studied by restricting the study to certain graph families. In the next

section, we give the formal definitions of the problems studied on this thesis, along

with the corresponding references that point the motivations and past work done on

them.

1.2 Notations and Definitions

A graph is an ordered pair G = (V,E) comprising a set V of vertices or nodes together

with a set E of edges or lines, which are 2-element subsets of V . An edge gives the

relation between two vertices, which is represented by the pair of vertices. In the case

of directed edges, an edge is represented by an ordered pair and we say the graph

is directed, otherwise it is represented by an unordered pair and we say the graph is

undirected. Unless stated otherwise, along this thesis we consider undirected graphs

G, denoting by V (G) and E(G), respectively, the sets of vertices and edges of G,

n = |V (G)| and m = |E(G)|. For v ∈ V (G), N(v) represents the set of neighbors

of v ∈ V (G), while N [v] = N(v) ∪ {v}. For S ⊆ V (G), N(S) = ∪v∈SN(v) \ S, and
N [S] = ∪v∈SN(v)∪S. We say a vertex v ∈ V (G) such that N [v] = V (G) is universal,

and a matching is a set of pairwise non-adjacent edges.

A path is a sequence of consecutive edges in a graph. Unless is stated otherwise,

we assume a path is simple, meaning that no vertices are repeated. The length of a

path is the number of edges it contains. The distance between two vertices u and v

5

in a graph G, is the minimum length among all paths from u to v. A cycle is a path

where the first and the last vertex are the same. A chord of a path or a cycle is an

edge that joins two non-consecutive vertices of the path or cycle. As usual, Cn and

Pn denote the chordless cycle and the chordless path on n vertices.

A dominating set for a graph G = (V,E) is a subset D ⊆ V such that every

vertex not in D is adjacent to at least one vertex of D. The domination number

γ(G) is the number of vertices in a smallest dominating set for G. The dominating

set problem concerns testing whether γ(G) ≤ K for a given graph G and input K.

The first papers about this problem can be dated from 1950, as noted by [63]. The

problem is NP-Complete [57].

We say an induced subgraph is a subset of the vertices of a graph G together with

any edges whose endpoints are both in this subset. Given a graph G = (V,E) and

a subset of the vertices V ′ ⊆ V , we denote with G[V ′] the subgraph induced by the

subset V ′.

An induced subgraph H of G is called dominating if V (H) is a dominating set of

G. We say a vertex of degree one is a pendant vertex. A graph is said to be connected

if there is a path joining u and v, for any two vertices u and v, and a connected

component is a maximal connected subgraph.

A complete set of a graph is a set of pairwise adjacent vertices, while a clique is

a maximal complete set. The complete graph of order n is denoted by Kn. A graph

that can be partitioned into two set of vertices V1, V2 such that each vertex of the V1

is connected to each vertex of V2, and no adjacencies exists between vertices in V1

and V2, is denoted as Kn,m, where |V1| = n and |V2| = m. The graph K4 minus one

edge is called diamond, the graph K1,3 is called claw. The graph that consists of a K3

plus one vertex connected to exactly one vertex from the K3 is called paw. Whenever

the prefix co is added, it means the complement of the graph.

Subdivision of an edge is the operation of creation of a new vertex on the edge.

When a polynomial-time algorithm has been shown for a problem, we say that the

6

problem is in P . Whenever the problem is in the complexity class NP-Complete we

say that the problem is NPC.

The following formal definition of intersection graphs from [83] is useful to

understand several graph classes used along this thesis. Let F = {S1, . . . , Sn} be

any family of sets. The intersection graph of F , denoted Ω(F), is the graph having

F as vertex set with set Si adjacent to Sj if and only if i 6= j and Si ∩ Sj 6= ∅. A

graph is an intersection graph if there exists a family F such that G ∼= Ω(F) where
we typically display this isomorphism by writing V (G) = {v1, . . . , vn} with each vi

corresponding to Si, thus vivj ∈ E(G) if and only if Si ∩ Sj 6= ∅. When G ∼= Ω(F),
F is then called a set representation of G.

We define the operation L : g → g that takes a graph and returns a graph. Given

a graph G, we say L(G) is the line graph of G. Given a graph G, the result of L(G)

is the intersection graph of the edges of G.

We define the square operation over a graph. The square graph G2 of a graph G

is the graph G with the added edges between any two vertices whose distance in G

is two.

An independent set or stable set for a graph G = (V,E) is a set I ⊆ V such that

for every two vertices in I, there is no edge connecting the two. Equivalently, each

edge in the graph has at most one endpoint in I. The size of an independent set is the

number of vertices it contains. A maximum independent set is an independent set of

largest possible size for a given graph G. Determining the size of an independent set

of maximum cardinality is NPC [57].

The weighted version of both problems deals with a weighted graph, that is, a

graph G = (V,E) and a function w : V → R+, where each vertex is assigned a

weight. The case where the weights of all vertices are exactly 1 is exactly the same

as the unweighted version.

A perfect dominating set for a graph G = (V,E) is a subset D ⊆ V such that

every vertex not in D is adjacent to exactly one vertex of D.

7

An efficient dominating set is a perfect dominating set D such that D is also an

independent set.

Given an edge e ∈ E, say that e dominates itself and every edge sharing a vertex

with e. A set of edges E ′ ⊆ E from the graph G = (V,E) is dominating if E ′

dominates every edge from E. Subset E ′ ⊆ E is an induced matching of G if each

edge of G is dominated by at most one edge in E ′. A dominating induced matching

(DIM) of G is a subset of edges which is both dominating and an induced matching.

The problems of finding a subset of edges E ′ ⊆ E from a graph G = (V,E) such that

E ′ is an efficient edge domination or a dominating induced matching are equivalent.

Both problems require to identify if such a subset of edges satisfying those properties

exists and have been studied using both names.

We say an algorithm is robust if its output is correct even if the input does not

belongs to the restricted domain. Thus, whenever this is the case, the algorithm can

identify that the input is invalid and report it.

The arboricity of an undirected graph is the minimum number of forests into which

its edges can be partitioned. Equivalently it is the minimum number of spanning

forests needed to cover all the edges of the graph.

Graph classes

Along the thesis we work on several graph classes. We provide concise definitions

here:

• AT-free: Three vertices of a graph form an asteroidal triple if every two of them

are connected by a path avoiding the neighborhood of the third. A graph is

AT-free if it does not contain any asteroidal triple.

• Interval : [100] It is the intersection graph of a family of intervals on the real

line.

• Proper Interval : An interval graph in which no interval properly contains

another.

8

Figure 1.1: Seven intervals on the real line and the corresponding seven-vertex
interval graph.

• Bipartite: Its vertex set can be partitioned into two independent sets.

Figure 1.2: Example of a bipartite graph without cycles. [98]

• Circular-Arc: It has an intersection model consisting of arcs of a circle.

• Chordal : Every cycle of length at least four has a chord.

• Chordal-Bipartite: A bipartite graph such that each cycle of length at least six

has a chord.

• Clique-Graph: The clique graph of a given graph G, denoted with K(G) is the

graph intersection of the family of cliques of G.

9

Figure 1.3: A circular-arc graph (left) and a corresponding arc model (right). [99]

• Cograph: A graph that does not contain a P4 as an induced subgraph.

• Permutation: It is an intersection graph of a family of straight lines (one per

vertex) between two parallels. Equivalently, is a graph whose vertices represent

elements of a permutation, and whose edges represent pairs of elements that

are reversed by the permutation.

Figure 1.4: The permutation (4,3,5,1,2) and the corresponding permutation graph.
[101]

10

• Planar : It can be embedded in the plane (drawn with points for vertices and

curves for edges) without crossing edges.

• Split : Its vertex set can be partitioned into an independent set and a complete

set.

Figure 1.5: A split graph, partitioned into a clique and an independent set. [102]

• Line: The line graph L(G) of a graphG is the result of applying the L operation,

as mentioned above.

• Square: The square graph G2 of a graph G is the result of applying the 2

operation, as mentioned above.

1.3 Overview

Many of the graph families can be defined by forbidden induced subgraphs. Moreover,

it has been shown that a few restrictions of these kind makes the behaviour of many

NP-Hard problems change completely. For instance, almost all classical problems

that are NP-Hard for general graphs can be solved in linear time for cographs.

During the second chapter of this thesis, we study the problem of identifying

in which complexity class the domination problem falls when restricted to an F -
free family, where F is the family of graphs to be restricted. We have to restrict

ourselves to an affordable size for the family F . The results given allow to identify

the class complexity in which the dominating set problem falls, for whichever family

11

F conformed by graphs with at most four vertices. Some results were already known

but did not allow to establish the complete scheme of which graph restrictions make

it possible to establish if the problem falls in either NP-Complete or Polynomial-

Time class. Moreover, the results are clearly presented in order to allow a reader

an immediate answer (i.e. it does not consists of a huge table for any possible

graph family). Given the class complexity is important to know how to approach

the problem, but even it may be in P , it does not mean it is easy to deal with.

During the third chapter, we make an analysis focused on the algorithmic side

of the problem. It has been shown that the dominating-set problem restricted P5-

free graphs is NP-Hard, while the problem can be solved in linear time for P4-free

graphs, hence it seemed interesting to study the problem for subclasses of P5-free

graphs. There is a barrier between P4-free and P5-free graphs that makes the problem

behavior much harder. Recall that the motivation for the study of the dominating-

set problem arise from the many applications that can be solved using it. Moreover,

many of these applications may have some variants, which can be posed as a variant

of the dominating-set problem. We show one particular application with a natural

variant that originates from it, both of them studied on the third chapter.

There are several variants of the dominating set problem which seem to be

easier, such as the efficient edge dominating set (also known as dominating induced

matching). We also refer to this problem as DIM. This problem caught more attention

and was widely studied [20, 22, 24, 27, 28, 29, 61, 69, 80, 81]. Applications from this

problem to coding theory, network routing and resource allocation can be found in

[61, 78]. Even this is an NP-Hard problem, it can be solved in linear time, even for

P7-free graphs [24].

Given that this problem seemed to be easier, it was a good candidate to try Branch

& Reduce technique. The fourth chapter shows three different exact algorithms for the

DIM problem (weighted version and counting version of the problem). Of those three

algorithms, two of them have polynomial running time whenever certain properties

are satisfied (contains a dominating set of fixed size, or contains a polynomial number

12

of maximal independent sets). The third one has not an identified property for which

it behaves as a polynomial-time algorithm but the theoretically upper-bound for the

running time is better than the two others. In this chapter we also approach the

problem by restrictions on the domain (i.e. for certain graph families). We give

bounds for chordal, dually-chordal and biconvex graphs, which leads to improvement

of the current algorithms from O(n+m) to O(n). In addition, an improvement from

an O(n2) time algorithm for the unweighted DIM problem on claw-free graphs was

improved to an O(n) time algorithm that also solves the weighted-version.

Given two vertices u, v, if N [u] ⊂ N [v], we say u is properly dominated by v,

since any dominating set containing u can be replaced by one that uses v instead

of u and the cardinality will be less or equal. A chordal graph without properly

dominated vertices is a disjoint union of cliques (also known as cluster graph). Given

a graph G = (V,E), the minimum number of vertices that should be removed in

order to obtain a cluster graph G′ = (V ′, E ′), where G′ = G[V ′] is known as the

Cluster-Vertex-Deletion, an NP-Hard problem. It is closely related to the widely

studied problem Cluster-Editing (also known as Correlation-Clustering). It turns out

that many problems relay on clustering information, therefore, the importance of

studying and analyzing clustering algorithms. The cluster vertex deletion problem

has not been largely studied, but seems to be a natural way to deal with noise in

information. In the fifth chapter we show several algorithms for the problem when

restricted to several graph classes such as: Proper-Interval, Interval, Circular-Arc,

Permutation and Trapezoid . We also show hardness of the problem for Split graphs,

and Bipartite graphs.

Finally, the last chapter shows the summary of the thesis, where all the results

are listed.

13

Chapter 2

Complexity restricted by forbidden

induced subgraphs

In this chapter, we study the computational complexity of the minimum dominating

set problem on graphs restricted by forbidden induced subgraphs. We give a series of

dichotomy results for the problem on graphs defined by any combination of forbidden

induced subgraphs with at most four vertices, resulting in either an NP-Hardness

proof or a polynomial time algorithm. Finally we extend the results by showing that

dominating set problem remains NP-hard even when the graph has maximum degree

three, is planar and with no induced claw, induced diamond, induced K4 nor induced

cycle of length 4,5,7,8,9,10 and 11.

2.1 Preliminaries and Previous Results

We present some previous results of the complexity for the minimum dominating

set for F -free graphs, where F is a family of graphs of order at most four. For an

unary family F = {F}, usually we denote F -Free instead of F -free. Recall that the

dominating set problem can be solved independently for each connected component,

14

hence we assume graphs are connected whenever is convenient. The set of graphs of

order three are: P3, K3, 3K1 and co-P3.

Lemma 2.1. [32] The domination problem restricted to permutation graphs is in P .

Since the class of P4-free graphs is a subclass of the class of permutation graphs,

we obtain:

Corollary 2.1. The domination problem restricted to the class of P4-free graphs is

in P .

Lemma 2.2. [6] The domination problem restricted to bipartite graphs is in NPC.

Since the class of K3-free graphs is a superclass of the class of bipartite graphs,

we obtain:

Corollary 2.2. The domination problem restricted to the class of K3-free graphs is

in NPC.

Lemma 2.3. [70] The domination problem restricted to AT-free graphs is in P .

Since the classes of co-paw-free graphs and 3K1-free graphs are subclasses of the

class of AT-free graphs, we obtain:

Corollary 2.3. The domination problem restricted to the co-paw-free graphs and

3K1-free graphs are in P .

Lemma 2.4. [6] The domination problem restricted to split graphs is in NPC.

Since the class of (2K2, C4)-free graphs is a superclass of the class of split graphs,

we obtain:

Corollary 2.4. The domination problem restricted to the class of (2K2, C4)-free

graphs is in NPC.

Lemma 2.5. [105] The domination problem restricted to (Kp, P5)-free graphs for fixed

p is in P .

15

Corollary 2.5. The domination problem restricted to (2K2, K4)-free graphs is in P .

Lemma 2.6. [15] The clique-width of (claw,co-claw)-free graphs and (claw,paw)-free

graphs is bounded.

Lemma 2.7. [39] The clique-width of (K2 ∪ claw, K3)-free graphs is bounded.

Lemma 2.8. [38] The domination problem is in P for graph classes with bounded

clique-width.

Corollary 2.6. The domination problem restricted to (claw,co-claw)-free graphs or

(claw,paw)-free or (K2 ∪ claw, K3)-free graphs is in P .

We add some remarks for easy results for which we could not find any references:

Remark 2.1. Note that (claw,K3)-free ⊆ (K2 ∪ claw, K3)-free graphs. Hence the

domination problem on (claw,K3)-free graph class is in P .

Remark 2.2. The minimum dominating set problem restricted to 4K1-free graphs is

in P .

Proof. Given a 4K1-free graph G, any maximal independent set I of G has at most

3 vertices. It’s well-known that every maximal independent set is a dominating set,

then there is at least one dominating set of size at most 3. Hence, the minimum

dominating set for G can be solved by checking for each possible subset of at most

three vertices if it is a dominating set. This can be done in O(n3).

Remark 2.3. The minimum dominating set problem restricted to co-diamond-free

graphs is in P .

Proof. Given a co-diamond-free graph G, if G has no edge then γ(G) = n. Otherwise,

let e = v1v2 be an arbitrary edge. If {v1, v2} is not a dominating set then exists a

vertex w such that {v1, v2} ∩ N(w) = ∅. Clearly, {v1, v2, w} is a dominating set

because if exists some vertex x ∈ V (G) such that is not adjacent to any of them, then

{v1, v2, w, x} induces a co-diamond which is a contradiction.

16

We enumerate existent results for the complexity of the problem restricted to

F -free graphs where F is a family of graphs with 3 or 4 vertices:

Forbidden Induced Subgraphs Complexity References

P3 P [32]

3K1 P [70]

co-P3 P [70]

P4 P [32]

4K1 P Remark 2.1

co-diamond P Remark 2.2

paw,claw P [15, 38]

claw,co-claw P [15, 38]

co-paw P [70]

claw, K3 P [38, 39]

K3 NPC [104]

claw NPC [59]

paw NPC [86]

diamond NPC [86]

co-claw NPC [86]

2K2, C4 NPC [6]

We represent certain information contained in above table as a meta-graph where

each vertex corresponds to an F -free graph (a vertex gets rectangle shape if the

domination problem restricted to its corresponding class is in P ; otherwise, it gets

circular shape which means the domination problem restricted to its corresponding

class is in NPC) and each edge vw corresponds to an intersection of NPC-classes

corresponding to v and w such that the intersection is in P . In next section, we will

complete the meta-graph with new edges. This allows to determine the complexity

17

of domination problem restricted to any F -free graphs where F is a family of graphs

with at most 4 vertices.

P3

co-diamond

co-P3

3K1

P4

co-paw

4K1

C4 K4

2K2 K3

paw claw

co-claw

diamond

Figure 2.1: Scheme of graph classes complexity for the dominating set problem.
Square-shape means P and Circle-shape NPC

2.2 Completing hierarchy

We complete the study of the domination problem by restricting induced subgraphs

of order at most four, in the sense that the complexity of the domination problem

can be determined for any F -free graph where F is a family of graphs with at most

4 vertices.

In order to complete Figure 1, we need to prove the complexity of the domination

problem for the intersection of classes in which it belongs to NPC. Note that

any connected graph which is K3-free and has at least four vertices is also

(K4,paw,diamond)-free graph. We know that the problem is in NPC for K3-

free graphs, thus it is NPC for (K4,paw,diamond)-free graphs, and the vertices

corresponding to K4-free, paw-free and diamond-free graphs form an independent

set.

18

Theorem 2.1. The domination problem restricted to (2K2,claw)-free graphs class is

in P .

Proof. Let G = (V,E) be a connected (2K2,claw)-free graph. Since the domination

problem for P4-free graphs is in P , then we consider the case where G has an induced

P4 = {p1, p2, p3, p4} (p1p2, p2p3 and p3p4 are edges of P4).

Let U = V (G) \ N [P4]. If U = ∅, then γ(G) is at most 4. Hence, the problem

is in P . Now, we suppose that U 6= ∅. Clearly, U is an independent set because

G is 2K2-free. Hence, N(U) ⊆ N(P4). As G is a connected graph, N(u) 6= ∅ for

every u ∈ U . Moreover, if u, u′ are two different vertices of U then N(u)∩N(u′) = ∅
by claw-freeness. Let v be any vertex in N(U) which means v is neighbor of some

u ∈ U . Clearly, N(v) ∩ P4 = {p2, p3} because otherwise there is a 2K2 or a claw as

induced subgraph which is a contradiction. Now, we will prove that N(U) induces a

complete subgraph. Suppose there are two different no adjacent vertices v, v′ ∈ N(U),

then {p1, p2, v, v′} induces a claw which is a contradiction. Hence, N(U) induces

a complete subgraph. We show that p1 and p4 cannot have a common neighbor.

Suppose w is a common neighbor of p1 and p4. In this case, w belongs to N(P4)\N [U].

If w is adjacent to some vertex v ∈ N(U), then {w, v, p1, p4} induces a claw, a

contradiction. Hence, w is not adjacent to any v ∈ N(U). Choose any edge uv

where u ∈ U . Clearly, {u, v, w, p1} induces a 2K2. Again, this is a contraction.

In consequence, N [p1] ∩ N [p4] = ∅ which implies that the closed neighborhoods of

vertices in U ∪ {p1, p4} are all disjoint. Then, γ(G) ≥ |U | + 2. Now, we prove that

D = U ∪ {p2, p3} is a dominating set of G and it must be minimum. Suppose there

is some vertex w is not dominated by D. Clearly, w ∈ N({p1, p4}) \ N [{p2, p3}]. If

w is not adjacent to p1 (p4), then {w, p4, p1, p2} ({w, p1, p3, p4}) induces a 2K2 which

is a contradiction. Hence, w is adjacent to p1 and p4. Again, this is a contradiction.

Consequently, D is a (minimum) dominating set and it can be obtained in polynomial

time.

19

Theorem 2.2. The domination problem restricted to (2K2,diamond)-free graphs class

is in P .

Proof. Let G be a connected (2K2,diamond)-free graph and Kp = {u1, . . . , up} be

a maximum clique in G, which can be obtained in polynomial time (the number of

maximal cliques is polynomial). We separate the proof in two cases according to the

size of Kp

• p ≤ 3: Then G is (2K2, K4)-free. By Corollary 3.2 the problem is in P

• p ≥ 4: If G = Kp then γ(G) = 1. Otherwise, let v ∈ N(Kp). It is easy to see

that |N(v)∩Kp| = 1, otherwise G is not diamond-free. Hence, if S = V (G)\Kp

is an independent set, then N(S) is a minimum dominating set. Otherwise, let

(v, w) ∈ E(G) such that v, w ∈ S. Suppose w.l.o.g. u1 ∈ N(v). Since G is

2K2-free then w must be connected to at least p − 2 vertices of {u2, . . . , up}
but then again G is not diamond-free, hence w cannot exist. Thus every vertex

from S = N(Kp) has degree one and N(S) is a minimum dominating set.

Now we proceed to prove the complexity for the domination problem restricted to

(2K2,co-claw)-free is in P . We begin by showing a lemma that turns out to be useful

for proving the desired property.

Lemma 2.9. Let G be a connected (2K2, K3)-free graph with an induced C5 =

{v1, v2, v3, v4, v5}. Then C5 is a dominating set.

Proof. Suppose that C5 is not a dominating set and let w be a vertex from G which

is not in N [C5]. Since w cannot be an isolated vertex it must be connected with some

other vertex x /∈ C5. Then {w, x} forms a K2. Since G is 2K2-free then (w, x) cannot

be disjoint with any K2 from C5. In this case x must be connected to at least three

vertices from C5 which implies there is some K3 formed by x and two consecutive

vertices of C5. Absurd since G is K3-free.

20

Theorem 2.3. The domination problem restricted to (2K2,co-claw)-free graphs class

is in P .

Proof. Let G be a connected (2K2,co-claw)-free graph.

• If G is a tree then the problem is in P [87]. Hence it contains a cycle.

• If G contains a K3 then let V (K3) = U ⊆ V (G). Thus any vertex from V (G)

must be in N [U], otherwise U along with the non-adjacent vertex to U form a

co-claw. Hence there is a dominating set of cardinal 3 and minimum dominating

set can be obtained in O(n3). Therefore G is K3-free.

• If G is C5-free, and by prior items G is 2K2-free and K3-free, then domination

problem is in P since it is proved in [70] that the problem for (2K2, C5, K3)-free

graphs is in P .

• G is Cn+5-free (n > 0) because it is 2K2-free, and G contains a C5 from previous

item. We apply Lemma 3.2 described above and we affirm there is a dominating

set of G with size at most 5. Thus the minimum dominating set can be found

in O(n5).

Theorem 2.4. The domination problem restricted to (2K2,paw)-free graphs class is

in P .

Proof. Let T = {t1, t2, t3} be an induced K3 from G. Let v be a vertex not adjacent

to T and P = {u1, . . . , uk = v} a shortest path from T to v, w.l.o.g. u1 = t1. Then u2

must be adjacent to t1 and some other vertex of T , otherwise {u2, t1, t2, t3} induces
a paw. Without loss out generality, u2 is adjacent to t2. Let ui be the vertex from

P such that ui is not adjacent to t2 with smallest index i. Clearly, {t2, ui−2, ui−1, ui}
induces a paw which is a contradiction. If we take v as an arbitrary vertex from

G, then we showed that any vertex is adjacent to T and the minimum dominating

21

set has at most three vertices. Thus the minimum dominating set can be found in

O(n3).

Note thatK3-free graphs are a subclass of Diamond-free graphs. Hence (2K2, K3)-

free class is a subclass of (2K2,Diamond)-free class. We know that dominating set

problem restricted to (2K2,Diamond)-free graphs is in P , then the problem is also in

P for (2K2, K3)-free graphs.

P3

co-diamond

co-P3

3K1

P4

co-paw

4K1

C4 K4

2K2 K3

paw claw

co-claw

diamond

Figure 2.2: Scheme of graph classes complexity for the dominating set problem.

We will prove that Figure 2 is the final meta-graph, which represents the

complexity of the minimum dominating set problem for any F -free graphs, where

F consists of graphs with at most 4 vertices.

Let W be the subset of the corresponding vertices in the meta-graph. Clearly, if

W has a rectangular shape vertex or two vertices joined by an edge, the dominating

problem is polynomial on F -free graphs. It only remains to consider the case when

W is an independent set of circular shape vertices. We will show that in this case,

the problem is NPC.

Let W be an induced subgraph which is an independent set with only circular-

shaped vertices. We can extend W to a maximal circular-shaped vertex-independent

setW ′. Clearly, W ′ corresponds to F ′-free graphs which is a subclass of F -free graphs.

22

If we prove that the problem restricted to F ′-free graphs is NPC then the problem

restricted to F -free graphs is also NPC.

It is easy to see that there are exactly 3 maximal circular-shaped vertex-

independent sets: W1 = {C4, 2K2},W2 = {C4, K3, K4,diamond,paw,co-claw} and

W3 = {C4, K4,diamond, claw}. By [6], the problem restricted to (C4, 2K2)-free graphs

is NPC. Theorem 2.5 proves the problem restricted to (C4, K3, K4,diamond,paw,co-

claw)-free graphs is NPC and Corollary 2.7 proves the problem restricted to

(C4, K4,diamond, claw)-free graphs is NPC.

Lemma 2.10. [79] If a graph G′ is obtained from a graph G by triple subdivision of

an edge, then γ(G′) = γ(G) + 1.

Theorem 2.5. The domination problem restricted to (K3, C4)-free graphs is NPC.

Proof. It is trivial to check that after applying a triple subdivision to every edge

of an arbitrary graph G = (V,E), the result graph G′ is (K3, C4)-free. Applying

Lemma 2.10, if we can solve in polynomial time the domination problem restricted

to (K3, C4)-free graphs, then we can solve the problem on an arbitrary graph (γ(G) =

γ(G′) + |E(G)|). Consequently the domination problem restricted to (K3, C4)-free

graphs is NPC.

Definition 2.1. Say a vertex v is a claw-vertex if d(v) = 3 and its neighbors form

an independent set.

Definition 2.2. Let G be an arbitrary graph that has a claw-vertex v and its neighbors

are w1, w2 and w3. Say a magnification for v is the replacement of v by a cycle

C9 = {v1, v2, . . . , v9} with three additional edges v2v9, v3v5 and v6v8, where v1 connects

to w1,v4 connects to w2 and v7 connects to w3 (See Figure 3). We call the C9 with

three additional arcs H9.

Lemma 2.11. Let G be a graph with a claw-vertex v. If G′ is the resulting graph

after magnification of v, then γ(G′) = γ(G) + 2.

23

V1

V2 V3

V4

V5

V6

V7

V8

V9

W1 W2

W3

Figure 2.3: Replace each claw-vertex in the graph with this new structure,H9.

Proof. Let D be a minimum dominating set of G, |D| = γ(G). We construct a

dominating set D′ of G′ in the following way:

1. v ∈ D: Thus D′ = (D \ v) ∪ {v1, v4, v7} is a dominating set of G′ and |D′| =
|D|+ 2.

2. v /∈ D: Suppose w.l.o.g. w1 ∈ D. Then D′ = D ∪ {v3, v8} is a dominating set

of G′ and |D′| = |D|+ 2.

It is easy to check that in both casesD′ is a dominating set of G′ and |D′| ≤ |D|+2.

Then γ(G′) ≤ |D′| ≤ |D|+ 2 = γ(G) + 2.

Next, we will show that γ(G′) ≥ γ(G) + 2. Let D′ a minimum dominating set of

G′, |D′| = γ(G′). As NG′ [v3] ∩ NG′ [v8] = ∅ then |D′ ∩ V (H9)| ≥ 2. We analyze each

possible value of |{w1, w2, w3} ∩D′|. For each case, we construct a dominating set D

of G such that |D| ≤ |D′| − 2 which implies γ(G′) ≥ γ(G) + 2.

1. |{w1, w2, w3}∩D′| = 0: N [v1], N [v4], N [v7] are disjoint sets. Each neighborhood

must contain a vertex from D′ ∩ V (H9). Hence, H9 has at least 3 vertices

from D′. We remove those vertices from D′ and add v. The result set D is a

dominating set of G.

2. |{w1, w2, w3} ∩D′| = 1: Suppose w.l.o.g. w1 ∈ D′ and w2, w3 /∈ D′. In case D′

contains at least three vertices from H9, then we repeat the reasoning of the

24

previous item. Otherwise, there are exactly two vertices from H9 that belong to

D′. Those should be v3 and v8, hence w2, w3 are dominated with vertices outside

H9. Therefore, D can be obtained by removing {v3, v8} from D′. Clearly, D is

a dominating set for G.

3. |{w1, w2, w3}∩D′| = 2: Suppose w.l.o.g. {w1, w2} ⊆ D′. If in |V (H9)∩D′| ≥ 3,

we can apply the same reasoning as in the first item and obtain the same result.

Otherwise, there are exactly two vertices from H9 belong to D′. If v7 ∈ D′,

then no vertex from H9 can dominate the set {v9, v2, v3, v5}. Thus, v7 /∈ D′,

and w3 is dominated by a vertex outside H9. Therefore, the set D = D′ \H9 is

a dominating set of G.

4. |{w1, w2, w3} ∩D′| = 3: {w1, w2, w3} ∈ D′. Thus D = D′ \H9 is a dominating

set of G.

Theorem 2.6. The domination problem restricted to maximum degree 3 planar

(K4, C4, C5, C7, C8, C9, C10, C11,diamond,claw)-free graphs is NPC.

Proof. The domination problem restricted to planar graph G of maximum degree 3

is NPC [57]. Given any planar graph G of maximum degree 3, we apply a triple

subdivision for each edge of G and obtain a graph G′. It is easy to see that G′ is

a planar graph of maximum degree 3 and it is (K3, C4, C5, C6, C7, C8, C9, C10, C11,

diamond)-free. Clearly, G and G′ have the same number of claw-vertices. By Lemma

2.10, we know that γ(G′) = γ(G)+|E(G)|. We can apply magnification for each claw-

vertex of G′ in order to remove claws, obtaining a graph G′′ which is maximum degree

3 planar (K4, C4, C5, C7, C8, C9, C10, C11,diamond,claw)-free graph. Applying Lemma

2.11 we know that γ(G′′) = γ(G′)+ 2|U ′| = γ(G)+ |E(G)|+2|U |, where U ′ is the set

of claw-vertices of G′ and U is the set of claw-vertices of G. Therefore the problem

remains in NPC restricted to maximum degree 3 planar (K4, C4, C5, C7, C8, C9, C10,

C11,diamond,claw)-free graphs.

25

Corollary 2.7. The domination problem restricted to (K4, C4,claw,diamond)-free

graphs G is NPC.

2.3 Results

With the given results it is easy to know to which complexity class belongs the

domination problem when it is restricted by any combination of forbidden induced

subgraphs of order three or four.

Forbidden Induced Subgraphs Complexity References

(K3, C4)-free NPC Theorem 2.5

(K4, C4,claw,diamond)-free NPC Theorem 2.7

(2K2, C4)-free NPC [6]

P4 P [32]

(co-paw)-free P [70]

co-diamond P Remark 2.2

4K1 P Remark 2.1

(2K2,claw)-free P Theorem 2.1

(claw,paw)-free P [15, 38]

(claw,co-claw)-free P [15, 38]

(2K2,paw)-free P Theorem 2.4

(2K2,co-claw)-free P Theorem 2.3

(2K2,diamond)-free P Theorem 2.2

(2K2, K4)-free P [105]

We close the gaps of missing information about the complexity of the minimum

dominating set problem for graph classes given by forbidden induced subgraphs of

order at most four. Extending this technique to graphs of order greater than four

could lead to a long number of proofs, which may be not convenient, hence, the

26

number four seems to be the right limit when one should stop using a smart brute-

force approach. Forbidden induced subgraphs of size at most four had been already

studied on different problems [68], including a similar classification for clique-width

[18]. Many of these classes define the first barrier where problems become P instead

of NPC. On the other hand, it seems that the same technique can be applied to

many of the classic problems in order to close the same gaps.

27

Chapter 3

Domination and

Roman-Domination algorithms

The minimum Roman dominating function is a variant of the very well known

minimum dominating set problem. Both problems remain NP -Complete when

restricted to P5-free graph class [6, 35], and bipartite graphs [6].

The minimum Roman dominating function problem problem was introduced as a

variant of the minimum dominating set problem, and the motivation arise from an

optimization problem in location of legions (ancient Roman army units) to protect

the Roman Empire.

The idea is that different locations (vertices) may have at most two legions. A

location where no legion is stationed is considered unsecured, but it can be protected

by sending a legion from a nearby location (an adjacent vertex). Therefore, in order to

protect the empire, the legions should be positioned in a way such that any location is

either secured, or can be secured in short time. The problem of select the locations of

the legions in order to use the minimum amount is exactly the minimum dominating

set problem. Whenever some unsecured location was attacked or a rebellion occurs,

a nearby legion can be sent to control the situation. However the movement of

the legion leaves unsafe the position where the legion was stationed, and maybe other

28

nearby locations. Moreover, moving an army out of a location increases the chances of

rebellions or attacks to that location, hence, those location cannot become unsecured.

Therefore, an additional restriction given was that, no secured location should become

unsecured after an attack on any place. This is equivalent to ask that each location

is either secured, or has a nearby location with more than one legion. We refer to

[35, 75] for more background on the historical importance and theoretical results for

this problem.

We propose very simple and robust algorithms for determining the minimum

dominating set and minimum Roman dominating function for arbitrary graphs which

run in polynomial time whenever γ(G) is a constant. The same algorithms are

extended in order to solve these problems efficiently when restricted to P4-free and

(P5, (s, t)-net)-free graphs. We give the definitions of these classes in the next section.

Our algorithms improve previous known results for (P5,bull)-free graphs [70] and

(Kp, P5)-free graphs (for fixed p) [105]. There are already linear-time algorithms to

determine γ(G) and γ
R
(G) for any P4-free graph G [32, 51, 75, 87]. To the best of our

knowledge, all of them use some sophisticated structures such as cotrees, modular

decompositions, homogeneous extensions, etc. or require obtaining an appropriate

model from the original graph, and then applying the algorithm. The proposed

algorithms are extremely simple and use the same core procedures, which makes

them useful for practical purposes.

3.1 Preliminaries

An (s, t)-net graph is a split graph G = (K∪̇I, E) where the complete set K is

{u1, . . . , us}, the independent set I is {v1, . . . , vt}, t ≤ s and uivj ∈ E(G) if and only

if i = j.

A Roman dominating function of a graph G = (V,E) is a function f : V →
{0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex

y with f(y) = 2. Clearly, V (G) is partitioned into three disjoint sets V0 = f−1(0),

29

V1 = f−1(1) and V2 = f−1(2) by this function f . The weight of a Roman dominating

function f is f(V (G)) =
∑

x∈V (G) f(x) = |V1| + 2|V2|. The minimum weight of a

Roman dominating function of G is called the Roman domination number of G and

is denoted by γ
R
(G). The cardinality of a minimum dominating set of a graph G is

denoted by γ(G). It is known that γ(G) ≤ γ
R
(G) ≤ 2γ(G) [75]. A dominating S for

a graph G is a subgraph of G such that N [S] = V (G). Without loss of generality, we

assume that G is connected. Therefore, n ∈ O(m).

Definition 3.1. Let W ⊆ V (G), define F (W) the set of Roman domination functions

f such that f−1(2) = W .

It is easy to see that the function f ∈ F (W) such that f−1(0) = N(W) \ W
and f−1(1) = V (G) \N [W] minimizes Roman domination weight among functions in

F (W). We name this function as fW . Hence γ
R
(G) = min

W⊆V (G)
fW (V (G)).

Definition 3.2. Let g : V (G) → {0, 1} where g−1(0) ⊆ N(g−1(1)) be a dominating

function where the weight is defined as: g(V (G)) =
∑

v∈V (G)

g(v)

LetD be the set of all dominating functions andR the set of all Roman dominating

functions. Therefore we can conclude:

• γ(G) = min
g∈D

g(V (G)).

• Given a dominating function g, then f = 2g is a Roman dominating function

where f−1(1) = ∅.

• Given a Roman dominating function f such that f−1(1) = ∅ then g = f

2
is a

dominating function.

• γ(G) = min
g∈D

g(V (G)) = min
f∈R ∧ f−1(1)=∅

f(V (G))
2

= min
W⊆V (G) ∧ f−1

W
(1)=∅

fW (V (G))
2

30

3.2 Algorithms for general graphs

3.2.1 Domination

For the domination problem we propose a straightforward search algorithm consisting

on looking up each subset H, and checking if there exists a vertex v such that N [H ∪
{v}] = V (G). Note that if such vertex v exists, then

fH∪{v}

2
is a dominating function.

For this purpose, we define the procedure FindBestAdditionalV ertex that for any

subset of vertices H finds a vertex v such that |N [H ∪ {v}]| is maximized. In order

to achieve O(m) time, the procedure should first mark vertices from the set N [H],

and then iterate through the neighbors of each candidate vertex (i.e. V (G) \H) and

maintain the vertex with most neighbors outside N [H].

The pseudocode of the resulting algorithm is presented next.

Algorithm 1 GeneralDomination(Graph G)

for i← 0 . . . n− 1 do

for each H: subset of i vertices do

v ← FindBestAdditionalV ertex(H,G)

if N [H ∪ {v}] = V (G) then

return H ∪ {v}
end if

end for

end for

Observe that the algorithm calls iteratively the described procedure

FindBestAdditionalV ertex for every induced subgraph of G, named H, in increasing

order according to its size. Thus when H is a subset of i vertices the algorithm would

discover any dominating set of i+ 1 vertices that includes H.

Since there are O(ni) subsets of size at most i, the algorithm running time is

O(nγ(G)−1m).

31

3.2.2 Roman Domination

The problem can be solved using a simple modified version ofGeneralDomination(G).

The idea is to use the generated sets H of vertices as the set V2 of the Roman

dominating function, therefore, exploring every possible Roman dominating function

by making an exhaustive search for V2. It is clear that for everyH of different iteration

of GeneralDomination(G), there is a Roman dominating function fV2 which is at

least as good as any other Roman dominating function fW , H ⊂ W ∧ |W | = |H|+ 1

(where v is determined by FindBestAdditionalV ertex procedure). We keep the best

fV2 as fZ during whole execution of GeneralDomination(G). The algorithm stops

when |H| + 1 ≥ fZ(V (G))
2

. Clearly, fZ(V (G)) ≤ fW (V (G)), for any W ⊆ V (G)

with |W | < fZ(V (G))
2

because there is some fW ′ with fW ′(V (G)) ≤ fW (V (G)) and

|W ′| = |W | which has been examined before. For anyW ⊆ V (G) with |W | ≥ fZ(V (G))
2

,

fW (V (G)) ≥ 2|W | ≥ fZ(V (G)). Therefore, fZ is a minimum Roman dominating

function and γ
R
(G) = fZ(V (G)).

The pseudocode of the resulting algorithm is presented next.

Algorithm 2 GeneralDomination(Graph G)

for i← 0 . . . n− 1 do

if 2i ≥ best then

return best

end if

for each H: subset of i vertices do

v ← FindBestAdditionalV ertex(H,G)

best←MIN{best, |V (G) \N [H ∪ {v}]|+ i}
end for

end for

The running time is O(n⌊
γ
R

(G)

2
⌋−1m) because the number of H’s to be considered

is at most O(n⌊
γ
R

(G)

2
⌋−1) (H has at most ⌊γR (G)

2
⌋ − 1 vertices).

32

3.3 Algorithms for P4-free graphs

In this section, we show an extremely simple linear time robust algorithm for both

problems restricted to P4-free graphs using the same approach. Suppose G is

connected and |V (G)| = n > 1.

Lemma 3.1. A non-trivial graph G is P4-free if and only if ∃v, w such that N [v] ∪
N [w] = V (G)

Proof. Let v be an arbitrary vertex from G. Assume G does not contain a vertex

w such that N [v] ∪ N [w] = V (G). It is clear that if the distance of some pair of

vertices u, z ∈ V (G) is k ≥ 3 then the shortest path connecting them is an induced

Pk+1, a contradiction. Hence, every pair of vertices are at distance 1 or 2. The

vertices in U = V (G) \N [v] are exactly those vertices at distance 2 from v. Clearly,

U 6⊂ N(w), for each neighbor w of v, otherwiseN(v)∪N(w) = V (G). Hence, there are

u1, u2 ∈ U and w1, w2 ∈ N(v) such that u1 ∈ N(w1)\N(w2) and u2 ∈ N(w2)\N(w1).

If w1w2 ∈ E(G) then {u1, w1, w2, u2} induces a P4, otherwise {u1, w1, v, w2} induces
a P4. In any case, we have a contradiction because the existence of an induced P4.

Such induced P4 can be found in linear time and serves as a negative certificate.

The following algorithm follows from the lemma:

1. If the graph has an universal vertex v then: γ(G) = 1 ({v} is a minimum

dominating set) and γ
R
(G) = 2 (f{v} is a minimum Roman dominating

function).

2. If there is vertex v such that d(v) = n − 2, and w /∈ N(v) then γ(G) = 2 and

{v, w} is a minimum dominating set.

The Roman domination number γ
R
(G) is 3 by defining: f(v) = 2, f(w) =

1, f(N(v)) = 0.

33

3. Choose an arbitrary vertex v and find w ∈ N(v) such that N(v)∪N(w) = V (G).

In affirmative case, γ(G) = 2 with {v, w} as a minimum dominating set and

γ
R
(G) = 4 with f{v,w} as a minimum Roman dominating function.

4. Otherwise, G is not P4-free.

The total running time is O(m). Note that Steps 1 and 3 of this algorithm can

be done using two applications of procedure FindBestAdditionalV ertex employing

H = ∅ for step 1 and H = {v} for step 3.

3.4 Algorithms for (P5, (s, t)-net)-free graphs

In this section, we will show algorithms for obtaining γ(G) and γ
R
(G) restricted to

(P5, (s, t)-net)-free graphs, where t ≤ s. In case s is fixed, then the algorithm solves

the problem in polynomial time.

The following lemmas of Chiba and Nishizeki [34] are helpful for our algorithms

of this section.

Lemma 3.2. [34] Given a graph G,
∑

uv∈E(G)

min{d(u), d(v)} ≤ 2α(G)m where

arboricity α(G) ∈ O(
√
m)

Lemma 3.3. [34] Given a graph G, the number of Kp’s of G is O(α(G)
p−2
2 m) and

can be list in O(p · α(G)
p−2
2 m) time.

3.4.1 Domination

Let G be a connected P5-free graph. Due to a result in [2], we know that G has either

a dominating Kp or a dominating P3.

Theorem 3.1. [2] For each graph in the class of P5-free graphs, there exists a

dominating Kp, or a dominating P3.

34

Lemma 3.4. If graph G has not a dominating P3 and γ(G) ≥ 3 then G does not

contain a dominating C4.

Proof. Suppose there is a dominating C4 = {u1, u2, u3, u4}. If this dominating set is

not minimal, then there is a dominating P3 or γ(G) ≤ 2, a contradiction. Hence, it

must be minimal and there are four vertices: v1 ∈ N(u1)\(N [u2]∪N [u3]∪N [u4]), v2 ∈
N(u2) \ (N [u3] ∪ N [u4] ∪ N [u1]), v3 ∈ N(u3) \ (N [u4] ∪ N [u1] ∪ N [u2)] and v4 ∈
N(u4) \ (N [u1] ∪ N [u2] ∪ N [u3]). If v1v2 ∈ E(G) then {v1, v2, u2, u3, u4} induces a

P5, a contradiction. Hence, v1v2 /∈ E(G). Using similar argument, v2v3 /∈ E(G). If

v1v3 /∈ E(G) then {v1, u1, u2, u3, v3} induces a P5, again this is a contradiction. Thus,

v1v3 ∈ E(G). But in this case, {v1, v3, u3, u2, v2} induces a P5 which contradicts the

P5-freeness of G. Therefore, C4 is not a dominating set.

Theorem 3.2. If graph G has not a dominating P3 and γ(G) ≥ 3 then the following

conditions holds:

(a) G has a minimal dominating Kp for some p ≥ 3.

(b) For all minimal dominating Kp of G, G contains a (p, p)-net as induced subgraph.

Proof. (a) is a direct consequence of the fact that G has either a dominating Kp or

a dominating P3.

(b) Let Kp = {u1, . . . , up} be a minimal dominating complete of G. Every vertex

v /∈ D satisfies: N(v) ∩ D 6= ∅. Since Kp is minimal, for each i = {1, . . . , p} there

exists a vertex vi ∈ V (G) \ Kp such that vi ∈ N(ui) and vi /∈ N(uj) for all j 6= i.

Suppose ∃ vivj ∈ E(G). Hence C = {ui, uj, vj, vi} induces a C4. By lemma 3.4, C is

not a dominating set. There is some vertex z ∈ V (G) such that C ∩N(z) = ∅. Thus,
∃uk ∈ D \ {ui, uj} such that z ∈ N [uk]. In this case. {z, uk, ui, vi, vj} induces a P5,

absurd. Therefore vivj /∈ E(G) and {v1, . . . , vp} is an independent set which means

{u1, . . . , up, v1, . . . , vp} induces a (p, p)-net.

Corollary 3.1. If G is (P5, (s, s)-net)-free graph then γ(G) ≤ max{3, s− 1}.

35

Proof. If G contains a dominating P3, then γ(G) ≤ 3 ≤ max{3, s − 1}. Otherwise,

by Theorem 3.2, G has a minimal dominating Kp (choose the largest one) and G

has a (p, p)-net as induced subgraph. Since G is ((s, s)-net)-free, p ≤ s − 1. Hence

γ(G) ≤ p ≤ s− 1 ≤ max{3, s− 1}.

As a consequence of Corollary 3.1, there is a polynomial time algorithm to solve the

minimum dominating set problem for (P5, (s, t)-net)-free graphs. Next theorem gives

an implementation of such algorithm based on procedure FindBestAdditionalV ertex

described in Section 3.2.

Theorem 3.3. For (P5, (s, t)-net)-free graphs where s is a fixed value and t ≤ s, the

domination problem can be solved in

• O(m) time, for s ≤ 2.

• O(m2) time, for 3 ≤ s ≤ 4.

• O(ns−3m+m
s
2) time, for s ≥ 5.

Proof. If s ≤ 2 then G is P4-free. There are several linear time algorithms to solve

domination problem for P4-free graphs and we propose a robust linear time algorithm

based on procedure FindBestAdditionalV ertex in next section.

For s ≥ 3, applying procedure FindBestAdditionalV ertex with differents induced

subgraph H we can find a minimum dominating set as follows:

1. Check if γ(G) = 1. O(m). Using H as the empty set

2. Check if γ(G) = 2. O(mn). Using H as each vertex.

3. Check if there is a P3 dominating set (in the positive case, γ(G) = 3). O(m2).

Using H as any edge.

4. By Theorem 3.2, there is a (p, p)-net as induced subgraph of G. Hence, p ≤ s−1
and there is dominating Kp which implies that γ(G) ≤ s− 1.

36

• If s ≥ 5, we check if minimum dominating sets have size at most s − 2.

This can be done in O(ns−3m) using all H with at most s− 3 vertices.

• If γ(G) = s− 1 then p = s− 1. The dominating Kp = Ks−1 can be found

in O(m
s
2) time using the procedure FindBestAdditionalV ertex for each

induced Ks−2 of G. The number of Ks−2’s is O(m
s−2
2) and can be list in

O((s− 2)m
s−2
2) time by Lemmas 3.2 and 3.3.

Corollary 3.2. Dominating set problem can be solved in O(m2) in (P5, bull)-free

graphs.

To the best of our knowledge the best algorithm for (P5, bull)-free graphs has

O(n6) time complexity [70].

Lemma 3.5. All given algorithms are robust.

Proof. From Theorem 3.3, in case there is not a P5 nor an (s, t)-net in the graph,

algorithms above find a dominating set. Otherwise the input graph has a forbidden

structure. Returning a certificate is possible but the complexity of given algorithms

may be increased by extra computations to find such certificate. Therefore, returning

a certificate is not included in these algorithms.

3.4.2 Roman Domination

Using Corollary 3.1 and the fact that γ
R
(G) ≤ 2γ(G), we have the following corollary.

Corollary 3.3. If G is (P5, (s, s)-net)-free graph then γ
R
(G) ≤ max{6, 2s− 2}.

Theorem 3.4. For (P5, (s, t)-net)-free graphs where s is a fixed value and t ≤ s, the

Roman domination problem can be solved in

• O(m) time, for s ≤ 2.

37

• O(mn2) time, for s ≤ 4.

• O(mns−3 +m
s
2) time, for s ≥ 5.

Proof. If s ≤ 2 then G is P4-free. In [75], a linear time algorithm based on cotree

is given to solve Roman domination problem for P4-free graphs. Also, we describe a

robust linear time algorithm to solve this problem in Section 3.3.

For s ≥ 3, applying the following procedure we can find a minimum Roman

dominating function as follows:

1. If γ
R
(G) ≤ 7, then γ

R
(G) can be determined in O(mn⌊

γ
R

(G)

2
⌋−1) using the general

algorithm described in subsection 3.2.2

2. In this case, γ
R
(G) ≥ 8 implying γ(G) ≥ 4. By Theorem 3.2, there is a (p, p)-

net as induced subgraph of G. Hence, p ≤ s − 1 and there is dominating Kp

which implies that γ(G) ≤ s− 1 and γ
R
(G) ≤ 2s− 2.

• Check if γ
R
(G) ≤ 2s− 3. This can be done in O(ns−3m) using the general

algorithm.

• If γ
R
(G) = 2s − 2 then γ(G) = s − 1 and p = s − 1. The dominating

Kp = Ks−1 can be found in O(m
s
2) time as we described in the proof of

Theorem 3.3. Clearly, fKp
(V (G)) = 2s− 2 and fKp

is a minimum Roman

dominating function.

• If not such a minimum dominating set can be found then the input graph

has a P5 or (s, t)-net.

Clearly, the total complexity of the described algorithm is O(mns−3 +m
s
2). For

s ≤ 4, by Corollary 3.3 γ
R
(G) ≤ 6. Therefore, step 2 of above procedure can be

omitted and the complexity is reduced to O(mn2).

Similarly, the algorithms described in Theorem 3.4 are robust.

Corollary 3.4. Roman Dominating problem can be solved in O(mn2) in (P5, bull)-

free graphs.

38

Again, (P5, bull)-free graphs are (P5, (3, 2))-net)-free. We can solve Roman

domination problem using the O(mn2) algorithm which is faster than the best known

O(n6) time algorithm [75] for this class of graphs.

39

Chapter 4

Efficient Edge Domination

Under the widely accepted assumption that P 6= NP there are several problems with

important applications for which no polynomial algorithm exists. The need to get an

exact solution for many of those problems has lead to a growing interest in the area

of design and analysis of exact exponential time algorithms for NP-Hard problems

[55, 103]. Even a slight improvement of the base of the exponential running time

may increase the size of the instances being tractable. There has been many new and

promising advances in recent years towards this direction [8, 9].

In this chapter we give exact algorithms for the weighted and counting versions

of the problem Dominating Induced Matching (also known as DIM or Efficient Edge

Domination) which has been extensively studied [20, 22, 24, 27, 28, 29, 69, 80, 81],

while we also developed efficient algorithms for the problem restricted to several graph

classes. Further notes about this problem and some applications related to coding

theory, network routing and resource allocation can be found in [61, 78].

First, we introduce the problem, giving its basic definitions and showing previous

results. Then we describe three algorithms for the weighted and counting version

of the problem. The first one runs in linear time, given a vertex dominating set

of fixed size of the graph. The second one runs in polynomial time if the graph

admits a polynomial number of maximal independent sets. The third one is an

40

O∗(1.1939n) time and polynomial (linear) space, which improves over the existing

algorithms for exact solving this problem for general graphs. Then we show how to

improve the EED algorithm restricted to chordal, dually-chordal, biconvex and claw-

free graphs. We have also developed an efficient algorithm for circular-arc graphs,

but we accommodate it in the next chapter for organizational purposes only, since

some needed results will be given after this chapter.

4.1 Preliminaries

Given an edge e ∈ E, say that e dominates itself and every edge sharing a vertex

with e. Subset E ′ ⊆ E is an induced matching of G if each edge of G is dominated

by at most one edge in E ′. A dominating induced matching (DIM) of G is a subset of

edges which is both dominating and an induced matching. Not every graph admits

a DIM, and the problem of determining whether a graph admits it is also known in

the literature as efficient edge domination problem. Given a function E(G)→ R, the
weighted version of DIM problem is to find a DIM such that the sum of weights of its

edges is minimum among all DIMs, if any. We denote the minimum weighted DIM

problem for graph G with DIMΩ(G) and the counting of DIMs in G as DIMC(G).

The minimum weighted DIM problem can be expressed as an instance of the

maximum weighted independent set (MWIS) problem on the square of the line graph

L(G) of G, and also as an instance of the minimum weighted dominating set problem

on L(G), by slightly adjusting the models [22, 85] for the unweighted DIM problem. A

detailed reduction of the weighted efficient domination problem to the MWIS problem

is described in [19] We will use an alternative definition [29] of the problem of finding

a dominating induced matching. It asks to determine if the vertex set of a graph

G admits a partition into two disjoints subsets. The vertices of the first subset are

called white and induce an independent set of the graph, while those of the second

subset are named black and induce an 1-regular graph.

41

We assume the graph G to be connected, otherwise, the DIM of G is the union of

the DIMs of its connected components.

For a coloring C of the vertices of G, denote by C−1(white) and C−1(black), the

subsets of vertices colored white and black. A coloring C ′ is an extension of C if

C−1(black) ⊆ C ′−1(black) and C−1(white) ⊆ C ′−1(white). For V ′, V ′′ ⊂ V (G) if C ′

is obtained from C by adding to it the vertices of V ′ with the color black and those

of V ′′ with the color white then write C = C ′ ∪ BLACK(V ′) ∪WHITE(V ′′).

4.2 Previous results

The unweighted version of the DIM problem is known to be NP-complete [61], even for

planar bipartite graphs of maximum degree 3 [20] or k-regular graphs, for k ≥ 3 [27].

There are polynomial time algorithms for some graph classes, such as chordal graphs

[80], generalized series-parallel graphs [80] (both for the weighted problem), claw-

free graphs [28], graphs with bounded clique-width [28], hole-free graphs [20], convex

graphs [69], dually-chordal graphs [22], P7-free graphs [24], bipartite permutation

graphs [81], AT-free graphs [22], interval-filament graphs [22], weakly chordal graphs

[22]. See also [23].

The MWIS problem can be solved in O∗(1.2377n) time [97] (how one obtains

an algorithm for MWIS from an algorithm for weighted 2-Sat is described in [41]).

On the other hand, the minimum weighted dominating set problem can be solved

in time O∗(1.5535n) [56], and the special case where the weights are polynomially

bounded in time O∗(1.5048n) [94]. Hence the minimum weighted DIM problem for a

graph G can be solved by using the L2(G) algorithm in O∗(1.2377m) time using the

MWIS algorithm and in O∗(1.5048m) time using the minimum weighted dominating

set algorithm.

For the counting problem, there exist an algorithm [40] which can be used to

count the number of MWIS’s in O∗(1.3247n) time, leading to an O∗(1.3247m) time

algorithm to count the numbers of DIMs.

42

A straightforward brute-force algorithm for obtaining the DIM of a graph G

consists in finding all bipartitions of V (G), coloring one of the parts as white, the

other as black, and checking if the result is a valid DIM. The complexity of this

algorithm is O(2n ·m) ∈ O∗(2n).

It is not hard to see that every DIM is a maximum induced matching, and hence

the number of edges of every DIM in G is the same. Therefore it is straightforward

to modify the graph in order to solve the problem with non-negative weights and

then transform it back to the original graph. The modification consists on adding

the minimum weight of the graph to every edge. At the end, subtract it from the

solution.

4.3 Efficient Edge Domination on general graphs

If P 6= NP it is not possible to solve this problem in polynomial time, hence it becomes

important to improve the exponential algorithm in order to identify instances that

can be solved within reasonable time. Moreover, the result presented here is not only

interesting from the theoretical point of view but also from a practical perspective

since the algorithms presented have low polynomial and constants associated.

4.3.1 Colorings and Extensions

Assigning one of the two possible colors to vertices of G is called a coloring of G. A

coloring is partial if only part of the vertices of G have colors assigned, otherwise it

is total. A partial coloring is valid if no two white vertices are adjacent and no black

vertex has more than one black neighbor. A black vertex is single if it has no black

neighbors, otherwise, it is paired. A total coloring is valid if no two white vertices are

adjacent and every black vertex is paired. Clearly, G admits a DIM if and only if it

admits a total valid coloring. In fact, a total valid coloring defines exactly one DIM,

given by the set B.

43

Next, we describe the natural conditions for determining if a coloring is valid or

invalid.

Definition 1. RULES FOR VALIDATING COLORINGS:

A partial coloring is valid whenever:

(V1) No two white vertices are adjacent, and

(V2) Each black vertex is either single or paired. Each single vertex has some

uncolored neighbor.

A total coloring is valid whenever:

(V3) No two white vertices are adjacent, and

(V4) Each black vertex is paired.

Lemma 4.1. There is a one-to-one correspondence between total valid colorings and

dominating induced matchings of a graph.

Proof. It follows from the definitions.

Definition 4.1. We say NU(v) is the set of uncolored vertices from N(v).

Given a partial coloring C, the basic idea of the algorithm is to iteratively find

extensions C ′ of C, until eventually a total valid coloring is reached. It follows from

the validation rules that if C is invalid, so is C ′. Therefore, the algorithm keeps

checking for validation, and would discard an extension whenever it becomes invalid.

Basically, there are two different ways of possibly extending a coloring, using

propagation rules and branching rules. At the beginning, there are partial colorings

C which force the colors of some of the so far uncolored vertices, leading to an

extension C ′ of C. In this case, say that C ′ has been obtained from C by propagation.

The following is a convenient set of rules, whose application may extend C, in the

above described way.

44

Lemma 4.2. RULES FOR PROPAGATING COLORS:

The following are forced colorings for the extensions of a partial coloring of G.

(P1) The degree-3 vertices of a diamond must be black and the remaining ones must

be white

(P2) The neighbor of a pendant vertex must be black

(P3) Each neighbor of a white vertex must be black

(P4) Except for its pair, the neighbors of a paired (black) vertex must be white

(P5) Each vertex with two black neighbors must be white

(P6) If a single black vertex has exactly one uncolored neighbor then this neighbor

must be black

(P7) In an induced paw, the two odd-degree vertices must have different colors

(P8) In an induced C4, adjacent vertices must have different colors

(P9) If ∀v ∈ NU(s), N [v] ⊆ N [s] where s is a single (black) vertex then an uncolored

neighbor v of s minimizing weight(sv) must be black. Break ties arbitrarily. We

require rules (P1) and (P8) to be applied before (P9).

Proof. The rules (P1), (P7), (P8) follow from [20](using observations 1 and 3), while

rules (P3), (P4), (P5), (P6) follow from [29]. The rule (P2) follows from the coloring

definition since each black vertex must be paired in order for the coloring to be valid.

Finally, for (P9), let s be a single vertex. Suppose the neighborhood of all uncolored

neighbors of s lies within the neighborhood of s. Then the choice of the vertex to

become the pair of s is independent of the choices for the remaining single vertices of

the graph. Therefore, to obtain a minimum weighted dominating induced matching

of G, the neighbor v of s minimizing weight(sv) must be black.

Lemma 4.3. [20] If G contains a K4 then G has no DIM.

45

Say that a coloring C is empty if all vertices are uncolored. Let C be a valid

coloring and C ′ an extension of it, obtained by the application of the propagation

rules. If C = C ′ then C is called stable. On the other hand, if C 6= C ′ then C ′

is not necessarily valid. Therefore, after applying iteratively the propagation rules,

we reach an extension which is either invalid or stable. In order to possibly extend

a stable coloring C, we apply branching rules. Any coloring directly obtained by

these rules is not forced. Instead, in each of the these rules, there are two possibly

conflicting alternatives leading to distinct extensions C ′
1, C

′
2 of C. Each of C ′

1 or

C ′
2 may be independently valid or invalid. The next lemma describes the branching

rules. We remark that there exist simpler branching rules. However, using the rules

below we obtain a sufficient number of vertices that get forced colorings, through the

propagation which follow the application of any branching rule, so as to guarantee a

decrease of the overall complexity of the algorithm. The complexity obtained relies

heavily on this fact.

In general, we adopt the following notation. If C is a stable coloring then S denotes

the set of single vertices of it , U is the set of uncolored vertices and T = U\∪s∈SNU(s).

Lemma 4.4. BRANCHING RULES

Let C be a partial (valid) stable coloring of a graph G. At least one of the following

alternatives can be applied to define extensions C ′
1, C

′
2 of C.

(B1) If C is an empty coloring: choose an arbitrary vertex v then C ′
1 := C ∪

BLACK({v}) and C ′
2 := C ∪WHITE({v})

(B2) If ∃ edge vw s.t. v ∈ NU(s) and w ∈ NU(s
′), for some s, s′ ∈ S, s 6= s′ then

C ′
1 := C ∪ BLACK({v}) and C ′

2 := C ∪WHITE({v})
(Please see Figure 4.1)

(B3) For some s ∈ S, if ∃v ∈ NU(s) s.t. ∃w ∈ NT (v):

46

B3(a) If |NU(s)| 6= 3 ∨ d(w) 6= 3 ∨ |NT (v)| ≥ 2 then C ′
1 := C ∪ BLACK({v})

and C ′
2 := C ∪WHITE({v}).

B3(b) If |NU(s)| = 3 ∧ d(w) = 3 ∧NT (v) = {w}, let NU(s) = {v, v′, v′′}.

B3(b).i If NU(v
′) = NU(v

′′) = ∅ then C ′
1 := C ∪ BLACK({v}) and

C ′
2 := C ∪WHITE({v})

B3(b).ii If NU(v
′) 6= ∅, let w′ ∈ NT (v

′), with w′ 6= w. If |N(w) ∪
N(w′)| > 5 or ww′ /∈ E(G) then C ′

1 := C ∪ BLACK({v}) and

C ′
2 := C ∪WHITE({v})

B3(b).iii If NU(v
′) 6= ∅, let w′ ∈ NT (v

′), with w′ 6= w. If ww′ ∈ E(G)

and z ∈ N(w) ∩ N(w′) then C ′
1 := C ∪ BLACK({v′′}), while if

weight(sv) + weight(w′z) ≤ weight(sv′) + weight(wz) then C ′
2 :=

C ∪ BLACK({v}), otherwise C ′
2 := C ∪ BLACK({v′})

(Please see Figure 4.2)

Proof. If C is an empty coloring then rule (B1) applies. Otherwise, if C is not an

empty coloring and C is not a total coloring we will show that S 6= ∅. Since C is not

total and the graph is connected, there is at least one edge sv where v is uncolored.

If s is white then v must be black (P3), else if s is a paired vertex then v must be

white (P4). Therefore s must be a single black vertex, hence S 6= ∅. Let s ∈ S.

Since C is valid then NU(s) 6= ∅ by (V2) and since is stable |NU(s)| 6= 1 by (P6).

Therefore |NU(s)| ≥ 2. Moreover rule (P9) cannot be applied, therefore ∃v ∈ NU(s)

s.t. |NU(v) \ N(s)| > 0, let w ∈ NU(v) \ N(s). If ∃s′ ∈ S, s 6= s′ s.t. w ∈ NU(s
′)

then rule (B2) is applied. Otherwise, suppose rule (P2) cannot be applied. Then

w ∈ NT (v)(|NT (v)| ≥ 1). Clearly, d(w) 6= 1, otherwise, rule (P2) must be applied

and v must get color black.

47

In case |NU(s)| 6= 3 or d(w) 6= 3 or |NT (v)| ≥ 2 we apply rule B3(a). Otherwise:

|NU(s)| = 3, d(w) = 3, |NT (v)| = 1. Note that in B3(b), v′w′ behaves symmetrically

in respect to vw since otherwise v′w′ were found in step B3(a) replacing vw.

The first subcase of B3(b) corresponds to NU(v
′) = NU(v

′′) = ∅, while in the second

and third subcases, v′ or v′′ has uncolored neighbors. Note that if v′v′′ ∈ E(G) then

either a paw, a diamond or a K4 is induced by svv′v′′, therefore v is a colored vertex

and this case never occurs.

Suppose w.l.o.g. NU(v
′) 6= ∅ where w′ ∈ NT (v

′). It is easy to see that w 6= w′ since

otherwise svwv′ is a C4 and therefore w cannot be uncolored by rule (P8).

Now there are three cases which lead to two possible outcomes from the algorithm:

In case ww′ ∈ E(G) or |NU(v) ∪ NU(w)| > 5 then the result of the algorithm is

given by the second subcase (ii), else it is given by the third subcase (iii). Note

that {v, v′, v′′} ∈ NU(s) while {w,w′} ∈ T , hence these vertices are different since

they belong to disjoint sets. Also note that ∃ z ∈ N(w) ∩N(w′) since otherwise the

connected component has 7 vertices and can be trivially solved.

Each rule is applied after the previous rule, that is, if the condition of the previous

case is not verified in the entire graph. Note that this applies to subitems of case

(B3).

s s'

v w

(B2)

s s'

v w

s s'

v w

C'1

C'2

The uncolored vertices are represented with grey

Figure 4.1: Branching rule sample - (B2)

48

s

v w

B3(b).iii

v'

v''

w'

z

s

v w

v'

v''

w'

z

s

v w

v'

v''

w'

z

C'2

C'2

s

v w

v'

v''

w'

z

C'1

weight(sv) + weight(w'z) weight(sv) + weight(w'z)

weight(sv) + weight(w'z) weight(sv) + weight(w'z)

Figure 4.2: Branching rule sample - B3(b).iii

4.3.2 An algorithm based on vertex domination

We propose an exact algorithm for solving the weighted dominating induced matching

problem, for general graphs, based on vertex dominations. The only rules to be used

will be the propagation ones.

Let C be a partial valid coloring of G = (V,E). Such as in [29], this coloring can

be further propagated according to the previous defined propagation rules:

Let C be a partial valid coloring of G, and C ′ be a stable coloring obtained from

C, by the applications of rules (P1)-(P9). Denote by D and D′, respectively the

subsets of vertices of G which are colored in C and C ′. Clearly, D′ ⊇ D. For our

purposes, assume that the initial set D of colored vertices is a vertex dominating set

of G.

49

Lemma 4.5. Let C ′ be a stable coloring. Then

1. If there are no single (black) vertices then C ′ is a total coloring,

2. Any uncolored vertex has exactly one black neighbor, and such a neighbor must

be single.

Proof. Recall that D are the initial colored vertices and is a dominating set of the

graph G. C ′ is not a total coloring if only if there is some uncolored vertex v. Clearly,

v 6∈ D and N(v)∩D 6= ∅. Let w be some neighbor of v in D. If the color of w is white

then v must be colored black by rule (P3) which is a contradiction. Hence w is a black

vertex. Again, if w is a paired black vertex or v has another black neighbor w′ 6= w, v

must get color white by rules (P4) and (P5) and this is a contradiction. Consequently,

v has exactly one black neighbor and which is single black vertex. Therefore, if there

are no single black vertices then there are no uncolored vertices and C ′ is a total

coloring.

Let D′ be the colored vertices of the stable coloring C ′, let S = {s1, . . . , sp} be the
set of single vertices, and U the set of still uncolored vertices of G, that is, U = V \D′.

The above lemma implies that U admits a partition into (disjoint) parts:

U = (N(s1) ∩ U) ∪ . . . ∪ (N(sp) ∩ U)

Theorem 4.1. Let C be a coloring of the vertices of G, C ′ a stable extension of it,

and D = C−1(black)∪C−1(white) a dominating set of G. Then (i) S ⊆ C−1(black);

and (ii) if C extends to a valid total coloring C ′′ then C ′′ is an extension of C ′.

Proof. Suppose that S 6⊆ C−1(black) which means that exists a vertex si ∈ S and

si /∈ C−1(black). By definition of S, si is a single black vertex. If si ∈ D then

si ∈ C−1(black), contradiction. Therefore si /∈ D.

If D is a dominating set, then ∃v ∈ D such that si ∈ N(v). If v is black then si

is not a single black vertex, again a contradiction. Hence v must be white.

• If si has no uncolored neighbors then C is not extensible to a total valid coloring

because si cannot become a paired vertex, contrary to the hypothesis.

50

• Otherwise, let y be an uncolored neighbor of si. Clearly, y 6∈ D. Since y is

uncolored then it has exactly one neighbor in D′. That is, si is the unique

neighbor of y in D′. Since D ⊆ D′ and si ∈ D′ \D, it follows that D is not a

dominating set, contradiction.

On the other hand, C ′ and C ′′ are extensions of C. Then the vertices of D have

the same color in these colorings. Any colored vertex v 6∈ D of C ′ was obtained by

some propagation rule base on previous colored vertices. The rules are correct and

deterministic. Hence, v must have the same color in C ′′ and C ′′ is an extension of

C ′.

Clearly, given a partial valid coloring C, we can compute efficiently a stable

extension C ′ of it. In addition, if D is a dominating set then we can try to obtain

a total valid coloring from the stable coloring C ′ by appropriately choosing exactly

one vertex from each subset NU(si), to be black, that is, to be the pair of the so far

single vertex si.

Lemma 4.6. Let U and S, respectively be the sets of uncolored and single vertices,

relative to some stable coloring C ′ of graph G. If C ′ extends to a total valid coloring

then, for each si ∈ S, G[NU(si)] is a union of a star and an independent set, any of

them possibly empty. Moreover, the pair of si must be a maximum degree vertex in

G[NU(si)].

Proof. Suppose by contrary that G[NU(si)] is not a union of a star and an independent

set. Then G[NU(si)] contains either two non-adjacent edges, or a K3.

• Let {(u1, u1), (v1, v2)} be two disjoint edges inG[NU(si)]. Since no white vertices

can be adjacent, let u be the black vertex from {u1, u2} and v the black vertex

from {v1, v2}. Then {u, si, v} is a black P3 or K3 and therefore cannot be

extended to a valid coloring.

• Let {(u1, u2, u3)} be a K3 in G[NU(si)]. Therefore {si, u1, u2, u3} is a K4 and

therefore G has no valid coloring.

51

Consequently, G[NU(si)] must be a union of a star and an independent set. Now,

suppose by contrary that the pair of si is a vertex v ∈ NU(si) and v has not maximum

degree in G[NU(si)]. Clearly, the rest of vertices in NU(si) are white vertices. In

particular, a maximum degree vertex u in G[NU(si)] is white. But, there is some

neighbor z 6= v of u in NU(si) and z is not adjacent to v. Hence, z and u are white

adjacent vertices, which is a contradiction.

We can repeatedly execute the procedure below described for choosing the vertices

to be paired to the single vertices si of the partial colorings. The procedure is repeated

until all parts of the partition U = NU(s1) ∪ . . . ∪ NU(sp) have selected their paired

black vertices or the coloring becomes invalid.

Let si ∈ S be a single vertex. Case 1: NU(si) = ∅: then stop, it will not lead

to a valid one. Case 2: There is exactly one maximum degree vertex in G[NU(si)]:

then clearly, the only alternative is to choose this vertex. Case 3: There is no edge

vw, where v ∈ NU(si) and w ∈ NU(sj), for any j 6= i: then the choice of the neighbor

of si to become black is independent on the choices of the others parts of the partition.

Choose the vertex w of maximum degree in G[NU(si)] that minimizes the weight of

the edge wsi. Case 4: There is an edge vw, where v ∈ NU(si) and w ∈ NU(sj), for

some j 6= i: then v may become white if and only if w may become black. Each of

these two choices may lead to valid or invalid total colorings. So, we proceed with

both alternatives, as if in parallel.

After applying any of the above Cases 2, 3 or 4, perform the propagation rules again

and validate the coloring so far obtained. Proceed so until eventually the coloring

becomes invalid, or a valid solution is obtained. At the end, choose the minimum

weight solution obtained throughout the process.

52

As for the complexity, it is clear that it depends on the cardinality of the

dominating set D and on the number of parallel iterations, considered sequentially.

Next, we describe bounds for these parameters.

Lemma 4.7. There are at most 2q parallel computations where q ≤ p = |S| ≤ |D|,
and q ≤ n

3
.

Proof. : By Theorem 4.1, it follows that p ≤ |D|. On the other hand, we can apply

the above Cases 1-4, in such an ordering that we keep applying Cases 1 and 2, with

propagation until all remaining single vertices si satisfy |N(si) ∩ U | ≥ 2. Let S ′ ⊂ S

denote the set of remaining single vertices, and q = |S ′|. Consequently, q ≤ n
3
.

Next, examine the parallel computations. They are generated by Case 4. Let vw

be an edge of G, where v ∈ N(si) ∩ U and w ∈ N(sj) ∩ U , i 6= j. In one of the

instances, v is black, meaning that si becomes paired, while in the other one w is

black, implying that sj becomes paired. This means that the size of the set S ′ of

single vertices always decreases by at least one unit in all computations. Hence there

are at most 2q parallel computations.

Considering that the remaining operations involved in each parallel thread of the

algorithm can be performed in linear time, it is not hard to conclude that there

there is an O(2qm) time algorithm to obtain a minimum DIM, if any, extensible

from a partial valid coloring C of a weighted graph G = (V,E) such that D =

C−1(black) ∪ C−1(white) is a dominating set of G.

The complexity of the algorithm depends on the size of the dominating set D

employed. We remark that if G = (V,E) has no isolated vertices then we can easily

find in linear time a dominating set with at most half the vertices. Just determine a

maximal independent set I. Clearly, I and V \ I are both dominating sets of G and

one of them has at most n
2
vertices.

Finally, in order to obtain the minimum weighted DIM of the graph G, we have

to apply the described algorithm for all possible bi-colorings of D. There are exactly

2|D| such colorings. Therefore

53

Theorem 4.2. There is an algorithm of complexity O(min{22|D|, 2
5n
6 } · m) =

O∗(min{4|D|, 1.7818n}) to compute a minimum weighted DIM of a weighted graph,

if existing.

Proof. The complexity is O(2|D| · 2q · m) = O(2|D| · 2min{|D|,n
3
} · m) = O(2|D| ·

min{2|D|, 2
n
3 } · m) = O(min{22|D|, 2|D|+n

3 } · m) = O(min{22|D|, 2
n
2
+n

3 } · m) =

O(min{22|D|, 2
5n
6 } ·m).

Corollary 4.1. The above algorithm solves the minimum weighted DIM problem in

O(m) time given a dominating set of fixed size.

4.3.3 An algorithm based on maximal independent sets

In this section, we describe an exact algorithm for finding a minimal weighted DIM

of a graph, based on enumerating maximal independent sets. We consider a weighted

graph G = (V,E).

Any maximal independent set I ⊆ V induces a partial bi-coloring in G as follows:

• color as black all vertices of V \ I

• color as white the vertices of I except those having exactly one single neighbor.

Observation 1. If all vertices of G have degree 6= 1 then the above partial coloring

is total.

The algorithm is then based on the following lemma.

Lemma 4.8. Let G be a graph, I a maximal independent set of it and C the partial

bi-coloring induced by I. Then C is extensible to a DIM if and only if C is a valid

coloring and each single vertex, if existing, has at least one uncolored neighbor in C.

Proof. ⇒) It is easy to see that if C is not a valid coloring, then it is not extensible

to a DIM . Besides, if C has a single vertex v with no uncolored neighbors then all

neighbors of v are white in C and in any extension of C. Also,C is not extensible to

54

a DIM because v cannot ever get its pair.

⇐) Let C be a valid coloring where each single black vertex has at least one uncolored

neighbor. Then for each single black vertex v, choose any uncolored neighbor w to be

its pair (w has exactly one single neighbor) and the remaining of uncolored vertices

get color white. In this total coloring, the black vertices induce an 1-regular subgraph

and the white vertex set is an independent set because it is part of I. Hence, the

total coloring is valid and hence a DIM.

The algorithm can then be formulated as follows. Generate the maximal

independent sets I of G. For each I, find its induced coloring C. If C is invalid

or some single vertex has no uncolored neighbor then do nothing. Otherwise, for each

single vertex v in C, if any, choose the minimum weight vw, among the uncolored

neighbors of v; then color w as black and the remaining neighbors of v as white. The

set of black vertices then forms a DIM of G. At the end select the minimum weight

among all DIMs obtained in the process, if any.

Clearly, this algorithm determines the minimum weight DIM of a weighted graph

G = (V,E) because given any DIM E ′ ⊆ E of G, the vertex set formed by those

vertices not incident to any of the edges of E ′ is an independent set and as such, is

clearly a subset of some maximal independent set of G. So, any DIM E ′ is considered

in the algorithm.

All the operations performed by the algorithm relative to a fixed maximal

independent set can be performed in linear time O(m). If G has µ maximal

independent sets, we can generate them all in time O(nmµ) time [93]. Therefore

the complexity of the entire algorithm is O(nm2µ). On the other hand, µ ≤ O(3
n
3),

leading to a worst case of O(3
n
3 nm2) ≈ O∗(1.44225n) time. In particular, if G is a

bipartite graph then µ ≤ 2
n
2 and the complexity reduces to O∗(1.41421n). In any

case, if G has a polynomial number of maximal independent sets then the algorithm

terminates within polynomial time.

55

Finally, we observe the following additional relation between maximal independent

sets and DIMs.

Lemma 4.9. Let G(V,E) be a graph with no isolated edges, E ′ ⊆ E a DIM of G,

and I ⊆ V the independent set formed by those vertices not incident to any of the

edges of E ′. Then I is contained in exactly one maximal independent set of G.

Proof. : If I is a maximal independent set there is nothing to prove. Otherwise,

suppose the lemma is false and let I1, I2 be two distinct maximal independent sets

properly containing I. Let V1 = I1 \ I, and V2 = I2 \ I. Choose any v2 ∈ V2. Clearly,

{v2} ∪ I is an indepedent set, and we know that I1 = V1 ∪ I is a maximal one.

Consequently, there must be some vertex v1 ∈ V1 adjacent to v2. However, both v1

and v2 are vertices incident to edges of the DIM E ′. Consequently, v1v2 ∈ E ′. In this

case, v1v2 must form an isolated edge of G, a contradiction. Therefore the lemma

holds.

Based on the above lemma and that fact that every isolated edge must be part of

any DIM, it is simple to extend the exact algorithm proposed in this section, so as to

count the number of distinct DIMs (unweighted or minimum weighted) of G, in the

same complexity as deciding whether G admits a DIM. Observe that G may contain

an exponential number of DIMs.

4.3.4 An O∗(1.1939n) algorithm for DIMΩ(G) and DIMC(G)

Here we propose an algorithm for solving the problems of finding the minimum

weighted DIM and that of counting the DIMs in O(m · 1.1939n) ∈ O∗(1.1939n) time

and O(m) space in general graphs, which improves over the existing algorithms. We

employ techniques described in [55] for the analysis of our algorithm, and as such

we use their terminology. The proposed algorithm was designed using the branch &

reduce paradigm. More information about this design technique as well as the running

time analysis for this kind of algorithms can be found in [55].

56

The algorithm

The lemmas described in the coloring section 4.3.1 lead to an exact algorithm for

finding a minimum weight DIM of a graph G, if any.

In the initial step of the algorithm, we find the set K4 containing the K4’s of

G. If K4 6= ∅, by Lemma 4.10, G does not have DIMs, and terminate the algorithm.

Otherwise, define the set COLORINGS to contain through the process the candidate

colorings to be examined and eventually extended.

Next, include in COLORINGS an empty coloring. In the general step, we choose

any coloring C from COLORINGS and remove it from this set. Then iteratively

propagate the coloring by Lemma 4.2 into an extension C ′ of it, and validate the

extension by Definition 1. The iterations are repeated until one of the following

situations is reached: C ′ is invalid, C ′ is a total valid coloring, or a partial stable

(valid) coloring. In the first alternative, C ′ is discarded and a new coloring from

COLORINGS is chosen. If C ′ is a a total valid coloring, find its weight and if

smaller than the least weight so far obtained, it becomes the current candidate for

the minimum weight of a DIM of G. Finally, when C ′ is stable we extended it

by branching rules: choose the first rule of Lemma 4.4 satisfying C ′, compute the

extensions C ′ and C ′′, insert them in COLORINGS, select a new coloring from

COLORINGS and repeat the process.

The formulation below describes the details. The propagation and val-

idation of a coloring C are performed by the procedure PROPAGATE −
V ALIDATE(C,RESULT). At the end, the returned coloring corresponds to the

extension C ′ of C, after iteratively applying propagation. The variable RESULT

indicates the outcome of the validation analysis. If C ′ is invalid then RESULT is

‘invalid’; if C ′ is a valid total coloring then it contains ‘total’, and otherwise RESULT

equals ‘partial’.

Algorithm Minimum Weighted DIM / Counting DIM

57

1. Find the subset K4

if K4 6= ∅ then terminate the algorithm: G has no DIM

SOLUTION := NO −DIM

2. COLORINGS := {C}, where C is an empty coloring

3. while COLORINGS 6= ∅ do

a. Choose C ∈ COLORINGS and remove it from

COLORINGS

b. PROPAGATE − V ALIDATE(C,RESULT)

c. if RESULT = ‘total’ and weight(C) < SOLUTION then

SOLUTION := weight(C)

else if RESULT = ‘partial’ then

Set C ′
1 and C ′

2 according to branching RULES on C

COLORINGS := COLORINGS ∪ {C ′
1, C

′
2}

end if

4. Output SOLUTION

58

procedure PROPAGATE − V ALIDATE(C,RESULT)

Comment Phase 1: Propagation

1. C ′ := C

2. repeat

C := C ′

C ′ := extension of C obtained by the PROPAGATION RULES

until C = C ′

Comment Phase 2: Validation

3. Using the VALIDATION RULES 1 do as follows:

if C is an invalid coloring then return (C, ‘invalid’)

else if C is a partial coloring then return (C,‘partial’)

else return (C, ‘total’)

Correctness and Complexity

It is easy to see that our algorithm fits the branch & reduce paradigm [55]. The

propagation rules can be mapped into reduction rules.

Theorem 4.3. The algorithm described in the previous section correctly computes

the minimum weight of a dominating induced matching of a graph G.

Proof: The correctness of the algorithm follows from the fact that the algorithm

considers all colorings that represent a DIM that can have minimum weight. Lemmas

4.2 and 4.4 are applied to extend partial colorings. Invalid colorings are discarded,

while valid colorings are further extended, except if some other valid coloring

representing a better DIM (with less weight) appeared before.

For proving the worst-case running time upper bound for the algorithm we will

use the following helpful definition and theorem.

59

Definition 2. [55] Let b be a branching rule and n the size of the instance.

Suppose rule b branches the current instance into r ≥ 2 instances of sizes respectively

at most n− t1, n− t2, . . . , n− tr, for all instances of size n ≥ max{ti : i = 1, 2, . . . , r}.
Then we call b = (t1, t2, . . . , tr) the branching vector of branching rule b. The

branching vector b = (t1, t2, . . . , tr) implies the linear recurrence:

T (n) ≤ T (n− t1) + T (n− t2) + . . . , T (n− tr).

Theorem 4.4. [55] Let b be a branching rule corresponding to the branching vector

(t1, t2, . . . , tr). Then the running time of the branching algorithm using only branching

rule b is O∗(αn), where α is the unique positive real root of

xn − xn−t1 − xn−t2 − . . .− xn−tr = 0

The unique positive real root α is the branching factor of the branching vector b.

We denote the branching factor of (t1, t2, . . . , tr) by τ(t1, t2, . . . , tr).

Therefore for analyzing the running time of a branching algorithm we can compute

the factor αi for every branch rule bi, and an upper bound of the running time of the

branching algorithm is obtained by taking α = maxiαi and the result is an upper

bound for the running time of O∗(αn).

The upper bound is obtained by counting the leaves of the search tree given by

the algorithm, using the fact that each leaf can be executed in polynomial time. The

complexity of the algorithm without hiding the polynomial factor depends on the

time for the execution of each branch in the search tree.

Further notes on this topic can be found in [55]

Theorem 4.5. The algorithm above described requires O∗(1.1939n) time and O(n+m)

space for completion.

Proof. Using Definition 4.3.4 and Theorem 4.4 the computation of the upper bound

time is reduced to calculating the branching vector for each branching rule (i.e.

branching rules in our algorithm) and obtaining the associated branching factor for

60

each case. Then the bound is given by the maximum branching factor. Note that

it is required that the reduction rules (i.e. propagation rules in our algorithm) can

be computed in polynomial time and leads to at most one valid extension of the

considered coloring. So, the propagation rules do not affect the exponential factor of

the algorithm. Moreover, each branch of the algorithm has cost O(n+m) in time and

space. This is easy to note since from the empty coloring up to any total coloring each

vertex v is colored once and the cost for coloring each vertex is given by the updating

of the color of the vertex and its neighbors, hence O(|N(v)|) time. Therefore, the

total cost for each branch is O(n+m).

We consider the size of an instance (a coloring) is the number of uncolored vertices

after application of propagation (reduction) rules. Let’s analyze each branching rule

to obtain the maximum branching factor:

1. If C is an empty coloring: choose an arbitrary vertex v then C ′
1 := C ∪

BLACK({v}) and C ′
2 := C ∪WHITE({v}): It is easy to see that this rule

is executed once, after that, the coloring is never empty again. Since each

application of a branching rule originate two branches, we can bound the time

of the algorithm by twice the complexity of for computing an instance of size

n− 1. Therefore the asymptotic behavior of the algorithm is not affected.

2. If ∃ edge vw s.t. v ∈ NU(s) and w ∈ NU(s
′), for some s, s′ ∈ S, s 6= s′ then

C ′
1 := C ∪BLACK({v}) and C ′

2 := C ∪WHITE({v}).

Here we extend the original coloring C ′ to C ′
1 and C ′

2 by coloring the vertex

v with black and white respectively. Recall that there exists an edge vw such

that v ∈ NU(s), w ∈ NU(s
′). If v is black then NU(s) \ v are white, while w is

white. On the other hand, if v is white then w is black and NU(s
′)\w are white.

Therefore the size of uncolored vertices is reduced for each branch (i.e. for each

new coloring). The associated branching vector is (1 + |NU(s)|, 1 + |NU(s
′)|).

By rule (P2) |NU(s)| ≥ 2 and |NU(s
′)| ≥ 2. The following observation turns

out to be useful:

61

∀si ∈ S If |NU(si)| = 2 then NU(si) can be totally colored, whether v is

black or white. Therefore the branching vector with biggest branching factor is

(3,5) (τ(3, 5) ≈ 1.1939) and occurs whenever one of {s, s′} has two uncolored

neighbors and the other one has three uncolored neighbors.

3. For some s ∈ S, if ∃v ∈ NU(s) s.t. ∃w ∈ NT (v):

Note that if ∄w ∈ NT (v) for any v ∈ NU(s) then either the propagating rule

(P9) or (P5) can be applied to get an extension of the coloring.

(a) If |NU(s)| 6= 3∨ d(w) 6= 3∨ |NT (v)| ≥ 2 then C ′
1 := C ∪BLACK({v}) and

C ′
2 := C ∪WHITE({v}).

If v is uncolored then w is not a pendant vertex, d(w) > 1. If w is

uncolored then it has neither a white nor a paired black neighbor.

Moreover, if w has a single black neighbor then this is the case analyzed

above. Therefore w has uncolored neighbors and let x be one of them.

(a.1) |NT (v)| ≥ 2: Let v′ ∈ NT (v). Using the same reasoning that with

w, we claim: ∃x′ ∈ NU(v
′). In C ′

1, {v, x} will be black, while {x, v′, w}
will be white In C ′

2, {v} will be white while {v′, w} will be black.

This lead to the branching vector (3,5).

(a.2) d(w) 6= 3. If d(w) = 2 then in C ′
1 the vertices NU(s)∪{w, x} will be

colored and in C ′
2 the vertices {v, x} will be black, while {w} will be

white. Therefore the branching vector with biggest branching factor

is (3,5).

Else if d(w) > 3 then in C ′
1 the vertices NU(s)∪NU [w] will be colored

and in C ′
2 the vertices {v, w} will be colored. In case |NU(s)| = 2 then

v1 will be colored too. Therefore the branching vectors are either

62

(2,7) (τ(2, 7) = 1.1908) or (3,6) (τ(3, 6) = 1.1739).

(a.3) |NU(s)| = 2: Let NU(s) = {v, v1} and N(w) = {v, x, x′}. In C ′
1

after applying propagation rules the vertices {v, x, x′} will be black,

while {v1, w} will be white. In C ′
2 after applying propagation rules

the vertices {v1, w} will be black, while {v} will be white. The result

is the branching vector (3,5).

(a.4) |NU(s)| > 3: Let {v1, v2, v3} ⊆ NU(s) and N(w) = {v, x, x′}. In C ′
1

after applying propagation rules the vertices {v, x, x′} will be black,

while {v1, v2, v3, w} will be white. In C ′
2 after applying propagation

rules the vertices {w} will be black, while {v} will be white. The

result is the branching vector (2,7)

(b) If |NU(s)| = 3 ∧ d(w) = 3 where NU(w) = {v, x, x′}, NU(s) = {v, v′, v′′}
Note that {x, x′}∩{v, v′, v′′} = ∅ since otherwise at least one of them must

be colored by rule (P8).

(b.1) If NU(v
′) = NU(v

′′) = ∅ then
C ′

1 := C ∪ BLACK({v}) and C ′
2 := C ∪WHITE({v}) :

Suppose w.l.o.g. weight(sv′) ≤ weight(sv′′), then:

In C ′
1, after applying the propagation rules the vertices {v, x, x′} will

be black, while, {v′, v′′, w} will be white.

In C ′
2, after applying propagation rules the vertices {v′, w} will be

black, while {v, v′′} will be white. The result is the branching vector

(4,6) (τ(4, 6) = 1.1510).

63

(b.2) If NU(v
′) 6= ∅, let w′ ∈ NT (v

′), with w′ 6= w:

If |NT [w] ∪NT [w
′]| > 5 then

C ′
1 := C ∪ BLACK({v}) and C ′

2 := C ∪WHITE({v})

Note that if d(w′) 6= 3 then v′w′ satisfies the properties of an

already analyzed case, hence C ′
1 := C ∪ BLACK({v′}) and C ′

2 :=

C ∪WHITE({v′}).
If d(w) = d(w′) = 3 and |NT [w] ∪ NT [w

′]| > 5, then ∃x, y s.t.

x ∈ NT (w), x /∈ NT (w
′) and y ∈ NT (w

′), and /∈ NT (w). In C ′
1 after

applying propagation rules the vertices {v, x, x′, w′} will be black,

while {v′, v′′, w} will be white. If x′ = w′ then y must be black by

rule (P6). In C ′
2 the vertex {w} will be black, while the vertex {v}

will be white. The result is the branching vector (2,7)

(b.3) If NU(v
′) 6= ∅, let w′ ∈ NT (v

′), w′ 6= w

If |NT [w] ∪NT [w
′]| ≤ 3 and z ∈ N(w) ∩N(w′) then

C ′
1 := C ∪ BLACK({v′′}),

if weight(sv) + weight(w′z) ≤ weight(sv′) + weight(wz) then

C ′
2 := C ∪ BLACK({v})

otherwise C ′
2 := C ∪ BLACK({v′})

If d(w) = d(w′) = 3 then ww′ ∈ E(G) and ∃z ∈ NT (v) ∩ NT (w),

otherwise the case is one of the above.

In both colorings, C ′
1 and C ′

2 the vertices {v, v′, v′′, w, w′, z} will be

colored. The branching vector is (6,6) (τ(6, 6) = 1.1225).

The worst branching factor is τ(3, 5) ≈ 1.1939. In consequence, the time

complexity of this algorithm is O∗(1.1939n). To achieve linear space complexity,

we use a stack to store the coloring sequence of the current branch.

64

Counting the number of DIMs

The previous algorithm can be easily adapted to count the number of DIMs. Given

a coloring C we define TV C(C) the number of total valid colorings that can be

extended from C. If we apply any propagation rule to coloring C we obtain a coloring

C ′. Clearly TV C(C) = TV C(C ′), except for rule (P9). In the latter case TV C(C) =

TV C(C ′) · |NU(s)| where s is the single vertex chosen to apply the rule.

Note that by swapping s for any vertex v ∈ NU(s) we get another valid DIM,

since it satisfy Definition 1. from valid coloring. Thus, each vertex v ∈ NU(s) defines

a different DIM.

If we apply any branching rule to coloring C we obtain two extended colorings C ′
1

and C ′
2. Clearly TV C(C) = TV C(C ′

1) + TV C(C ′
2), except for rule B3(b).iii. In the

latter case TV C(C) = TV C(C ′
1) + 2 · TV C(C ′

2).

Note that since C ′
1 and C ′

2 have a different color for at least one vertex, therefore

the colorings from TV C(C ′
1) are disjoint from the colorings of TV C(C ′

2) and we must

count each one separately. On the other hand, the colorings from TV C(C ′
2) can have

either v black or v′ black, each one leading to a different DIM. Thus, each coloring of

those vertices gives a different coloring to be counted. Therefore there are 2·TV C(C ′
2)

different DIMs.

Using the above facts it is trivial to modify the algorithm to solve the counting

problem.

We have shown algorithms that solve the problem for general graphs with

exponential running time, however their running time is polynomial under certain

conditions, such as having a polynomial number of maximal independent sets, or a

dominating set of fixed size. For the last algorithm, if no more than a fixed number

of branches are needed, the running time is polynomial, however it is not easy to

identify the graphs where this happens.

65

4.4 Efficient Edge Domination on several re-

stricted graph classes

In this section we describe O(n) time algorithms for finding the minimum weighted

dominating induced matching of chordal, dually chordal, biconvex, and claw-free

graphs. For the first three classes, we prove tight O(n) bounds on the maximum

number of edges that a graph having a dominating induced matching may contain.

By applying these bounds, and employing existing O(n+m) time algorithms we show

that they can be reduced to O(n) time. For claw-free graphs, we describe a variation

of the existing algorithm for solving the unweighted version of the problem, which

decreases its complexity from O(n2) to O(n), while additionally solving the weighted

version. We show how the same algorithm can be easily modified to count the number

of DIMs of the given graph.

4.4.1 Chordal, Dually Chordal and Biconvex graphs

We remark that computing DIMΩ(G) for any graph G which is chordal, dually

chordal or biconvex requires no more than O(n) time.

Lemma 4.10. [20] If G contains a K4 then G has no DIMs.

Lemma 4.11. Every K4-free chordal graph G with at least 2 vertices has at most

2n− 3 edges. The bound is tight even if G is an interval graph.

Proof. By induction on the number of vertices of the graph. For n = 2, the result

follows since such a graph has at most one edge. Suppose the bound is valid for any

graph with n−1 vertices, n ≥ 3. Let G be an n-vertex chordal graph and v a simplicial

vertex of it. Since |E(G)| = |E(G \ {v})| + d(v), by the induction hypothesis, the

number of edges of G \ {v} is bounded by 2(n− 1)− 3 = 2n− 5. Since G is K4-free,

d(v) ≤ 2, therefore |E(G)| ≤ 2n− 5 + 2 = 2n− 3.

66

An interval graph having two universal vertices and the remaining ones having

degree 2 has no K4 and contains 2n − 3 edges, meaning that the bound is tight for

interval graphs.

Corollary 4.2. The DIMΩ(G) problem can be solved in O(n) time for (dually)

chordal graphs.

Proof. Let G be a given chordal graph. First, we count the number of edges of G,

up to a limit of 2n − 3. If the bound has been exceeded then stop answering that

G has no DIMs. Otherwise, apply the algorithm [80] which will solve DIMΩ(G) in

O(n) time. Finally, if a graph has a DIM then it is chordal if and only if it is dually

chordal [22]. Consequently, DIMΩ(G) can also be solved in O(n) time for dually

chordal graphs.

Next, we consider solving DIMΩ(G) for biconvex graphs. An ordering < of X in a

bipartite graph G = (X, Y,E) has the interval property if for every vertex y ∈ Y , the

vertices of N(y) are consecutive in the ordering < of X. A bipartite graph (X, Y,E) is

convex if there is an ordering ofX or Y that fulfills the interval property. Furthermore

if there are orderings for both X and Y which fulfill the interval property the graph

is biconvex.

Lemma 4.12. Let G be a convex bipartite graph having no subgraph isomorphic to

K3,3. Then G contains at most 2n− 4 edges, for n ≥ 3.

Proof. The proof is by induction on n. If n = 3 then it is trivial to verify that G

satisfies the bound since it has at most 2 edges. Let G be an arbitrary K3,3–free

convex graph, v its minimum degree vertex and G′ the graph obtained from G by

removing v.

• d(v) ≤ 2: Clearly, G′ is also K3,3–free. By inductive hypothesis, G′ has at most

2(n−1)−4 = 2n−6 edges. Consequently, G has at most 2n−6+d(v) ≤ 2n−4

edges.

67

• d(v) > 2: Every vertex in G has degree at least 3. Let G = (X, Y,E) where X

has the interval property. Thus for each vertex y ∈ Y,N(y) consists of vertices

that are consecutive. Let {x1, . . . , xk} be the ordering < of X and w.l.o.g. let

{y1, y2, y3} ⊆ N(x1). Since y1, y2, y3 have at least 3 neighbors and X has the

interval property, it follows that {x2, x3} ⊆ N(y1) ∩ N(y2) ∩ N(y3). Therefore

{x1, x2, x3, y1, y2, y3} induces a K3,3, which is a contradiction.

Hence, G contains indeed at most 2n − 4 edges. This bound is tight, K2,n−2 is an

example.

We remark that bipartite graphs, not necessarily convex, which do not contain

K3,3 as a minor also have at most 2n − 4 edges [33]. However, this bound does not

apply to general bipartite graphs not containing K3,3 as an induced subgraph, as

shown by the example below described.

Let G = (X, Y,E) be a bipartite graph where X = {x0, x1, . . . , x15} and Y =

{y0, y1, . . . , y7}. Add the edge xiy2j, if the binary representation of i has the digit 0

at position j, while if such a binary representation contains the digit 1 at j then add

the edge xiy2j+1. It is easy to see that one of the edges xiy2j, xiy2j+1 will exist for all

i, j : 0 ≤ i ≤ 15, 0 ≤ j ≤ 3. We show that G is K3,3-free: Suppose this is not true,

and let {xi, xj, xk, yp, yq, yr} be the vertices of an induced K3,3. By the construction of

G the binary representations of i, j, k have the same value for positions ⌊p
2
⌋, ⌊ q

2
⌋, ⌊ r

2
⌋.

But i, j, k are distinct integers 0 ≤ i, j, k ≤ 15, which leads to a contradiction, since

there are no three integers smaller than 16 with the above property. Consequently,

G is K3,3–free. To complete the example, note that G has 24 vertices and more than

44 edges.

Give k copies of the graph defined above. Say xi
j is the xj vertex from the i-th copy.

Add edges yi7x
(i+1)
0 , 0 ≤ i < k. The number of vertices is 24k while m = 64k + k − 1.

This result graph is K3,3-free bipartite and has all vertices of degree at least 4. The

bound 65k − 1 ≤ 48k − 4 is not satisfied for any k.

68

Lemma 4.13. Let G = (X, Y,E) be a biconvex graph which has a DIM. Then G is

K3,3–free.

Proof. Suppose G contains a K3,3 given by X ′ = {x1, x2, x3} ⊆ X and Y ′ =

{y1, y2, y3} ⊆ Y . Consider an arbitrary DIM of the graph and its corresponding

black-white coloring of the vertices. Then the vertices of X ′ and Y ′ must have

distinct colors. Suppose w.l.o.g. that the vertices X ′ are black and those of Y ′

are white. Let y∗1, y
∗
2, y

∗
3 be the black neighbors of x1, x2, x3, respectively. It follows

that the graph induced by the nine vertices of X ′ ∪ Y ′ ∪ {y∗1, y∗2, y∗3} is not biconvex,
a contradiction.

Corollary 4.3. The DIM problem for biconvex graphs can be solved in O(n) time.

Proof. Let G be a biconvex graph. If G contains a DIM, by Lemma 4.13, G is K3,3–

free. Therefore G has at most 2n− 4 edges, by Lemma 4.12. Consequently, given an

arbitrary biconvex graph, count its number of edges, up to 2n− 4. If the number of

edges exceeds 2n− 4 then the graph does not contains any DIM, otherwise apply the

algorithm [20], which solves the DIM problem in O(n+m) time, for chordal bipartite

graphs. Since convex graphs are contained in chordal bipartite, we can solve the DIM

problem for biconvex graphs in O(n) time.

We remark that there are convex graphs having a quadratic number of edges that

admit DIMs. For instance, V (G) = V1 ∪ V2 ∪ V3, where |V (G)| = n, |V1| = |V2| =
|V3| = n

3
. Let Vi be an independent set for 1 ≤ i ≤ 3, and let V1∪V2 induce a complete

bipartite graph, V1 ∪ V3 be an induced matching, and V2 ∪ V3 be an independent set.

Such a graph is bipartite, with bipartition (V1, V2∪V3), moreover it is convex bipartite

since it admits a interval ordering. Also, it contains a quadratic number of edges. On

the other hand, V1 ∪ V3 is a DIM of it.

69

4.4.2 Claw-free graphs

The problem of finding a DIM on a claw-free graph, if existing, has been solved in

[28] by an O(n2) time algorithm. We review the ideas of this paper and propose an

improvement of it.

We assume that the given graphG = (V,E) is connected, and is neither an induced

cycle nor an induced path. Clearly, if G is disconnected we can reduce the problem

to its connected components, while if G is a cycle or a path the solution is trivial.

By [28], if a claw-free graph G has a DIM then each vertex v of G is one of the

following six types:

(1) degree 1

(2) degree 2 with two non-adjacent neighbors;

(3) degree 2 with two adjacent neighbors

(4) degree 3 with G[N(v)] inducing a K1 +K2

(5) degree 3 with a G[N(v)] inducing a P3

(6) degree 4 with G[N(v)] inducing a 2K2

Thus, we assume that each vertex of G falls into one of the above types. This

implies m ≤ 2n, i.e. m = O(n).

In particular, the two edges incident to a Type 4 vertex v, which are contained in a

triangle of G(N [v]), are called heavy, while the third edge incident to v is a light one.

The algorithm [28] can be viewed as a sequence of the following distinct phases:

1. Handling three consecutive vertices of Type 2

2. Handling vertices of Type 1 which are at distance at least 3 of some Type 4 vertex

3. Coloring all vertices of Types 1,2,5 and 6

4. Coloring the remaining vertices, of Types 3 and 4

70

Our proposed algorithm describes new formulations for Phases 1,2 and 4, while

maintaining the original Phase 3 of the algorithm [28]. We proceed by describing

each of the parts.

Phase 1

The purpose is to eliminate the occurrence of three consecutive Type 2 vertices

v1, v2, v3, such that N(v2) = {v1, v3}, N(v1) = {v2, w1} and N(v3) = {v2, w3}.
Consider the following alternatives:

• w1 = w3: In this case if d(w1) = 2 then G = C4, which contradicts G not to be

a cycle. Hence d(w1) ≥ 3, but then G[N [w1]] contains a claw, a contradiction.

Thus this case does not occur.

• w1w3 ∈ E(G): If d(w1) = d(w3) = 2 then G = C5 again a contradiction. Hence

we may suppose ∃u ∈ N(w1)\{v1, w3}. We know that u 6∈ N(v1), thus in order

to avoid a claw in G[N [w1]] we must assume u ∈ N(w3). The latter implies

that no more vertices can belong to the neighborhoods of w1 and w3, otherwise

G would contain vertices outside the above six types, a contradiction.

Any DIM of G must have exactly one edge of the triangle {w1, u, w3}. The edge
w1w3 does not lead to a valid DIM since it forces v2 to be a single black vertex

without black neighbor. It is easy to verify that the possibilities are either:

{w1u, v2v3} or {w3u, v1v2}.

Therefore we can eliminate vertices v1, v2, v3 and sum the weight of edge v1v2

to that of w3u, and sum the weight of v2v3 to that of w1u. To guarantee that

the edge w1w3 is not chosen to enter the DIM, we assign infinite weight to it.

• w1 6= w3 and w1w3 /∈ E(G): In this case we use the original procedure of

[28], which consists of replacing vertices v1, v2, v3 for the edge w1w3. However,

the algorithm [28] solves the DIM problem without weights, thus, in order to

71

guarantee the correct solution for the new weighted graph, we need to consider

the following additional possibilities:

– w1, w3 are black: Then v1, v3 are black and v2 is white. The weights of

edges v1w1 and v3w3 must be added to the weight of w1w3

– w1 is black and w3 is white: In this case, v2 and v3 are black while v1 is

white. Hence the weight of edge v2v3 must be added to the weight of each

edge of the set of edges w1z, where z 6= v1, z 6= w3

– w3 is black and w1 is white: This case is symmetric to the previous one.

The weight of edge v1v2 must be added to the weight of each edge of the

set w3z, where z 6= v3, z 6= w1.

Note that these are disjoint changes, and we must apply all of them. These

modifications to the original graph G are repeated until no three consecutive vertices

of Type 2 remain in the graph, leaving a new reduced graph G′ = (V (G′), E(G′)).

This can be achieved in O(n) time. The algorithm now proceeds on G′.

Phase 2

In this phase, we eliminate the occurrence of Type 1 vertices, lying at distance at least

3 from some Type 4 vertex. Let v ∈ V (G′) such that d(v) = 1 and let w ∈ V (G′)

be the vertex such that d(w) ≥ 3 and the distance to v is minimum. Note that if

there is no such w then G′ is a path, a contradiction. Therefore there is a path v−w

where all vertices, except v, w are of Type 2. Since there are at most two consecutive

vertices of Type 2, the distance between v and w is at most 3. It is easy to see that

w is of Type 4, otherwise G′ is not claw-free. Let v, u1, u2, w be any path of length

3 from a vertex v ∈ V (G′) to a vertex w ∈ V (G′), with d(v) = 1 and d(w) = 3. Let

{z1, z2} be the unique K2 in the subgraph induced by N(w), and G∗ be the graph

after deletion of vertices {v, u1, u2}. It is clear that any DIM M∗ of G∗ contains

exactly one edge from the triangle formed by wz1z2. In case M∗ contains the edge

72

z1z2, we add the edge u1u2 to M∗ in order to obtain a DIM of G, hence to generate

a DIM with the same weight in G∗ we set ω(z1z2) = ω(z1z2) + ω(u1u2). In case that

M∗ contains wz1 or wz2 the edge vu1 is added to M∗. In the latter situation, we set

ω(wz1) = ω(wz1) + ω(vu1) and ω(wz2) = ω(wz2) + ω(vu1). We repeat this process

for each vertex v ∈ V (G′) such that d(v) = 1. Finally, we assert that every vertex of

Type 1 is at distance 1 or 2 from some vertex of Type 4. These computations can be

completed in O(n) time.

Phase 3

By applying convenient propagation rules, the algorithm [28] colors a subset of vertices

of the graph, including all vertices of Types 1,2,5, and 6. Let Γ be the final coloring

so obtained in the algorithm. First, check its validity. If Γ is not valid, then G has

no DIMs and the algorithm terminates. If C is valid and total, also terminate the

algorithm, since the unique DIM of G has been found. Otherwise, proceed to Phase

4.

All the above operations can be completed in O(n) time. At the end of this phase,

the only possibly uncolored vertices are of Types 3 and 4. Observe that the obtained

coloring is unique, so there is no choice to be made concerning weights, so far.

Phase 4

In this phase, we extend the coloring Γ, obtained by the previous phase, into a total

valid coloring. It is assumed that Γ is a valid not total coloring, which cannot be

extended by propagation. Let U be the set of uncolored vertices and S the set of

single black vertices of the coloring Γ. Note that extending Γ is equivalent to extending

the coloring Γ′ of G∗[U ∪ S] (in Γ′, only vertices of S are colored with black color).

It can be verified that in any valid coloring, the following holds: ∀s ∈ S,N [s] induces

in G∗[U ∪S] a K3 = {u, v, s} where u, v ∈ U . Since vertices of S and Type 3 vertices

are simplicial in G∗[U ∪S], any central vertex of induced P3 in G∗[U ∪S] must be an

73

uncolored Type 4 vertex. Particularly, the vertices of a cycle Ck≥4 are central vertices

of induced P3’s. Moreover, an edge of induced P3 must be heavy and the other one

must be light. It’s easy to see that vertices of a light edge must have different colors.

The following lemma is helpful to extend coloring Γ′.

Lemma 4.14. Let Γ′′ any total valid coloring extensible from Γ′ and P = (v1, . . . , vt)

be an induced path of G∗[U ∪S] such that v1, vt are type 4 vertices, v1v2 is a light edge

and v1 is a black vertex, then (i) vivi+1 is a light (heavy) edge if i is odd (even); (ii)

vi is black (white) if i is odd (even).

Proof. We know that P is an induced path, v2, . . . , vt−1 are central vertices of induced

P3’s, they are also Type 4 vertices and the edges of P are light and heavy alternately.

Then (i) holds because the first edge is white. On the other hand, vertices of light

edges must have different colors, while the same occurs for heavy edges if one vertex

is white. Since v1 is black and v1v2 is a light edge, then v2 is white and v3 is black.

Again, we can check that v3 satisfies the same properties as v1 and v4 will satisfy

the same properties as v2. Therefore there is a unique valid coloring for vertices of

P which consists of alternating the colors of the vertices, where (ii) vi is black if and

only if i is odd.

We proceed by finding a minimum weight DIM on each connected component Gi

of G∗[U ∪ S]:

Gi is a chordal graph

In this case, for each single black vertex s in Gi, its neighbors u and v form an edge

and we set ω(uv) =∞. In this way any non infinity weight DIM of Gi will not contain

this edge and s will be a black vertex as in C ′. Apply the algorithm described in the

previous section that computes DIMΩ(Gi), if existing.

74

Gi has an induced cycle Ck, k ≥ 4

As it was mentioned before, Ck is formed by light and heavy edges, where each light

edge is adjacent to heavy edges and vice versa.

Lemma 4.15. [28]: Let G∗ be the resulting claw–free graph and Γ the partial valid

coloring obtained after Phase 3. If the subgraph of G∗ induced by uncolored vertices

contains an induced cycle Ck≥4, then k is even. Moreover, if G∗ admits a black-white

partition, then the vertices of Ck are colored alternately black and white along the

cycle, and furthermore, by switching the colors of vertices of Ck we again obtain a

valid black-white partition of G∗.

Lemma 4.16. Gi admits exactly two DIMs or none.

Proof. We extend the initial coloring choosing any alternate coloring for Ck and

applying propagation rules. Let Γi be this result coloring. We will prove that Γi

is invalid or is a total valid coloring. Clearly, if Γi is invalid then Gi has no DIMs

by lemma 4.15. If Γi is a total valid coloring, then switching the colors of vertices

of Ck, we obtained another total valid coloring of Gi and they are the unique total

valid colorings. Suppose that Γi is valid but there is some uncolored vertex u in Gi.

Let P = (v0, . . . , vt = u) be the shortest path from a vertex v0 in Ck. Without loss

of generality we can assume that v0, . . . , vt−1 are colored vertices. Clearly, P is an

induced path. On the other hand, v0v1 is a heavy edge because v1 must be adjacent

to two consecutive vertices of Ck by the claw-freeness. Hence, v1 must be a black

vertex and t ≥ 2. Then v1, vt−1 are central vertices of induced P3’s which implies that

v1, vt−1 are type 4 vertices and v1v2 is a light edge. Clearly, vt = u must be type 3

vertex because otherwise it must be colored applying lemma 4.14. Hence, vt−1vt is a

heavy edge and vt−2vt−1 is a light edge which means that t is odd and vt−1 is white

vertex. Therefore, vt must be a black vertex which is a contradiction. Consequently,

Γi is a total valid coloring.

75

Using these two lemmas, we can determine in linear time all DIMs of Gi and

return one of minimum weight (if existing).

As for the complexity of the last phase of the algorithm, observe that a cycle of

length ≥ 4 of a non chordal graph can be obtained in linear time in the size of G, that

is, O(n) time. All the remaining steps can be completed in O(n) time. It should be

noted that the corresponding phase of the algorithm [28] requires O(n2) time. The

main difference is that in the the presently proposed algorithm, it is sufficient to find

just one induced cycle of length ≥ 4, and propagate the coloring to its connected

component, whereas the algorithm [28] requires the computation of O(n) such cycles,

in subgraphs not necessarily disjoint of the graph. Since each of them needs O(n)

time, the overall complexity of the latter algorithm is O(n2).

Our proposed formulation computes DIMΩ(G) in O(n) time. Observe that

through the algorithm the input graph is modified, however the changes do not alter

the value of the DIMΩ(G) solution. As for the actual minimizing DIM, itself, there

is no difficulty retrieving it in O(n) time, by backwards computation. Note that the

algorithm can be easily adapted to be robust in the sense of [92], that it does not

require the input graph G to be claw-free.

4.5 Counting DIMs

We design an algorithm to count DIMs which uses the first three phases of the previous

algorithm. We proceed to explain the new Phase 4 in order to obtain the number

of DIMs of G. For each connected component Gi, we count the number of DIMs in

Gi. Thus the number of DIMs in G is the product of these amounts. The case where

Gi is not chordal is easy since number of DIMs is 0 or 2 (see lemma 4.16). For the

case where Gi is chordal we give a more detailed algorithm. From [28], using the

proof of Lemma 12, we can state that: (i) Each vertex of Gi belongs to a triangle

and any two triangles of Gi are disjoint; (ii) Each triangle has at most one colored

vertex, each colored vertex of Gi has type 4 in G and becomes of type 3 in Gi ; (iii)

76

By contracting each triangle into a single vertex we obtain a tree. A triangle that

becomes a leaf in this tree is called leaf triangle .

Each leaf triangle has two type 3 vertices (one of which may be single) and one

type 4 vertex. An edge with two vertices of type 3 is a bottom edge, otherwise is a

non-bottom edge.

Lemma 4.17. A total valid coloring, extending current coloring, has at most one

non-bottom edge.

Proof. Suppose that there exists a DIM M that contains vw and v′w′, two different

non-bottom edges, with T = {v, w, z} and T ′ = {v′, w′, z′} the triangles where those

edges belongs. Suppose w.l.o.g. v, v′ are vertices of type 4. The shortest path

P = (v = v1, v2, . . . , vk = v′) from v to v′, is an induced path. Clearly, v1v2 and

vk−1vk are light edges. By Lemma 4.14, v or v′ must be white vertex which means

vw or v′w′ does not belong to M which is a contradiction.

Therefore we can count DIMs of two types:

(a) DIMs that contain exactly one non-bottom edge: Choose one non bottom edge

vw from a leaf triangle T = {v, w, z} where v is of type 4 and w is not a single

vertex. Color v, w with black and apply propagation rules. It can be checked that

the result is a total valid coloring where vertices can be colored in a unique way.

Thus for each possible leaf triangle where the non-bottom edge can be chosen to

color with black, we have one more DIM to count.

(b) DIMs that do not contain non-bottom edge: Each bottom edge from every leaf

triangle must be chosen (color both vertices with black) and then extend the

coloring using propagation rules. If the result is not a valid coloring then there is

no DIM of this type, otherwise we get a valid coloring: if it is total then return one

DIM else we can recursively count the DIMs from this smaller instance. Clearly,

each time the algorithm calls recursively will multiply the results obtained. It is

easy to note that this whole process takes linear time.

77

Since the original graph G has not infinite weight DIMs, they must be avoided

when counting. Before Phase 4, we can check if there is an already chosen edge with

infinite weight, in this case, there is NO DIM. The infinite weight edges assigned

during Phase 1 can be only bottom edges.

Let B the set of bottom edges with infinite weight. Clearly, any DIM M must

choose some edge of each leaf triangle, only one of these edges can be non-bottom

edge which means |M ∩B| ≥ |B| − 1: (i) If |B| ≥ 2 then there is NO DIM since any

DIM M has infinity weight. (ii) If |B| = 1 which means there is only one infinity

bottom edge vw of a leaf triangle T = {u, v, w}. Clearly all DIMs of type (b) contain

vw and they have infinity weight. There are at most two DIMs of type (a) which do

not contain vw. They must contain some non-bottom edge (uv or uw) of T . There

are exactly two non infinity weight DIMs if v, w are uncolored vertices. Otherwise,

v or w is a single black vertex which implies that there is exactly one non infinity

weight DIM. (iii) If B = ∅, then NO DIM has infinite weight, thus all DIMs can be

counted recursively as we explained before.

78

Chapter 5

Efficient and Perfect Domination

5.1 Preliminaries

The efficient edge domination problem (also known as Dominating Induced Matching,

and denoted as DIM) was studied in the previous chapter. The notion of this problem

comes from more general problems, which are the efficient and perfect domination.

Given a graph G = (V,E), a perfect dominating set is a subset of vertices V ′ ⊆ V (G)

such that each vertex v ∈ V (G) \ V ′ is dominated by exactly one vertex v′ ∈ V ′.

An efficient dominating set is a perfect vertex dominating set V ′ where V ′ is also

an independent set. Every graph G contains a perfect dominating set, for instance,

take V (G). But not every graph contains an efficient vertex dominating set. These

problems consists in searching the sets with minimum number of vertices. All of them

are NP-hard, even when restricted to some particular graph families. The weighted

version of these problems, where each vertex v has a weight assigned ω(v), consists on

finding a perfect vertex dominating set where the sum of the weights is minimum. We

denote these problems as Minimum Weighted Perfect Vertex Domination (MWPVD),

Minimum Weighted Efficient Vertex Domination (MWEVD). We denote the edge-

versions of these problems as Minimum Weight Perfect Edge Domination (MWPED)

and Minimum Weight Efficient Edge Domination (MWEED). Note that for these

79

edge-versions the dominating set consists of edges instead of vertices, hence the

weights are on the edges, and the adjacency of two edges is defined as two edges

that share a vertex.

In this chapter we show results for the weighted perfect domination problem, and

for the efficient domination problem, restricted to circular-arc graphs.

5.2 Circular-Arc graphs

We give some auxiliary definitions and properties for circular-arc graphs.

The following definitions and results come from [47, 48].

A circular-arc (CA) model for G is a pair (C,A), where C is a circle and A is a

collection of arcs of C, such that each arc Ai ∈ A corresponds to a vertex vi ∈ V (G),

and Ai, Aj intersect precisely when vi, vj are adjacent, i 6= j. A circular-arc (CA)

graph is one admitting a CA model. When traversing the circle C, we will always

choose the clockwise direction. If s, t are points of C, write (s, t) to mean the arc of

C defined by traversing the circle from s to t. Call s, t the extremes of (s, t), while s

is the start and t the end of the arc. For Ai ∈ A, write Ai = (si, ti). Without loss of

generality, all arcs of C are considered as open arcs, no two extremes of distinct arcs

of A coincide and no single arc entirely covers C.

A Helly circular-arc (HCA) graph G is a CA graph admitting a CA model whose

arcs satisfy the Helly property. That is, every pairwise intersecting subfamily of arcs

of A contains a common point. Such a model is called a Helly circular-arc (HCA)

model for G.

Given a circular-arc model M = (C,A) where A = {A1 = (s1, t1), . . . , An =

(sn, tn)}, if an arc A ∈ A contains some point p ∈ C then we say that A is an arc

of p. Denote by A(p) the collection of arcs of p. We say two points p, p′ ∈ C are

equivalent if A(p) = A(p′). The 2n extreme points from the n arcs of A divide the

circle C in 2n segments of the following types: (i) (si, tj) (ii) [ti, tj) (iii) (si, sj] (iv)

80

[ti, sj]. We say the segments of type (i) are intersection segments. It is easy to see

that all points inside one of the 2n segments are equivalent.

Corollary 5.1. [47, 48] There are at most 2n distinct A(p).

Given a circular-arc modelM = (C,A), the following algorithms can be achieved

in O(n) time:

• Find a universal arc. A universal arc has common intersection with every arc

from A.

• Find two arcs Ai, Aj such that Ai ∪ Aj = C.

• Find three arcs Ai, Aj, Ak such that Ai ∪ Aj ∪ Ak = C.

• Find a point p ∈ C such that |A(p)| is maximum.

• Find a point p ∈ C such that |A(p)| is minimum.

• If maxp∈C |A(p)| = 2 and minp∈C |A(p)| = 1 and do not exists two arcs from A
that cover the entire circle C then exists an induced cycle Ck with k ≥ 3 such

that arcs corresponding to the vertices cover the circle C inM and the rest of

the arcs from A are pairwise disjoint and are contained in exactly one of the

arcs from Ck. Thus each arc is either part of the Ck or a leaf with a parent arc

from Ck. It is possible to identify each arc from the Ck.

Note that maxp∈C |A(p)| > minp∈C |A(p)| if A 6= ∅. For instance, let A = (s, t) ∈
A, A(s) ⊂ A(s + ǫ) and A ∈ A(s + ǫ) \ A(s). Hence maxp∈C |A(p)| ≥ |A(s + ǫ)| >
|A(s)| ≥ minp∈C |A(p)|.

Lemma 5.1. [47, 48] Given a CA model M = (C,A), if there are no two or three

arcs of A that cover the entire circle C thenM is an HCA model.

In the following four sections we consider each of the four variants of the mentioned

problems for circular-arc graphs, we show the current state of the art and we propose

81

linear time algorithms to solve them, except for the MWEVD where there already

exists a linear time algorithm. We assume that our input is a circular-arc graph G

and a weight function ω over the vertices or edges depending on the problem we are

solving. For simplicity, we may already use the circular-arc model for G. For these

cases, there is an implicit previous step which is applying a linear time algorithm [82]

in order to obtain a circular-arc model for G.

For MWEVD and MWEED, we consider the function ω non-negative. Since every

efficient vertex (edge) dominating set of a graph contains exactly the same number

of vertices (edges), it is possible to subtract to values from ω the minimum weight of

the vertices (edges). This does not work for the MWPVD and MWPED cases.

5.3 Minimum weighted efficient vertex domina-

tion

The minimum weighted efficient vertex domination problem (MWEVD) on a graph

G can be expressed as an instance of the minimum weighted dominating set problem

(MWDS) on the same graph G making some minor adjustments on the way described

in [22] for unweighted version of MWEVD. There is an O(n +m) time algorithm to

solve MWDS for circular-arc graphs [30]. Hence, MWEVD can be solved for circular-

arc graphs in linear time.

5.4 Minimum weighted efficient edge domination

The Minimum weighted efficient edge domination problem (MWEED) for a graph G

is equivalent to either:

(1) MWEVD for the line graph L(G)

(2) MWIS for the square of the line graph L2(G)

82

If G is a circular-arc graph, then the graph G′ = L2(G) is also a circular-arc graph

[60]. The graph G′ has exactly m vertices and up to O(m2) edges. The algorithm

from [92] solves MWIS problem in linear time for circular-arc graphs. We show an

upper bound on the number of edges for circular-arc graphs that admit a DIM. It is

known that a graph that admits a DIM is K4-free. This property imposes a bound

on the number of edges, thus the algorithm complexity bound can be improved from

O(m2) to O(n2).

We know from Lemma 4.11, every K4-free graph G where n ≥ 2 such that G is

either chordal or interval graph has at most 2n− 3 edges.

Lemma 5.2. Every K4-free graph G where |V (G)| ≥ 2 such that G is circular-arc

graph has at most 2n edges.

Proof. If G is an interval graph the property is satisfied by lemma 4.11. Thus, suppose

|V (G)| ≥ 4 and G is not an interval graph. If exist p such that |A(p)| = 0 then G is an

interval graph and if |A(p)| ≥ 4 then G contains aK4. In consequence, 1 ≤ |A(p)| ≤ 3

for any point p. Let p be the point with maximum value of |A(p)|. Clearly, p belongs

to an intersection segment (si, tj) where |A(si)| = |A(p)| − 1. Hence, |A(p)| ≥ 2 and

we can restrict the study to 2 ≤ |A(p)| ≤ 3. It is easy to see that at least one of these

exists. We analyze each possible case:

• |A(p)| = 2: Let (si, tj) the intersection segment that contains p:

1. i = j: In this case A(p) = {Ai, Ak} where Ak contains arc Ai. If we

cut arc Ak at point si converting it in two different arcs (sk, si − ǫ) and

(si + ǫ, tk) we get an interval graph G′ with n + 1 intervals. By Lemma

4.11 the number of edges of G′ is at most 2(n+1)-3 = 2n-1 edges. Given

that G′ has at least the same number of edges that G we conclude that

|E(G)| ≤ 2n− 1.

2. i 6= j: In this case A(p) = {Ai, Aj}. If we replace Ai by (si, p − ǫ) and

Aj by (p + ǫ, tj), we get an interval graph G′ with n vertices. However

83

the edge that connects Ai, Aj has been lost unless Ai ∪Aj cover the entire

circle. Therefore |E(G′)| ≤ 2n− 3 and |E(G)| ≤ 2n− 3 + 1 = 2n− 2.

• |A(p)| = 3:

1. i = j : In this case A(p) = {Ai, Ak, Ap} where Ak, Ap contain arc Ai. If

we cut arcs Ak, Ap at point si, converting each one into two different arcs,

we get an interval graph G′ with n + 2 intervals and at least one more

edge since Ak, Ap have been converted to two different edges. By Lemma

4.11 the number of edges of G′ is at most 2(n + 2) − 3 = 2n + 1, hence

|E(G)| ≤ 2n

2. i 6= j: In this case A(p) = {Ai, Aj, Ak} where Ak contains the segment

(si, tj). We can replace Ai by (si, p− ǫ) and Aj by (p+ ǫ, tj) (and may lose

an edge unless Ai∪Aj cover the entire circle). We cut the arc Ak in either

si or tj, any one works. We get an interval graph G′ with n + 1 vertices

and at least |E(G)| − 1 edges. By lemma 4.11 the number of edges of G′

is at most 2(n+ 1)− 3 = 2n− 1. Hence |E(G)| ≤ 2n.

The graph 3K2 has 6 vertices and 12 edges, hence it shows tightness of the bound.

Therefore any algorithm to solve DIM problem can first check the amount of edges

to ensure the existence of a DIM. Since m ∈ O(n) then any O(n+m) time algorithm

for circular-arc graphs can be easily converted to an O(n) time algorithm.

In the previous chapter, a linear-time algorithm to solve MWEED for general

graphs given a fixed dominating set was presented.

If there exists a set of at most three arcs that cover the entire circle, then there is a

dominating set of size at most 3, thus the problem can be solved using the mentioned

algorithm in linear time. Hence we can assume a model M without a set S that cover

84

the entire circle such that |S| ≤ 3. Therefore M is a Helly circular-arc (HCA) model

and the original graph G is HCA.

We analyze the model M :

(a) maxp∈C |A(p)| ≥ 4: Then G is not K4-free, hence it does not admit a DIM

(b) minp∈C |A(p)| = 0: Then M is an interval model. Algorithm from [80] can be

applied

(c) maxp∈C |A(p)| = 2: We refer this case to subsection 5.4.1

(d) maxp∈C |A(p)| = 3: We refer this case to subsection 5.4.2

Each of these cases can be implemented in linear time.

5.4.1 maxp∈C |A(p)| = 2

Since maxp∈C |A(p)| > minp∈C |A(p)|, minp∈C |A(p)| = 1. We can locate an induced

cycle Ck≥4 on G such that arcs from those vertices cover the entire circle C in the

modelM , and the rest of arcs from A are pairwise-disjoint and are contained in exactly

one arc from Ck. If a vertex v ∈ Ck is connected with a set of pendant vertices W ,

then v should be colored with black in order to get a coloring of the graph that

represents a valid DIM. Note that the only edge that belongs to a minimum weighted

DIM will be an edge of minimum weight between v and W . Therefore, all edges

between v and w ∈ W such that its weight is not minimum can be removed from

the graph G in order to obtain G′. Every minimum weighted DIM from G is a valid

minimum weighted DIM in G′. Note that if exist k edges with minimum weight, then

any k − 1 of those edges can be erased. In the new graph G′ every vertex v ∈ Ck

contains at most one pendant vertex w in his neighborhood. We know that HCA is

an hereditary property, G′ is still an HCA graph, and every clique from G′ is a K2,

hence K(G′) = L(G′). The graph K(G′) is HCA if G′ is HCA and it contains O(n)

vertices and O(n) edges since maximum ∆(L(G′)) ≤ 4. The K(G′) model can be

85

obtained within O(n) time [76]. Therefore MWEED can be solved for G′, by solving

MWEVD for L(G′), which can be done in linear time.

5.4.2 maxp∈C |A(p)| = 3

Denote A(p) = {A1, A2, A3}. Then v1, v2, v3 form a triangle in G, which means

that any DIM of G must contain exactly one of the three edges of this triangle:

{v1v2, v2v3, v3v1}. By removing point p from C (every arc (s, t) containing p is

now two disjoint arcs (s, p − ǫ) and (p + ǫ, t)), we obtain an interval graph Gp, in

which the vertices v1, v2, v3 of G correspond to two triangles formed by u1, u2, u3 and

un+1, un+2, un+3, respectively. So, any DIM of Gp must contain one edge of each

of these triangles. Furthermore, our task would become simpler if u1, u2, u3 and

un+1, un+2, un+3 would correspond to triangles having neither common nor adjacent

vertices. The latter condition is fulfilled because there are no two arcs that cover the

entire circle.

Lemma 5.3. The triangles {u1, u2, u3} and {un+1, un+2, un+3} have neither common

nor adjacent vertices.

Proof. Clearly, u1, u2, u3, un+1, un+2, un+3 are six different vertices. Hence there are

no common vertex in both triangles. Suppose that ui is adjacent to un+j, 1 ≤ i, j ≤ 3.

Consider the following cases.

(a) i = j, which means Ai covers the circle C, that is absurd.

(b) i 6= j, in this case, Ai and Aj cover the circle which is a contradiction.

So, we now consider that the triangles u1, u2, u3 and un+1, un+2, un+3 contain

neither common nor adjacent vertices. We will apply algorithm from [80] to Gp,

which solves MWEED for chordal graphs (hence interval graphs). The algorithm will

be executed three times. In each of the applications, the graph Gp remains the same,

86

but the weighting changes, to Ω1, Ω2 and Ω3, respectively. In order to avoid edges

of triangles {u1, u2, u3} and {un+1, un+2, un+3} incident to ui or un+i to be included

in the DIM, in the weighting Ωi, 1 ≤ i ≤ 3, we assign to each of these edges a high

weight, for instance more than twice the sum of all weights of the edges of G. All the

other edges of Gp remain the same as in the corresponding edges of G. If the value

of the minimum weighted DIM of Gp is above that high weight assigned to the edges

we want to avoid, then we know that G contains no DIM. Otherwise, we have solved

our problem, and we only need to subtract the duplicated weight among the edges of

the triangles u1, u2, u3 and un+1, un+2, un+3 which is part of the solution for Gp, but

not for G.

The following are the formal definitions of the weights. Let A1, A2, A3 be the

arcs containing p. Assign to Gp the weighting Ωi, 1 ≤ i ≤ 3, which defines a weight

ωi(ujuk) for each edge ujuk ∈ E(Gp), as follows.

For 1 ≤ i, j ≤ 3 ≤ k ≤ n and ujuk ∈ E(Gp),

ωi(ujuk) := ω(vjvk)

For 1 ≤ i, j ≤ 3 ≤ k ≤ n and un+juk ∈ E(Gp),

ωi(un+juk) := ω(vjvk)

For 1 ≤ i, j, k ≤ 3, i 6= j, j 6= k and k 6= i,

ωi(ujuk) := ωi(un+jun+k) := ω(vjvk)

For 1 ≤ i, j ≤ 3 and i 6= j,

ωi(uiuj) := ωi(un+iun+j) := 1 + 2 · ∑

(u,v)∈E(Gp)

ω(uv)

87

Lemma 5.4. Let max|A(p)| = 3, A(p) = {A1, A2, A3}. Then

dimΩ(G) =











∞ min1≤i≤3{dimΩi
(Gp)} > 2 · ∑

(u,v)∈E(Gp)

ω(uv)}

min1≤i≤3{dimΩi
(Gp)− ωi(ujuk)}† otherwise

† where 1 ≤ j, k ≤ 3; i 6= j 6= k 6= i

Proof. Let A(p) = {A1, A2, A3}. Cut the circle at point p and consider the model

M of the interval graph Gp. For lemma 5.3, {u1, u2, u3} and {un+1, un+2, un+3} are
triangles with neither common nor adjacent vertices.

Suppose G has a DIM M , weighted by Ω, having total weight ω′ ≤
2

∑

(u,v)∈E(Gp)

ω(uv). We know that exactly one edge of the triangle {v1, v2, v3}, say

v1v2, belong to M . Then choose the weighting Ω3 for Gp and consider the following

subset of edges Mp ⊆ E(Gp).

Mp = {u1u2, un+1un+2} ∪ {uiuj ∈ E(Gp)|vivj ∈M, 3 < i, j ≤ n}

We claim the Mp is a DIM for Gp. Since M is a matching, Mp is clearly so. Assume

by contrary that it is not induced, and let the violating edge be uiuj, where ui, uj

are vertices incident to distinct edges of Mp. Since M is an induced matching of G,

it follows that i ∈ {1, 2, 3} and j ∈ {n + 1, n + 2, n + 3}. The latter means that

u1, u2, u3 and un+1, un+2, un+3 have a common or an adjacent vertex, a contradiction.

Consequently, Mp is indeed an induced matching. It remains to show that it is

dominating. Let S be the subset of vertices of Gp, not incident to the edges of Mp.

Let ui, uj ∈ S, i 6= j. Because M is a dominating matching, the only possibility for

ui, uj to be adjacent is i = 3 and j = n + 3, which contradicts A3 not covering the

circle. Then Mp is a DIM having weight equal to ω′ + ω(v1, v2).

Conversely, assume that Gp has a DIM weighted by, say Ω3, having weight ≤
2
∑

ω. We know that exactly one edge of each of the triangles {u1, u2, u3} and

88

{un+1, un+2, un+3} belong to Mp. Furthermore, the edges of these triangles which are

incident either to u3 or un+3 all have weight > 2
∑

ω. Therefore any dominating set

of edges with weight ≤ 2
∑

ω contains the edges u1u2 and un+1un+2. Let

M = {v1v2} ∪ {vivj ∈ E(G)|uiuj ∈Mp, 3 < i, j ≤ n}

We claim that M is a DIM of G. Clearly, for any vi, vj ∈ V (G), 1 ≤ i ≤ 3 and

3 < j ≤ n, vivj ∈ E(G) if and only if uiuj ∈ E(Gp) or un+iuj ∈ E(Gp). Consequently,

Mp being a DIM of Gp implies that M is a DIM of G. Furthermore, the weight of

M is precisely the weight of Mp less ω3(u1u2), since it was counted twice in Mp. The

lemma follows.

5.5 Minimum weighted perfect vertex Domination

Given a weighted graph G with weight function ω : V (G) → R+, the goal is to

find the perfect vertex dominating set of minimum weight. If G contains a universal

vertex then the following lemma can be used in order to obtain the solution. In [31],

an O(n+m) time algorithm to solve MWPVD for interval graphs was presented. The

same paper shows the only known algorithm to solve MWPVD for circular-arc graphs

in O(n2 + nm) time. Note that any efficient vertex dominating set is also a perfect

vertex dominating set. The following lemma along with the procedure derived from

it can be applied to graphs with ω : V (G)→ R (i.e. negative weights included).

Lemma 5.5. Given a graph G = (V,E) where u1 ∈ V (G) is a universal vertex:

1. If G contains another universal vertex u2 6= u1, then the unique perfect vertex

dominating sets of G are: V , {ui} where ui may be any universal vertex.

2. If u1 is the unique universal vertex from G, then every perfect vertex dominating

set of G contains u1. Moreover, each solution can be computed on the following

89

way: Let {G1 = (V1, E1), . . . , Gk = (Vk, Ek)} the connected components from

G \ {u1}. Then
D ⊆ V is a perfect dominating set ⇐⇒ u1 ∈ D ∧ (D ∩ Vi = ∅ ∨ D ∩ Vi = Vi)

Proof. The proof is separated in two cases:

1. If G contains universal vertex u2 6= u1:

It is clear that V and each universal vertex {ui} are perfect vertex dominating

sets from G. Assume there exists another perfect vertex dominating set D. If

|D| = 1 then it should be a universal vertex and was one of the above mentioned

sets. Hence D contains at least two vertices and there is at one least vertex

w 6∈ D. Since |D| > 1 then every universal vertex ui should belong to D,

otherwise the vertex ui will be dominated by more than one vertex inside D,

which contradicts the definition of perfect vertex domination. Moreover, every

vertex w 6∈ D will be dominated by at least two universal vertices from D, then

again, this contradicts the definition of the set D. Therefore, there is no other

perfect vertex dominating set.

2. If u1 is the unique universal vertex from G:

=⇒ Assume there exists a perfect vertex dominating set D that does not

contains u1. It is clear that D should have at least two vertices since there

is not another universal vertex, but then the vertex u1 is dominated by |D| > 1

vertices, which is absurd. Thus every perfect vertex dominating set contains

u1. Suppose D is a perfect vertex dominating set such that v ∈ D, w 6∈ D

and v, w ∈ Vi. Given that v, w belongs to the same connected component Gi,

there exists a pair of adjacent vertices v′, w′ ∈ Vi such that v′ ∈ D and w′ 6∈ D.

Thus w′ is dominated by u1 and v′, which is a contradiction. Thus every perfect

vertex dominating set D contains u1 and satisfies D∩Vi = Vi ∨ D∩Vi = ∅ for
each connected component Vi.

⇐= Let D be a subset of vertices such that for every connected component Vi,

either D∩Vi = ∅ or D∩Vi = Vi and u1 ∈ D. It is easy to see that D dominates

90

V (G) since u1 ∈ D. Let w be a vertex such that |N(w) ∩ D| > 1. Assume

w.l.o.g. w ∈ Vi. If D ∩ Vi = ∅ then N(w) ∩D = {u1}. Otherwise D ∩ Vi = Vi,

hence w ∈ D. Therefore, every vertex w ∈ V (G) is either in D, or dominated

by u1. We conclude D is a perfect dominating set.

If G contains at least two universal vertices, then the amount of perfect vertex

dominating sets is at most O(n), and the one with minimum weight can be obtained

in linear time. In case G contains exactly one universal vertex the minimum weighted

perfect vertex dominating set can be obtained with the following procedure:

D := {u1}. We define the weight of a set of vertices as the sum of the weights of

its vertices. If the weight of a connected component Gi of G \ {ui} is negative, then
D := D ∪ Vi.

5.5.1 MWPVD algorithm for CA-graphs

Given a circular-arc graph G, a circular-arc model M from G can be obtained in

O(n +m) time and universal arcs can be identified in O(n) time. If a universal arc

exists, we can solve the problem using the procedure mentioned above. Thus we

assume the graph G does not contain a universal vertex.

It is possible to solve MWEVD in linear time for circular-arc graphs. Hence we

can save the best efficient vertex dominating set as a candidate solution, and search

for the perfect vertex dominating sets that are not efficient vertex dominating sets.

We determine in O(n) time the point p such that |A(p)| is minimum:

(i) |A(p)| = 0, In this case M is an interval model and G an interval graph. A

linear-time algorithm [31] can be applied to solve MWPVD.

(ii) |A(p)| ≥ 2, thus for every point p′ ∈ C, |A(p′)| > 2. Let D be a perfect

vertex dominating set which is not an efficient vertex dominating set, and with

91

minimum weight. There should be two adjacent vertices v, w ∈ D, otherwise D

is an efficient vertex dominating set. Let Av, Aw the corresponding arcs. Note

that Av ∩ Aw 6= ∅, and let q ∈ Av ∩ Aw. For any arc Az ∈ A(q) the vertex

z (corresponding to Az) should belong to D, otherwise (otherwise it will be

dominated by two vertices). Let q′ ∈ C the first point from q in clock-wise

order such that A(q′) 6= A(q) (hence q and q′ belong to different segments). We

will show that for any arc Az ∈ A(q′), the vertex z corresponding to Az should

be in D We consider two cases according to segment finalization q.

• If it has open-end at tu, then A(q′) = A(q) \ {Au}. Thus, every arc

Az ∈ A(q′) ⊂ A(q), the vertex z corresponding to Az ∈ D.

• If it has close-end at su, then A(q) = A(q′) \ {Au}. Thus A(q′) contains
arcs from A(q) and an additional arc Au. If Au is adjacent to arcs from

A(q) and |A(q)| > 1 then Au should be in D, since A(q) belongs to D and

Au could not have more than one adjacent from D, unless is part of D.

Let q := q′ and apply iteratively the same procedure 2n times, this is the amount

of different segments. This shows that all vertices are in D. Thus D = V , and

the solution will be the best among
∑

v∈V ω(v) and the best solution previously

found.

(iii) |A(p)| = 1, In this case A(p) = {Av} where Av = (sv, tv) corresponds to a

vertex v ∈ V . Recall that A has no universal arc. We generate three interval

models (M1,M2 andM3) fromM and replace Av with Av− = (sv, p− ǫ) and

Av+ = (p + ǫ, tv), adding arcs for each one of them and modifying the weight

function as we describe next:

(M1) We replace Av with Av− and Av+ . We also add Aw− = (p − 1.5 ∗
ǫ, p − 0.5 ∗ ǫ) and Aw+ = (p + 0.5 ∗ ǫ, p + 1.5 ∗ ǫ), assigning weights to

92

the vertices that corresponds to new arcs: ω(v−) := ω(v+) := 0.5 ∗ ω(v),
ω(w−) := ω(w+) :=∞.

(M2) We replace Av with Av− and Av+ . We also add Aw− = (p− 1.5 ∗ ǫ, p−
0.5 ∗ ǫ), assigning weights to the vertices that corresponds to the new arcs:

ω(v−) := ω(v+) :=∞, ω(w−) := 0.

(M3) We replace Av with Av− and Av+ . We also add Aw+ = (p + 0.5 ∗ ǫ, p+
1.5 ∗ ǫ), assigning weights to the vertices that corresponds to the new arcs:

ω(v−) := ω(v+) :=∞, ω(w+) := 0.

It is easy to see that described models are interval models. Hence MWPVD

can be solved for those three interval models using a linear time algorithm from

[31].

We show how to map the perfect vertex dominating set Di fromMi, 1 ≤ i ≤ 3,

to a perfect vertex dominating set D from G maintaining the weight.

• The weight of D1 is bounded, thus w−, w+ 6∈ D1. Since both are leaves,

they should be dominated by their parents v− and v+, respectively. Then

v−, v+ ∈ D1. In this case, we take D = (D1 \ {v−, v+}) ∪ {v}. Note that

the weight of D and D1 is the same since ω(v−) + ω(v+) = ω(v).

Each vertex from v ∈ G such that v /∈ D is dominated by exactly one

vertex from D1. Each dominating vertex remains except for v− and v+.

But vertices dominated by v− and v+ are now dominated by v. Hence D

is a perfect vertex dominating set of G.

• The weight of D2 is bounded, hence v−, v+ 6∈ D2. If w− is a leaf and

v− 6∈ D2, then w− ∈ D2. The vertex v− is dominated by w−, thus the rest

of the neighbors of v− are not in D2.

In this case, let D = D2 \ {w−}. Note that D and D2 has the same weight

since ω(w−) = 0.

93

Each vertex w 6∈ D is dominated by exactly one vertex from D. All these

vertices, except for v were dominated by vertices from D2 which remains at

D, except for w−, but this vertex dominates only v− which is not a vertex

from G. v+ is dominated by a vertex from D = D2 \ {w−}. Clearly, this

dominating vertex dominates v and is the unique vertex that dominates v.

As a consequence, D is a perfect vertex dominating set of G.

• The weight of D3 is bounded, this case is symmetric to the previous case.

Let D = D3 \ {w+} be a perfect vertex dominating set of G with the same

weight of D3.

Now the perfect vertex dominating set D from G should be mapped to a perfect

vertex dominating set with the same weight of D in some modelMi, 1 ≤ i ≤ 3.

The following describes the mapping:

• If v ∈ D, D1 = (D \ {v})∪ {v−, v+} in the modelM1. Then D1 and D has the

same weight. D1 is a perfect vertex dominating set inM1, unless there exists

a vertex z 6∈ D1 such that is dominated by v− and v+. In this case, the arcs Av

and Az (arc corresponding to z) covers the entire circle C. Clearly, z 6∈ D and

is dominated by v ∈ D. But D is a perfect vertex dominating set of G, thus

v is a universal vertex. If this is not the case, then exists a vertex w which is

not adjacent to v and the corresponding arc Aw should be contained in Az \Av,

but since z is dominated by v, all the intersecting arcs with z corresponds to

vertices outside D. Then w cannot be dominated by any of the vertices from

D because every intersecting arc of Aw intersects Az. Absurd. Therefore v is

a universal vertex, but it contradicts the hypothesis that no universal vertices

exists at G. Hence, it does not exists the vertex z and D1 is a perfect vertex

dominating set ofM1.

• If v /∈ D, v is dominated by z ∈ D and tv ∈ Az, where Az corresponds to vertex

z. It is clear that Av 6⊂ Az since p ∈ Av \ Az. In this case, D2 = D ∪ {w−}.

94

Again, D and D2 has the same weight. If D2 is not a perfect vertex dominating

set of M2, then v− is dominated by w− ∈ D2 and another vertex u ∈ D2.

Moreover, u ∈ D and dominates v in G but v was dominated by z ∈ D. Hence

z = u and Az and Av covers the entire circle C. Applying the same reasoning of

the previous case we can conclude that z is a universal vertex and contradicts

the hypothesis that G do not contain universal vertices. Therefore, D2 is a

perfect vertex dominating set inM2.

• If v 6∈ D, v is dominated by z ∈ D and sv ∈ Az. It’s symmetric to the previous

case, we obtain that D3 = D ∪ {w+} is a perfect vertex dominating set inM3

with the same weight that D.

5.6 Minimum weighted perfect edge domination

We give an O(n + m) time algorithm to solve MWPED for circular-arc graphs. To

the best of our knowledge there is no known polynomial time algorithm to solve this

problem on circular-arc graphs, while it is mentioned in [80] MWPED, where NP-

completeness of unweighted version of this problem for bipartite graphs is proved.

They also showed polynomial time algorithms for some restricted graph families:

Theorem 5.1. [80] There is an O(n+m) time algorithm to solve MWPED on chordal

graphs

Corollary 5.2. [80] There is an O(n + m) time algorithm to solve MWPED on

interval graphs

Definition 5.1. Given a graph G = (V,E) and a perfect edge dominating set E ′ ⊆ E

from G, we denote D = {v ∈ V : vw ∈ E ′} the vertices adjacent to an edge from

E ′. We can define the following 3-coloring for the vertices of G: The black vertices

B = {v ∈ D : N [v] ⊆ D}, the gray vertices R = D \ B and the white vertices

W = V (G) \D.

95

The following properties can be easily checked:

(P1) Each grey vertex has exactly one non-white neighbor while the rest of his

neighborhood are white vertices. (the gray vertex has degree at least 2)

(P2) If v ∈ W , then N(v) ⊆ R. Hence W is an independent set.

It is easy to see that for any 3-coloring of vertices that satisfies properties (P1)

and (P2) E ′ = {vw ∈ E : vw ∈ B ∪ R} is a perfect edge dominating set and for

any 3-coloring of G that satisfies (P1) and (P2), if it contains Kp, with p ≥ 4, then

vertices from Kp should be black.

Any efficient edge dominating set of a graph G (if it exists), is also a perfect edge

dominating set of G.

Given a circular-arc graph G = (V,E), we show how to solve MWPED in linear

time. First, solve MWEED in O(n) time. If there is a solution we save the one with

minimum weight as a candidate solution. Therefore the candidates that should be

explored are the perfect edge dominating sets that are not EED. Note that the set E

is also a candidate solution.

We obtain circular-arc model M = (C,A) of G. We first show how to solve

MWPED for G for the special cases where two or three arcs covers the entire circle.

Then we show how to solve it for the remaining case.

5.6.1 A set of two or three arcs cover the entire circle

(a) There are 2 arcs, Av = (sv, tv), Aw = (sw, tw) ∈ A such that Av ∪ Aw = C. Let

E ′ 6= E a perfect edge dominating set that is not a DIM. It is clear that E ′

determines a 3-coloring of the vertices from V that verifies (P1) and (P2). Let

v and w be the corresponding vertices to Av and Aw. The following possibilities

form a valid color combination of v and w in order to satisfy (P1) and (P2):

96

(black,black). It is clear that any other arc Az from the model that

corresponds to the vertex z ∈ V has common intersection with Av or

Aw.

Using (P2), z is not white. Hence, there is no white vertex in V . Therefore,

B = V and E = E ′, absurd. This combination is not valid.

(black,gray) and (gray,black). Since both are symmetric, we consider one

of them: (black,gray). The vertex w is gray and must verify (P1). The

only non-white neighbor is v, hence the rest of his neighborhood should be

white. By (P2) the rest of neighbors of v should not be white. Then there

are no common vertices of v and w. Then for each vertex we know the

color it must have, since every arc Az intersects with either Av or Aw. If

there is no conflict with the colors each vertex have and verifies (P1) and

(P2), we can save this solution as one more candidate solution.

(gray,gray). Every vertex z (different from v and w) should be adjacent to

v and/or w. Since v and w are gray adjacent vertices and verify (P1), z

is a white vertex. Thus E ′ contains the edge vw only, thus E ′ is a DIM,

which contradicts the election of E ′. Therefore this color combination is

not valid.

(gray,white) and (white,gray). The vertex v is gray and should verify (P1),

hence it must have exactly one non-white neighbor u. On the other hand,

vertices from N(w) are gray because (P2). We analyze the following two

cases:

1. Au ⊂ Av: Every neighbor of u is also neighbor of v, hence they are

all white. Vertices that are not neighbors of v are neighbors of w

since their corresponding arcs are contained at Aw and should induce

a matching since they satisfy (P2). It is easy to see that E ′ of this

97

combination is exactly the edges from the induced matching plus the

edge vu. Thus E ′ is a DIM, which contradicts the election of E ′. As

a consequence, this combination is invalid for this case.

2. Au ∩ Aw 6= ∅, Then u is a gray vertex (P2). By (P1) vertices from

N(u) \ {v} are white. Vertices from N(w) should be gray (P2).

Thus there are no black vertices in G. Therefore E ′ is a DIM. The

combination is invalid for this case.

Both combinations are invalid.

According to the previous cases there are at most two extra solutions that should

be compared to other candidate solutions. One of these solutions is given by

taking E ′ = E, and the other is a DIM of minimum weight).

(b) It does not satisfy (a) and there are three arcs Av, Aw, Az ∈ A such that Av ∪
Aw∪Az = C. Let E ′ 6= E a perfect edge dominating set such that is not a DIM.

It is clear that E ′ determines a 3-coloring of V that verifies (P1) and (P2). Let

v, w, z the corresponding vertices to Av, Aw, Az. The possible combinations of

colors that satisfy (P1) and (P2) are:

(black,black,black). In this combination, every arc Au should have non empty

intersection with one of Av, Aw, Az, then u is not white. Thus B = V and

E ′ = E. Contradiction. This combination is not valid.

(white,gray,gray),(gray,white,gray),(gray,gray,white). These three com-

binations are symmetric so we analyze one of them. Assume u is a black

vertex. Then Au ∩ Av = ∅ by (P2). Also Au ∩ Aw = ∅ and Au ∩ Az = ∅
since w and z are gray adjacent vertices that should satisfy (P1). Thus Au

cannot be anywhere and u is not a black vertex. Hence B = ∅. It is clear
that E ′ is a DIM and therefore this combination is invalid.

98

None of these combinations is valid, hence the best solution is among the

candidates E = E ′ and DIM of minimum weight.

(c) It does not satisfy (a) nor (b), in this caseM is a Helly circular-arc model. This

case is detailed in 5.6.2.

5.6.2 No set of two or three arcs cover the entire circle C

In this case G is Helly circular-arc graph andM a Helly circular-arc model of G. We

compute minp∈C |A(p)| and maxp∈C |A(p)| in order to analyze the different subcases:

(I) minp∈C |A(p)| = 0: ThenM in an interval model and G an interval graph, hence

a chordal graph. In [80] there is a linear time algorithm for MWPED for chordal

graphs.

(II) maxp∈C |A(p)| = q ≥ 4: Thus there is a Kq formed by vertices that correspond

to arcs that belong to A(p), where |A(p)| = q. Let v1, . . . , vq be the vertices

and Av1 = (sv1 , tv1), . . . , Avq = (svq , tvq) the corresponding arcs. The vertices

v1, . . . , vq must be black vertices for any 3-coloring that corresponds to a perfect

edge dominating set. We can replace each arc Avi , 1 ≤ i ≤ q with two arcs

Av−i
= (svi , p− ǫ) and Av+i

= (p+ ǫ, tvi). Clearly, the resulting modelM∗ is an

interval model because the point p does not belong to any arc. The intersection

graph G∗ = (V ∗, E∗) ofM∗ is an interval graph where each vertex vi, 1 ≤ i ≤ q

is replaced by two non-adjacent vertices v−i and v+i and the neighbors of vi in G

are either neighbors of v−i or neighbors of v+i in G∗ sinceM does not contains

two arcs that cover the entire circle C. In addition, the vertices v−1 , . . . , v
−
q

induce a Kq in G∗ and the vertices v+1 , . . . , v
+
q induce another Kq in G∗. We

can change the weight function ω to ω∗ in G∗ for each vw ∈ E, in the following

way:

99

ω∗(vw) =











































ω(vw) v, w ∈ V \ {v1, . . . , vq}
ω(viw) w ∈ V \ {v1, . . . , vq}∧v = v−i , 1 ≤ i ≤ q

ω(viw) w ∈ V \ {v1, . . . , vq}∧v = v+i , 1 ≤ i ≤ q

ω(vivj) v = v−i ∧w = v−j , 1 ≤ i, j ≤ q

0 otherwise

We will show that each perfect edge dominating set E ′ of G corresponds to a

perfect edge dominating set E ′′ of G∗ with the same weight. Thus, the problem

is reduced to solve MWPED for the interval graph G∗ with the linear time

algorithm [80].

Given a perfect edge dominating set E ′ of G, we show how to generate E ′′. Let

the 3-coloring of G corresponding to E ′, where v1, . . . , vk are black vertices. In

G∗ those vertices are replaced by v−1 , . . . , v
−
k and v+1 , . . . , v

+
k . The new 3-coloring

for G∗ consists on assigning black color to vertices v−1 , . . . , v
−
k and v+1 , . . . , v

+
k ,

while the original vertices maintain the same color. This coloring must satisfy

(P1) and (P2) in G∗. Otherwise, assume (P1) is not satisfied by a vertex w.

Clearly, w ∈ G and verifies (P1). If white and gray vertices as their adjacencies

remain in both graphs, then w ∈ G∗ contains exactly one black vertex vi,

1 ≤ i ≤ q in G, and in G∗ it has two black neighbors v−i and v+i . This is

a contradiction since in this case Aw ∪ Avi covers the entire circle C in M.

Thus (P1) is satisfied. On the other hand, every white vertex w ∈ G verifies

(P2). The vertices from N(w) are gray and N(w) remains the same at G∗,

hence it satisfies (P2). Thus the 3-coloring of G∗ corresponds to a perfect edge

dominating set E ′′ from G∗. The sets E ′ and E ′′ have the same weight.

Given a perfect edge dominating set E ′′ fromG∗, there is a corresponding perfect

edge dominating set E ′ of G with the same weight.

Clearly, in the 3-coloring corresponding to E ′′, every vertex v−1 , . . . , v
−
q and

v+1 , . . . , v
+
q is black because it is part of Kq with q ≥ 4. In order to generate

100

the 3-coloring for G, assign v1, . . . , vq as black vertices and let the remaining

vertices with the same color. It can be verified in a similar way that this 3-

coloring verifies (P1) and (P2) in G, hence it corresponds to a perfect edge

dominating set E ′ from G. Moreover the map of E ′ and E ′′ is the same as the

previous one.

(III) maxp∈C |A(p)| = 3: This implies G contains a K3 formed by the vertices

corresponding to A(p) where |A(p)| = 3.

Let v1, v2, v3 and their corresponding arcs Av1 = (sv1 , tv1), Av2 = (sv2 , tv2), Av3 =

(sv3 , tv3). For every 3-coloring of G that satisfy (P1) and (P2), those three

vertices must be: (i) three black vertices or (ii) exactly one of them white and

the other two gray. We add an arc (p− 2 ∗ ǫ, p+ 2 ∗ ǫ) to the model, and call it

M+ = (C,A+) and G+ as his corresponding graph.

It is easy to check that the 3-colorings of G that satisfy (P1), (P2) and (i)

have a one-to-one correspondence with 3-colorings of G+ that satisfy (P1) and

(P2) since v1, v2, v3 and the new vertex s corresponding to the additional arc

are black vertices since those four vertices form a K4 and s is not adjacent to

any other vertex from G+. In order to preserve the weight between the perfect

edge dominating sets among G and G+, the new edges v1s, v2s, and v3s must

have weight 0. Thus, MWPED can be solved for G+ where the modelM+ does

not contain a set of two or three arcs that covers the entire circle C, is not an

interval model and maxp∈C |A+(p)| = 4, which can be solved using the previous

case in linear time. An additional consideration for 3-colorings of G that satisfy

(P1), (P2) and not (i) must be added.

For the 3-colorings that satisfy (P1), (P2) but not (i), each arc Avj , 1 ≤ i ≤ 3

can be replaced by two arcs Av−i
= (svi , p− ǫ) and Av+i

= (p + ǫ, tvi) just as in

(II), but instead of q ≥ 4 arcs, now is just for 3 arcs. Again, the modelM∗ is

an interval model and the intersection graph G∗ = (V ∗, E∗) is an interval graph

101

where each vertex vi, 1 ≤ i ≤ 3 is replaced by two non-adjacent vertices v−i and

v+i .

We define 3 different weighted functions ωj, 1 ≤ j ≤ 3. For each edge vw ∈ E∗:

ωj(vw) =























































ω(vw) v, w ∈ V \ {v1, . . . , v3}
ω(viw) w ∈ V \ {v1, . . . , v3}∧v = v−i , 1 ≤ i ≤ 3

ω(viw) w ∈ V \ {v1, . . . , v3}∧v = v+i , 1 ≤ i ≤ 3

ω(vkvl) v = v−k ∧w = v−l ∧{k, l} = {1, 2, 3} \ {j}
0 v = v+k ∧w = v+l ∧{k, l} = {1, 2, 3} \ {j}
∞ otherwise

It can be easily checked that any perfect edge dominating set E ′ from G has a

corresponding 3-coloring that satisfies (ii).

A 3-coloring of G∗ can be obtained from the previous one, by keeping the same

colors for common vertices among both graphs, and v−i , v
+
i get colors from vi,

1 ≤ i ≤ 3. The 3-coloring obtained corresponds to a perfect edge dominating

set E ′′ from G∗. If the 3-coloring of G contains the vertex vj, j ∈ {1, 2, 3} with
color white then the weight of E ′ using ω is the same weight that E ′′ using ωj.

Thus, the MWPED problem can be solved three times for the interval graph

G∗, each time with a different function ωj, 1 ≤ j ≤ 3, applying linear algorithm

from [31]. If the best of these solutions has bounded weight then the solution

forms a perfect edge dominating set of minimum weight in G that satisfies (ii).

Otherwise, there is no perfect edge dominating set of G whose three-coloring

satisfies (ii). The minimum perfect edge dominating set of G is the minimum

returned from the solutions given by [31] for G∗ , the solution from G+, E and

the MWEED for G. All of them can be obtained in linear time.

(IV) maxp∈C |A(p)| = 2 and minp∈C |A(p)| ≥ 1: If maxp∈C |A(p)| > minp∈C |A(p)|,
then minp∈C |A(p)| = 1. In this case, we can find the induced cycle Ck with

102

k ≥ 4 of G such that the arcs corresponding to the vertices covers the circle C in

M and the rest of arcs from A are pairwise disjoint and are contained in exactly

one of the arcs from Ck. The vertices from Ck are v1, v2, . . . , vk, vivi+1 ∈ E,

1 ≤ i ≤ k − 1, and vkv1 ∈ E, and the corresponding arcs of v1, v2, . . . , vk are

A1 = (s1, t1), A2 = (s2, t2), . . . , (sk, tk) and the circular order according to the

extremes is: s1, tk, s2, t1, s3, t2, . . . , sk.

We analyze the following cases:

1. G is Cj, thus k = n. In this case L(G) is exactly G. Instead of a weighted

function over the arcs, the weighted function is over the vertices. (Note

that Cn is a circular-arc graph)

2. There exists vi with leaves. Without loss of generality, we assume i = 2

and w1, . . . , wd(v2)−2 are their leaves, d(v2) ≥ 3 is the degree of v2. In this

case, the vertex v2 is father of w1, in any other 3-coloring corresponding

to a perfect edge dominating set of G, v2 is not white since otherwise w1

would be gray but could not have a non white neighbor to satisfy (P1).

Then v2 must be black or gray.

(a) v2 is black: Then N(v2) cannot be all white, so w1, . . . , wd(v2)−2 cannot

be white. But at the same time this set cannot be gray because

they are adjacent only to v2, and has no white vertices to satisfy

(P1). Then w1, . . . , wd(v2)−2 are black vertices. To solve this subcase,

we can alterate the model in the following way: Add two identical

arcs (t1, s3). In this new model, any leaf wj, v2 and the two new

corresponding vertices to the additional arcs form a K4, thus in any 3-

coloring, these vertices must be black. But these two new vertices are

adjacent only to v2 and his leaves. Hence the remaining vertices can

have any coloring independent of these new vertices. Therefore the

perfect edge dominating sets from G in this subcase corresponds one-

to-one to the modified model. The modified model does not contain

103

a set of 2 or 3 arcs that cover the circle C and there is a point p such

that is contained in 4 different arcs. Algorithm (II) can be used to

solve it. By assigning weight 0 to the added arcs then the solutions

can be mapped and the weight will be the same.

(b) v2 is gray: Then it contains exactly one non-white neighbor which

must be one of v1, v3, w1, . . . , wd(v2)−2 , and the rest are white vertices.

Assume wi is the non-white vertex, then it is black because there is no

other neighbor, thus this 3-coloring satisfies (P1) and (P2). A new 3-

coloring can be obtained, swapping color of wi with the color of another

leaf wj. The new coloring will satisfy properties (P1) and (P2), hence

it is convenient to choose the leaf wj such that ω(v2wj) is minimum.

Therefore there are 3 candidates to be considered as the non-white

neighbor of v2. These candidates are v1, v3 and the best wj. For each

case we may alter the model, adding an arc that intersects only to A2

and the arc corresponding to the non-white vertex chosen. The new

added edges have weight∞ in order to prevent that in the new model

the added vertex is chosen as the non-white vertex of v2. This forces to

choose the same non-white vertex from the original model. The new

vertex has no other neighbors, hence it does not affect the coloring of

the rest of the vertices. The resulting model has a point p which is

contained by 3 different arcs, then the linear time algorithm (III) can

be used to solve MWPED on this new model. The algorithm must be

run 3 times, once for each election of the non-white vertex for v2.

It applies at most once the algorithm from (II) and three time the algorithm

from (III), hence the algorithm time complexity is O(n+m).

104

Chapter 6

Cluster Vertex Deletion

The NP-Hard Cluster Vertex Deletion problem (CVD) asks for the minimum number

of vertices to delete such that the resulting graph is a disjoint union of cliques, also

known as a Cluster graph. We give polynomial algorithms for the problem on four

different variants (weighted, unweighted, and with or without fixed number of cliques)

for proper interval graphs, interval graphs, circular-arc graphs, permutation graphs

and trapezoid graphs. We also show the complexity of the problem restricted to split

graphs and bipartite graphs.

6.1 Preliminaries

Several clustering problems consist of identify similar objects, and exclude objects

that do not clearly belong to any category. Those elements may be the result of

measure errors, or simply outliers of the set. The goal is to identify those elements

and remove them, in order to obtain the clusters of similar objects. There are several

applications for clustering elements according to their pairwise relationships [4, 5, 45].

In terms of graph theory, each object is represented by a vertex, and two vertices are

connected by an edge if and only if they are related as objects. The goal is to remove

the minimum number of vertices in order to obtain a cluster graph.

105

We say G is cluster graph if and only if it is a disjoint union of complete graphs,

or equivalently, a P3-free graph. Unless is stated otherwise, a disjoint union of cliques

means a P3-free graph. The weighted CVD consists of finding the set of vertices with

minimum weight such that their deletion transforms a given graph into a cluster

graph. Formally:

Instance: A graph G = (V,E), a vertex function ω : V → [1,∞), and k ∈ N

Question: Is there a subset X ⊆ V with
∑

v∈X
ω(v) ≤ k such that deleting all vertices in X

from G results in a cluster graph ?

This problem will be denoted as WCVD. The unweighted version that asks

whether exists a subset X ⊆ V such that |X| ≤ k (all vertices have weight exactly

one) is denoted as UCVD. There is an additional variant of these problems where

an extra parameter D is given, for which the problem becomes whether G = (V,E)

can be divided into exactly D non-empty disjoint cliques. No edges are allowed

between clusters. We denote these problems as WDCVD and UDCVD respectively.

We say a cluster graph with exactly D cliques is a D-cluster graph. Note that

UCV D ≤p UDCV D and WCVD ≤p WDCVD. It is also easy to see that

UCV D ≤p WCVD and UDCV D ≤p WDCVD. We study the problems when

the graphs are restricted to certain families.

6.2 Previous results

The Cluster-Vertex-Deletion problem has already been studied [13, 17] in terms of

parameterized algorithms.

This problem is a variant of one of the most well studied problems, which is the

Cluster-Editing problem, also known as Correlation-Clustering, which consists of edge

editions (i.e. additions and deletions are allowed) in order to obtain a cluster graph.

The literature for this problem is extensive [10, 11, 12, 26, 42, 43, 44, 64].

106

The Cluster-Vertex-Deletion problem can be stated as the minimum hitting set

problem, where the set consists of the induced P3s of the graph.

6.3 Algorithms and Complexity

In this section, we show the complexity of the problems when restricted to several

graph classes. Moreover, whenever we show that a polynomial-time algorithm exists,

we give a detailed algorithm. The algorithms are efficient from a practical point of

view (i.e. no big constants hidden, and low degree polynomials) .

6.3.1 Interval graphs

Definition 6.1. Define an interval Ii as two real numbers (si, ti), where si < ti. We

say si is the start-point and ti is the end-point.

Note that any interval graph where two intervals share a point can be modified in

order to avoid this sharing by shrinking one of the points an ǫ. The variable ǫ should

be small enough to avoid any changes in the original adjacencies. Given that points

are real numbers, this is always possible. We use the notation Ii instead of vi in order

to make reference to the vertex vi represented by interval Ii.

Definition 6.2. Let σ = {I1, . . . , In} be an order of the vertices of an interval graph

G = (V,E) such that if vi < vj then si < sj.

Definition 6.3. Denote with ND(i) the number j such that: sj > ti and sj is

minimum.

Let M = {I1, . . . , In} be an interval graph model. Say S is a solution from M if

S is the set of arcs that remains in M after the deletion of vertices (i.e. S is a cluster

graph).

Lemma 6.1. The values of ND(i), ∀i : 1 ≤ i ≤ n can be computed in O(1) time with

an O(n) preprocessing time for intervals graphs.

107

Proof. Such an algorithm can be achieved by traversing the extreme-points in order

from smallest to the largest (recall that points are represented by different real

numbers). Whenever we find an end-point ti we add it to a pending list, and whenever

a start-point si is found, we retrieve elements of the pending list and we assign the

index of current si (i) as the ND value for each element. Since each extreme-point

is added and retrieved at most once from the pending list, it is trivial to see that the

temporal and spatial complexity of the algorithm is O(n) for preprocessing.

Definition 6.4. Let mcσ(i, j) is:

1. If (vi, vj) /∈ E(G) then ∅.

2. Otherwise: a maximum clique in G[{vi, . . . , vj}] according to σ-order, such that

if Ii, Ij ∈ mcσ(i, j) and if Ik ∈ mcσ(i, j) then tk < tj.

Definition 6.5. Denote with tmc the time to compute mcσ(i, j) from G, for all i, j

such that (vi, vj) ∈ E.

Use the analogous mwcσ(i, j) and tmwc for the maximum weighted clique.

Lemma 6.2. Given an interval graph sorted by the given σ-order, there is an

algorithm for WDCVD problem with temporal complexity O(D · (n+m) + tmwc).

Proof. We denote with si,D(G) the sum of weights after the optimal deletions to

convert G[Vi] in a D-cluster graph, where Vi = {vi, . . . , vn} according to σ-order.

si,D(G) =



















max{si+1,D(G),maxi≤j∧(vi,vj)∈E(sND(j),D−1(G) +mwcσ(i, j))} i ≤ n

0 i > n , D = 0

∞ i > n , D 6= 0

The recursive function follows from the definition of values si,D(G). The optimal

way to delete vertices from Vi to form a D-cluster is to either (i) delete vertex i, and

form a D-cluster with Vi+1, or to (ii) use from vi to vj as a cluster.

108

In case (i), no weights are added to the solution, since the problem gets reduced

to solve the same instance without vertex vi. In case (ii), the weight of the maximum

weighted clique in G[vi, . . . , vj] is added to the result, since this clique is fixed as one

of the cliques of the resultant cluster graph. The intuitive idea is that the recursion

separates in two cases, either vi is the first vertex (according to the order given) in the

resultant graph, or it is deleted. In case it is deleted, the case (i) handles it by solving

a smaller instance without vi. Otherwise, the case is handled by fixing a clique that

starts at vi and ends at some later vertex vj. Therefore, all possibilities are explored.

The optimal value of WDCVD is given by s0,D(G). Given that tmwc is already

computed and saved on a lookup table, the cost of the algorithm is O(D · (n +m))

since there are D · n different values, and the function makes at most d(vi) recursive

calls for each possible value i.

Note that using the same formulation without the parameter D, leads to an

algorithm for WCVD problem. Moreover, the same formulation using mcσ(i, j),

leads to an algorithm for the unweighted versions of the problem (both UCVD, and

UDCVD).

Corollary 6.1. Given an interval graph sorted by the given σ-order, there is an

algorithm for WCVD problem with temporal complexity O(n+m+ tmwc)

The cost of tmwc in interval graphs is given by the computation of the maximum

weighted cliques over all intervals i, j such that Ii ∈ N(Ij). Recall that mwc(i, j) is

the value of the maximum weighted clique that uses Ii and Ij on the graph induced

by {Ii, Ii+1, . . . , Ij} and such that there is no Ik : tk > tj. The following algorithm

can do the job in O(n + m) time. In order to simplify details, we assume we have

the intervals sorted by si and for each interval we can traverse his neighborhood in

increasing order of their extreme point t. The idea of the algorithm is to traverse, for

each interval si, each interval Ij ∈ N(si) in ascending order of t in order to compute

each mwc(i, j) value.

109

Algorithm 3 MWC(Interval Model M)

Assume M = {I1, . . . , In} sorted by si

counter := 0

for i = 1 to n do

for all point p > si such that Interval(p) ∈ N [Ii] (ascending order of p) do

if p is a start-point sj then

weight := weight + ω(Ij)

else if p is an end-point tj then

mwc(i,j) := weight

weight := weight - ω(Ij)

end if

end for

end for

It is easy to see that this algorithm has O(n+m) time and space complexity.

Corollary 6.2. There is an O(D · (n+m)) algorithm for WDCVD problem and an

O(n+m) algorithm for WCVD problem

Proper-Interval graphs

A proper interval graph is an interval graph that has an intersection model in which

no interval properly contains another. In this section we give an O(n) algorithm for

the WCVD problem, given a model sorted by a σ-order. It can be naturally extended

to an O(n ·D) for the WDCVD problem.

Lemma 6.3. Given two adjacent intervals 1 ≤ i, j ≤ n of a proper-interval model

M , the value mwcσ(i, j) can be queried in O(1) time using O(n) preprocessing time.

Proof. Assume w.l.o.g. i < j, and i, j represent the indexes of intervals according to

σ-order. Recall that σ is the order of the start points in M . Since M is a proper-

interval model, then i < j ⇒ si < sj and ti < tj. Since intervals Ii and Ij are

110

adjacent, then ti > sj. Note that for each k such that i < k < j we have si < sk < sj,

thus ti > sk. Therefore for each k such that i < k < j: {(vk, vi), (vk, vj)} ∈ E. The

maximum weighted clique is then given by all vertices from G[vi, . . . , vj]. This result

can be obtained by precomputing a lookup table Wsum[i] which indicates the sum

of weights of the vertices from G[v1, . . . , vi]. Note that Wsum[j] = 0, j < 1. The

value mwcσ(i, j) = Wsum[j]−Wsum[i] +weight(vi). The computation for Wsum[]

in O(n) time is trivial.

The previous results set the framework in order to give an algorithm for the WCVD

problem on proper-interval graphs and prove it.

Algorithm 4 CVD-PI(Proper Interval Model M)

Assume M = {I1, . . . , In} sorted by si

Compute Wsum[] and ND(i), ∀i
res[n]← weight(In), value[n] = Wsum[n], last = n

S = {(value[n], n)}
for i = n− 1 to 1 do

res[i]← res[i+ 1]

value[i] = Wsum[i] + res[ND(i)]

S = S ∪ {Xi = (value[i], i)}
while last >= i and slast > ti do

S = S \Xlast

last = last− 1

end while
res[i] = max(res[i], Smax −Wsum[i− 1]), where Smax is the maximum element over S

end for

return res[1]

The algorithm iterates the intervals (sorted by si) backwards. Two results are

computed, one where the current interval Ii is not in the resultant cluster graph, hence

the solution is the same as the previous one where this interval was not processed

111

(res[i]← res[i+1]). The other one where this interval is part of the resultant cluster

graph, in which case the next clique of the resultant graph should start at least from

point ND(i). Thus, the result for this case is computed as WSum[i] + res[ND(i)]

where res[ND(i)] is an already optimal computed solution for the graph starting

at interval ND(i). The While loop deletes elements from S that can not be part

of a clique within the current interval. At the end, the best result is given by the

maximum between the case where interval i is not used, and the case where it is

used, in which case the result is given by Smax (the maximum element over S, which

represents the sum of weights of interval Ij such that sj ≥ si and form a clique within

interval Ii along with weights of intervals k such that sk < sj, minus the weight of

elements that finishes before si.

Lemma 6.4. Given a proper-interval model M , the algorithm returns the weight of

the resultant graph after the optimal deletions to convert G in a D-cluster graph.

Proof. We proceed with an inductive proof on the number of intervals. The base case

is trivial. Let’s assume the algorithm is correct for an n proper-interval modelMn. Let

Mn+1 be a proper-interval model of n+1 intervals. Assume w.l.o.g. Mn+1 = I0∪Mn.

The algorithm will make one more iteration. First, res[0] ← res[1]. In case

an optimal solution without interval I0 exists, by inductive hypothesis, res[1] is the

solution, since it represents the optimal solution for the graph G[v1, . . . , vn]. The value

of value[i] is the sum of weights of intervals: {I0, . . . , Ii} plus the optimal solution

from {ND(i), . . . , In}. This value is added to set S. Note that if I0 belongs to an

optimal solution O∗, then there exists an interval Ik, k ≥ 0 such that {I0, . . . , Ik}
form a complete subgraph. The while loop finishes when it finds slast > t0, hence it

finishes before reaching interval Ik, since sk < t0. Also S should contain value value[k],

and Wsum[0 − 1] is 0 by definition. Thus, res[i] is updated by the maximum value

between res[i+ 1] and value[k]−WSum[−1] which is WSum[k]− 0 + res[ND(k)].

Lemma 6.5. Given a proper-interval model M , the algorithm runs in O(n) time.

112

Proof. A straightforward amortized analysis shows that the algorithm runs in O(n)

time if the operations over S are O(1). We prove then that operations on the set S

costs O(1) amortized time. We propose a sorted linked-list for data representation.

Note that values are given by the interval index and the value it represents that index.

For deleting an element it is only necessary the index of the interval associated to the

value to be deleted. Thus, deleting elements can be done in O(1), using an additional

structure of pointers that maps each interval to each value. The maximum can be

obtained in O(1) time in a sorted linked-list. The addition is the tricky operation.

Let vi be the value associated to interval Ii. The value vi will be deleted after any

value vi+1, because the order of deletions depends on the order of iteration of variable

last. Thus all values less than the value vi can be deleted when vi is inserted since

we are only interested in the maximum of the set, and it will never be a smaller

element than vi. Thus each addition can also make deletions, but each element can

be removed at most once. Since each interval is also added (and removed) at most

once, the complexity over all operations over set S is O(n).

6.3.2 Circular-arc graphs

Recall that a circular arc graph is the intersection graph of a set of arcs on a circle

where each vertex is represented as an arc, and two vertices are adjacent if and only

if the corresponding arcs intersect. Note that interval graphs are a special case of

circular-arc graphs.

Definition 6.6. Define an arc Ai as two real numbers (si, ti), where si < ti. We say

si is the start-point and ti is the end-point according to clock-wise order.

We say an extreme-point is either a start-point or an end-point of an arc. Unless

otherwise stated, we will assume the circular model given has n arcs clockwise ordered.

It is easy to see that if no arc traverses a particular point p on the circle, then the

graph can be represented as an interval graph. This can be done by defining a line

113

that starts at p+ ǫ and ends at p− ǫ, for sufficiently small ǫ, following the clockwise

order from the original circle.

We proceed to show how to solve the WDCVD problem for circular-arc graphs,

and then adapt it for the remaining variants of the problem. We assume D > 1,

otherwise the problem can be solved using an existent algorithm for the maximum

weighted clique problem on circular-arc graphs [91].

For solving the problem, it would be helpful to avoid sets of less than 4 arcs that

cover the circle.

For a given point p, let A(p) the collection of arcs of that contains p. Let p be an

extreme-point and A(p) such that |A(p)| is minimum among all points on the circle.

As noted above, if |A(p)| = 0 then the circular model can be converted to an interval

model and the problem can be solved with the algorithm from the previous section.

Otherwise, assume |A(p)| > 0 and let S be the resulting cluster graph.

Case 1

No arc from S traverses p: If this is the case then by deleting all arcs traversing p we

obtain a new interval model. It is clear that the optimal solution on this new model

is the optimal solution for the original graph since we did not delete any of the arcs

from the optimal solution.

Case 2

There is at least one arc from S traversing p: Thus there is a clique from S such

that at least one of the arcs traverses p. Let C be this clique and define the point

a as the last extreme-point of the clique C that you will find if you traverse it in

anti-clockwise order and the point c as the last extreme-point of the clique Ci that

you will find if you traverse it in clockwise order. Define Ap = A1, . . . , Ak, the set of

arcs that traverse p.

114

Lemma 6.6. At least one of the points a, c is an extreme-point from the set of arcs

Ap.

Proof. Suppose a, c are points from arcs outside Ap. Let a be a point from an arc

B such that B /∈ Ap. Therefore c cannot be given by B, otherwise B will traverse p

or C will cover the entire circle. Since D > 1 this is not possible. Let c be a point

from an arc B′ such that B′ /∈ Ap. Clearly B′ cannot traverse p neither. However it

belongs to C, therefore it must be adjacent to B. Thus the clique C covers the entire

circle. Absurd, since we assume D > 1.

From the lemma above we know that at least one of the points {a, c} is given by

an extreme-point from the set Ap. It can be easily shown that if C belongs to S then

no arc from S traverse points a− ǫ and c+ ǫ. Thus the optimal solution is given by

the interval model that remains after deleting all arcs that traverse either a or c.

Thus, the algorithm looks both cases and chooses the best result among those.

Algorithm 5 WDCVD(Circular-arc Model M)

if D = 1 then
Use [91]

end if
Search the extreme-point p such that |A(p)| is minimum
Create interval model M ′ where Aj : p ∈ Aj are deleted
Sol ← CV D − IntervalGraphs(M ′)
for all Ai : p ∈ Ai do
Create interval model M ′ where Aj : Aj ∩ {(si − ǫ)} 6= ∅ are deleted
Sol1 ← CV D − IntervalGraphs(M ′)
Create interval model M ′′ where Aj : Aj ∩ {(ti + ǫ)} 6= ∅ are deleted
Sol2 ← CV D − IntervalGraphs(M ′′)
Sol ← BEST (Sol, Sol1, Sol2)

end for
return Sol

The complexity of the algorithm is given by the complexity of the algorithm

CV D − IntervalGraphs. Note that the bottleneck for the WDCVD algorithm for

interval-graphs is given by tmwc, which can be precomputed at the beginning of the

algorithm. We can precompute tmwc for the circular-arc graphs within the same

115

time, since we are only interested in computing maximum weighted clique of a set of

arcs that do not cover the entire circle, this is, from an interval model. Let δ be the

minimum degree vertex from the original circular-arc graph. By choosing an extreme-

point from a lowest degree interval, the algorithm complexity is O(δ ·D · (n+m)) For

the unweighted version an analogous algorithm can be done in O(δ · (n+m)) .

Corollary 6.3. There is an O(δ ·D · (n +m)) algorithm for WDCVD problem and

an O(δ · (n+m)) algorithm for WCVD problem on circular-arc graphs

Note that δ ≤ m
n
, and the algorithm for proper-interval graph has O(n) complexity,

thus we state the following result:

Corollary 6.4. There is an O(D ·m) algorithm for WDCVD problem and an O(m)

algorithm for WCVD problem on proper-circular-arc graphs

6.3.3 Permutation graphs

Let Π be a permutation over the set Sn = {1, 2, . . . , n}. We define the n-vertex

undirected graph G(Π) with vertex set V (G(Π)) = Sn and such that (i, j) ∈ E(G(Π))

if i < j and Π−1(i) > Π−1(j). A graph G is a permutation graph if exists a

permutation Π such that G is isomorphic to G(Π). We will make some abuse notation

by calling indistinctly the vertices and the numbers in the permutation that represents

those vertices.

A permutation graph can be represented by points in a 2-dimensional plane where

each vertex is represented by a point [53]. Say a vertex v is represented as the point

(vx, vy) in the plane. Then two vertices (v, w) ∈ E(G) if and only if vx < wx and

vy > wy.

Definition 6.7. Let C be a clique from G. We define s(C) the point from C with

minimum x-coordinate and e(C) the point with maximum x-coordinate

Note that for any clique C, y-coordinate from s(C) is higher than y-coordinate

from e(C). Moreover, for any two disjoint cliques C1, C2 if s(C1)x < s(C2)x then

116

• e(C1)x ≤ s(C2)x

• s(C1)y ≤ e(C2)y

The following figure describes the idea. The vertices that belong to the red part

of the plane are in the neighborhood of p1 but not of pr, while vertices in the blue

part of the plane are in the neighborhood of pr but not p1. The vertices in the purple

part belongs to the neighborhood of both, p1 and pr.

p1

pr

Figure 6.1: Red space contains neighbors of p1, blue space contains neighbors of p2,
and purple space contains neighbors of p1 AND pr.

Two sets of points sorted by x-coordinate, P = {p1, . . . , pr} and Q = {q1, . . . , qs},
such that each set is a complete, from two disjoint completes if and only if the following

conditions are satisfied:

• (pr)x ≤ (q1)x

• (p1)y ≤ (qs)y

See the following figure where the purple boxes represents the complete sets, and

it shows that the described properties are the natural way to separate boxes (i.e.

complete sets).

117

p1

pr

q1

qs

Figure 6.2: Two disjoint complete sets represented as disjoint boxes
.

Thus, given an arbitrary complete graph P as above, we can define the points

((p1)x, (pr)y) and ((pr)x, (p1)y) as the lower-left and upper-right bound of a box with

sides parallel to x and y axis. Moreover two boxes are independent if and only if

the two represented cliques are disjoint, this is, if upper-right corner of one box is

lower and to the left of the lower-left corner of the second box. This representation

is exactly the box-representation of trapezoid graphs [53]. Thus, each set of vertices

that form a complete graph forms a box, and a maximum weighted independent set

is a set of maximum weighted disjoint cliques in the original graph. Given n boxes,

there is an O(n lg lg n) time algorithm to resolve this problem over box-representation

[53].

118

Algorithm 6 PWCVD(Permutation Model M)

Sort points by x-coordinate

B ← ∅
for p = 1 to n do

S ← < py, weight(p) >

for all point q ∈ N(p) do

b =< (px, qy), (qx, py) > //new box b

B ← B ∪ b //Add b to box-representation

E ← {e : e ∈ S ∧ ey > qy} //Gets elements above q

r ← e ∈ E such that ∀e′ ∈ E : ey ≤ e′y // Get lowest-element from E

weight(b)← weight(q) + weight(r) //Set weight of box b

S ← S ∪ < qy, weight(b) > //Add box b to set S

W ← {e : e ∈ S ∧ ey < qy ∧ weight(e) < weight(b)}
S ← S \W

end for

end for

return MWIS(B) [53]

The idea of the algorithm is to form a box b for each pair of points, compute the

weight of the maximum clique inside b, ans assign it to weight(b), hence at the end

the maximum-weighted-independent-set algorithm for boxes is executed. In order

to compute the weight of each box, the algorithm iterates from lowest to highest

x-coordinate. Thus, for each point p, we traverse, in ascending order, points q such

that qx > px, in order to obtain all the boxes with left-upper corner p. The new

box b is represented by their corners and added to the box representation B. For

each processed box, we maintain a point with their lowest-right point and his weight

associated. The computation of the weight of the new box b is given by extending the

maximum weighted box with point q. Boxes that can be extended with point q should

have their lower-right corner above q, thus we look for it in the set E. Then we look

119

for the lowest element (minimum y-coordinate) of this set, named r. This element r

is associated with a weight of a box that has its right-lower corner at r. Moreover,

any other box with right-lower corner y-coordinate bigger than r has smaller weight,

and should not be represented in E. This invariant is maintained by grouping those

elements in W and then deleting from the set S, from where E gets their elements.

Lemma 6.7. Algorithm PWCVD resolves the WCVD problem for permutation

graphs.

Proof. The proof follows from the previous idea. Each optimal solution can be

represented by a set of independent boxes, where each possible box b is added to

a new model B. Each box can be represented by a pair of adjacent vertices from the

original graph. It is easy to see that the weight of the box b should be the maximum

weight clique of points inside b. The set S contains elements that represents the best

weight of a box already processed, given by the y-coordinate, and such that has its

upper-right corner at point p. Thus the best box that has its lowest-right corner at

a point q is given by the maximum weight of the box who is above and to the left

of q plus the weight of q. Boxes W with lower-right corner below and to the left of

q can be deleted from the set S since any other point q′ that can be inside a box of

W can also be inside the new box b. Therefore it is never an optimal decision to use

a box represented by elements from W . Note that these deletions ensures that the

new formed box b at each step should be extended from the first element above q.

Thus, the resultant new model B contain a box for every possible complete that we

are interested in.

Lemma 6.8. Algorithm PWCVD has time complexity O(m lg n) and space complexity

O(n+m) .

Proof. The set S can be implemented using a balanced tree sorted by y-coordinate.

Given an element qy, obtaining the first element e such that ey > qy can be achieved

in O(lg d) where d represents the number of nodes in the tree. Insertions and deletions

120

can also be done in O(lg d). Obtaining the set W and deleting is O(lg d+ k) where k

represents the size of W . Note that each element will be inserted and deleted at most

once. Therefore the amortized complexity of deleting from W is O(d lg d). Since this

operations are done for each closed neighborhood of each point, then we can bound

the time complexity by
n
∑

i=1

d(vi) · lg d(vi). Note that the number of boxes B at the

end is bounded by m, thus MWIS(B) at the end of the algorithm can be done in

O(m lg lgm) ∈ O(m lg n). Thus an upper bound for the time complexity for the

algorithm is O(m lg n).

For the WDCVD case, the problem that should be solved is the maximum-

weighted-independent set with exactly D sets for the box-representation graph.

Algorithm given in [53] can be easily extended for this problem resulting in a

O(D · n lg lg n) time complexity algorithm. Thus the same idea can be used, and

at the end, use the modified algorithm.

6.3.4 Trapezoid graphs

Trapezoid graphs are intersection graphs of trapezoids between two horizontal

lines. Using the box-representation mentioned above, we can solve the WDCVD

in polynomial time for this graph class. The idea to solve the problem on this graph

family is an extension from the previous approach. Let S = {S1, . . . , SD} an optimal

set of D disjoint cliques for the WDCVD problem. It is easy to see that Si is a set

of boxes that can be represented by a new box B such that the four corners of B

are given by corner of boxes from Si. For instance, the lower-left corner of box B

is given by the coordinates bx, by where bx is the most left x-coordinate of Si and by

is the lowest y-coordinate of Si. Since Si is a complete subgraph, then (bx, by) will

belong to the same box. Therefore, for each possible set of four corners, we define a

new box and add it to a new box-representation model. The number of boxes for the

new model is bounded by O(n4). The weight of each box b is given by the maximum

weighted clique in the original model such that is contained inside box b. Obtaining

121

the maximum weighted clique from each box can be done in O(d lg lg d) where d is the

number of boxes inside box b. Thus the cost for creating the new model is bounded

by
n4
∑

i=1

d(bi) lg lg d(bi) ∈ O(n5 lg lg n). Applying the trapezoid algorithm on this new

model gives us an O(n4 lg lg n) time algorithm for obtaining the optimal solution.

Therefore the WDCVD problem can be solved in trapezoid graphs in polynomial

time.

6.3.5 Split graphs

We show thatWCVD for split graphs can be solved in polynomial time while UDCVD

is NP-Complete. This result indicates that the parameter D is the barrier for the

problem between being in P and in NPC.

Definition 6.8. A split graph G = (V,E) can be partitioned as V = K ∪ S where K

is a maximal complete graph and S an independent set.

Definition 6.9. Define a weight function w : V (G)→ R+ and for each set S ⊆ V (G)

denote w(S) =
∑

si∈S

w(si).

Let G be a weighted split graph and U ⊂ V (G) be an optimal set of vertices to

delete from G. We assume G is connected since any isolated vertex v does not belong

to any optimal set U . Note that by deleting either set K or S from G, we get a cluster

graph. Hence min{w(K), w(S)} is the cost of a solution given by deleting one of such

sets, but it could exists better candidates (i.e. with minimum weight cost).

Let K ′ = K \ U = {k1, . . . , ku} and S ′ = S \ U = {s1, . . . , sv}. Note that w(U) <

min{w(S), w(K)}, otherwise an optimal solution can be found by deleting the set

with minimum weight between K and S. In addition, it is easy to see that if S ∪K

forms one clique then |S| = 1 and as a consequence |U | = 0, hence the optimal

solution is U = ∅ with w(U) = 0.

122

From now on we assume that 0 < w(U) < min{w(S), w(K)}, since the solutions

where U = S or U = K (hence w(U) = min{w(S), w(K)} can be candidates to be

checked at the end of the algorithm. Therefore S ′ 6= ∅ and K ′ 6= ∅.

Let G′ = K ∪ S, where V (G′) = V (G) and (v, w) ∈ E(G′) ⇐⇒ v ∈ V (K) ∧ w ∈
V (S). Recall that the maximum weighted independent set (MWIS) of a graph G is

a set S ⊆ V (G) such that S is independent and w(S) ≥ w(S ′) ∀S ′ ⊆ V (G), with S ′

an independent set.

Definition 6.10. KS-edges : {(u, v) ∈ E(G) s.t. u ∈ K ∧ v ∈ S}

We claim the following algorithm returns
∑

v∈U

w(u) (i.e. the weight of the vertices

from the optimal WCVD solution):

Algorithm 7 WCVD(G: Split graph, w: Weight function)

G′ := K ∪ S

wU ← w(V)− w(MWIS(G′))

for all v ∈ S do

wU ←MIN(wU,w(V)− (w(MWIS(G′[N(v) ∪ S \ v]) + w(v)))

end for

return wU

We prove the following lemmas in order to show the correctness of the algorithm

above.

Lemma 6.9. |N(K ′) ∩ S ′| ≤ 1.

Proof. Suppose by contrary that ∃s1, s2 ∈ S ′ such that both vertices has neighbors

in K ′. Since K ′ is a clique and S ′ an independent set then there is a path from s1

to s2 which has at least three vertices. But K ′ ∪ S ′ must be P3-free. Hence we get a

contradiction since K ′ ∪ S ′ is a solution by hypothesis.

123

Lemma 6.10. Any independent set of G′ = K ∪ S is an induced cluster graph in G.

Proof. Suppose by contrary that exists an independent set I from G′ such that I does

not induce a cluster graph in G. Thus ∃{x1, x2, x3} ∈ I such that {(x1, x2), (x2, x3)} ∈
E(G) and (x1, x3) /∈ E(G). Since (x1, x3) /∈ E(G), then at least one is not in K.

Suppose w.l.o.g. x3 ∈ S. Since (x2, x3) ∈ E(G), one of them is in K, hence x2 ∈ K.

Therefore {x1, x2} ∈ K and x3 ∈ S. But since (x2, x3) ∈ E(G) is a KS-edge then

(x2, x3) ∈ E(G′), and therefore we get a contradiction since {x1, x2, x3} is not an

independent set.

Lemma 6.11.

Proof. It is trivial to see that an independent set of G′ induces a cluster graph in G.

Suppose by contrary that exists an induced cluster graph from G which is not an

independent set of G′. Thus it contains at least one edge. If each edge contains a

vertex from K ′ and one of S, then by lemma 6.9, all edges are connected to exactly

one vertex v ∈ S Hence the only solution is given by a cluster graph where there is

exactly one clique C of size greater than one and v belongs C. Moreover, the only

additional vertices that can be part of the resulting cluster graph are vertices from S

such that no vertex is adjacent to a vertex from C, this is exactly an independent set

of N(v) ∪ S \ {v}.

Corollary 6.5. From lemmas 6.10, 6.11, w(WCVD(G)) is equivalent to w(V (G))−
w(MWIS(G′)) whenever no KS-edges are used.

By lemma 6.9, all KS-edges of an induced cluster graph from G are adjacent to

at most one vertex from S and if v ∈ S belongs to the induced cluster graph, then

K ′ ∩N(v) = ∅. Thus it is possible to compute the best solution using each possible

vertex v ∈ S as the only vertex who has KS-edges adjacencies, by taking out this

vertex from G′ and also taking out K \ N(v) since it has no common vertex with

K ′. Therefore the solution is the best (i.e. maximum) induced cluster graph from

N(v) ∪ S \ v that does not use KS-edges.

124

Theorem 6.1. CVD algorithm returns w(U) for an optimal deletion set U and has

polynomial running time

Proof. By corollary 6.5, w(MWIS(G′)) at Step-1 is w(U) if |N(K ′) ∩ S ′| = 0.

Otherwise, using lemma 6.9 |N(K ′) ∩ S ′| = 1. At Step-3 algorithm handles this

case by picking each possible vertex v ∈ S such that N(K ′) ∩ S ′ = {v}.
Now we can solve it as before by getting the MWIS on the graph assuming there

will be no other vertex v′ ∈ S ′. After fixing vertex v into the induced cluster graph,

K \N(v) can be discarded, since K ′∩N(v) = ∅. Any induced cluster graph in G will

be an independent set in G′ \ v without KS-edges by lemma 6.11. But as v is within

the induced cluster graph, no other KS-edge can be present too.

CVD algorithm has polynomial running time since G′ (the graph after Step-1 is

bipartite), and MWIS(G) where G is bipartite can be solved in polynomial running

time.

UDCVD

Given the graph G = (V,E) that can be easily partitioned into V = K ∪ S where K

is a complete graph and S is an independent set, we need to find X ⊂ V such that

V \X is a D-cluster graph. We use the following known NP-Hard problem [96]:

Minimum Coverage Problem (MCP):

Instance: Two non-negative numbers k,D and a collection of sets S = {S1, . . . , Sm}
where Si ⊆ {e1, . . . , en}
Objective: Does exists a subset S ′ ⊆ S such that |S ′| = D and the number of

covered elements | ⋃

Si∈S′

Si| ≤ k ?

125

Unweighted-D Cluster Vertex Deletion(UDCVD):

Instance: A graph G = (V,E), a nonnegative number k and a positive integer D.

Objective: Does exists a subset X ⊆ V , such that deleting all vertices in X from G

results in a cluster graph with exactly D cliques and |V \X| ≥ k?

Let us define X ′ = V (G) \ X, (i.e. vertices that remain in the resulting cluster

graph). Obviously, as |X| must be minimum, |X ′| must be maximum. Given a

collection of sets S = {S1, S2, . . . , Sm} where Si ⊆ {e1, e2, . . . , en} construct the

following graph G = (V,E):

• V = Ve ∪ Vs where Ve = {e1, . . . , en, en+1, en+2} and Vs = {s1, . . . , sm} =

• E = {(ei, ej)|1 ≤ i, j ≤ n+ 2} ∪ {(si, ej)|ej ∈ Si}

Theorem 6.2. The answer for MCP (S,D, k) is yes if and only if the answer for

UDCV D(G,D + 1, |D|+ |Ve| − k) is yes, using the transformation given above.

Proof. ⇒) Let MCP (S,D, k) be yes, and assume w.l.o.g. S ′ = {S1, S2, . . . , SD} ⊆ S

be a set such that | ⋃

Si∈S′

Si| ≤ k. Let G be the graph using the transformation given

above and let X = V (G) \ {N(s1) ∪ . . . ∪ N(sD)} ∪ {sD+1, . . . , sm}. We proceed to

show that V (G) \X results in a cluster graph with exactly D + 1 cliques such that

|V \X| ≥ |D|+|Ve|−k. Thus UDCVD(G,D+1, |D|+|Ve|−k) is yes. Let H = G\X.

H contains the vertices {s1, . . . , sD}. Since their neighbors were deleted they form

an independent set of |D| isolated vertices (i.e. cliques). Besides that, there are at

least |Ve| − k elements in G \X, which are the vertices not adjacent to {s1, . . . , sD}.
Note that {en+1, en+2} are not contained in any Si element, thus |Ve| − k > 0. These

elements form a clique in H since Ve is a complete set. Thus we have D + 1 cliques

formed by these D isolated vertices plus the clique from vertices in Ve. The number

of elements is clearly at least |D|+ |Ve| − k.

126

⇐) Let UDCV D(G,D+1, |D|+ |Ve|−k) be yes. It is easy to see that at most one

clique from the resulting cluster graph will contain vertices from Ve. Also, any clique

that contains (si, ej) can be replaced by the bigger clique C \ {si} ∪ {en+1, en+2},
where C is the clique containing the edge (si, ej). Thus an optimal solution from

UDCV D(G,D + 1, |D| + |Ve| − k) will contain a set SD of D isolated vertices from

the set Vs plus a subset of Ve. Therefore adjacent vertices of SD are the only vertices

that will not be in the resulting cluster graph, so we want to minimize N(SD) = k.

Thus the cluster graph has D vertices from S and |Ve| − k vertices from Ve with

k being minimum. These k vertices are covered by exactly D elements from Vs,

hence those elements can be chosen as an optimal MCP solution. As a consequence

MCP (S,D, k) is yes.

6.3.6 Bipartite graphs

A graph G = (V,E) is bipartite, if its edge set E satisfies E ⊆ { (v, v′) |v ∈ V1, v
′ ∈ V2}

where V1 ∪ V2 = V and V1 ∩ V2 = ∅. Partitions of a bipartite graph can be easily

obtained in O(n+m) time.

UCVD

A subset of vertices in a graph is called a dissociation set if it induces a subgraph

with a vertex degree of at most 1. The maximum dissociation set problem (i.e. the

problem of finding a dissociation set of maximum size in a given graph) is NP-hard

even for bipartite graphs with maximum degree 3 and C4-free [14]. It is easy to see

that for bipartite graphs the maximum dissociation set problem is equivalent to find

the maximum number of disjoint K1 and K2. This is exactly the UCVD, since cliques

in bipartite graphs are either K1 or K2. We know the problem is NP-Hard even for

subclasses of the bipartite graphs, thus UCVD is NP-Hard for bipartite graphs, even

when restricted to maximum degree 3, or C4-free [14], or planar bipartite graphs [88].

127

We know WCVD can be solved using WDCVD and UCVD can be solved using

WCVD, hence all the variants of CVD are NP-Hard for planar bipartite graphs.

128

Chapter 7

Conclusions

In this thesis, we have provided new results on several dominating-set related

problems, and we have put additional effort on make these results relevant for

practical purposes. Any algorithm from this thesis can be easily implemented, and

the theoretical upper-bounds will match the expected computation time in a real

implementation, since there are no big hidden polynomials, nor big hidden constants.

Moreover, the algorithms were greatly simplified on purpose to make them more easy

for the reader to understand the ideas.

At the beginning of the thesis, we show some interesting results on the theoretical

side of the problem, by giving results on the problem for several graph classes

restricted by forbidding induced subgraphs. This is useful to understand the right

path to solve the problem whenever the input is restricted to some of the studied

graph families. We showed that using available knowledge and a few more proofs

chosen in the correct order, the gap missing for the complexity of many interesting

graph families can be closed. These results were submitted to a journal.

The chapter where the Roman domination is addressed, gives a few interesting

insights about relationship between problems. We showed that a naive approach

for the dominating-set problem may set a framework to solve different variants,

such as the Roman-dominating set problem. The advantage is the simplicity of the

129

algorithms, along with the fact that gives interesting bounds on the algorithms when

restricted to graphs with certain properties, such as graphs that contain a dominating

set of constant size. Moreover, these simple approaches were enough to improve

results on the algorithms for certain graph classes. Finally, we give an extremely

simple algorithm for dominating set in cographs. These results show that there is

space for improvement even in known problems and well-studied graph classes, using

simple ideas. These results were accepted to RAIRO - Theoretical Informatics and

Applications journal.

The results on the Efficient-Edge-Domination (DIM) problem show that the

problem can be approached in different ways, either exponential-time algorithms,

or by posing restrictions to the input domain. The coloring-rules have shown to

be a useful and elegant way to approach the problem, since it shows a natural way

to partially solve the problem, and makes it evident the procedure to follow. The

ideas that arise from this approach are easy to understand, even the proofs may be

harder to follow since many cases must be analyzed. This approach may be useful for

several problems where the decisions are based on the selection of edges, but can be

simplified to coloring vertices, which in turn leads to simple ideas that may provide an

efficient exponential time algorithm. The results for the problem restricted to different

graph classes show that even smart algorithms can be improved, and sometimes, a

simple bound may be enough to decrease the complexity of the algorithm. The

main exponential algorithm was presented at The 24th International Symposium

on Algorithms and Computation (ISAAC 2013) and the full paper submitted to a

journal, while several results when restricted to certain graph classes was presented

in Latin American Theoretical INformatics Symposium (LATIN 2014), and a full

version published in Information Processing Letters journal.

Additionally, we present results on the Perfect and Efficient Dominating set, for

the vertex and edge cases, restricted to circular-arc graphs. We showed previous

results and added new algorithms in order to understand these four problems for this

graph class. The new results lead to efficient algorithms.

130

The Cluster-Vertex-Deletion problem was addressed, as far as we know, for the

first time in terms of restricted graph families. We attack this problem for many of the

most well known and studied graph classes, where it makes sense to solve clustering

problems.

It is interesting to note that almost all of the developed algorithms are fast in the

practical sense, even the exponential time ones have low polynomial and low constants

associated with it, and are easy to code. Even no implementation is given as part of

the thesis, several of the algorithms have been implemented and proved to be fast, it

remains as part of future work to refactor codes and show them with a suitable test

set, experimental data and its conclusions.

Results

Note that n represents the number of vertices of the given graph G and m the number

of edges.

• A total completion of the complexity dichotomy (polynomial time vs NP-

completeness) of minimum dominating set problem for graph families defined

by forbidden induced subgraphs of size at most four. This includes several new

results:

– The problem can be solved in polynomial time for the following graph

families: 4K1-free, (2K2, claw)-free, (2K2, diamond)-free, (2K2, co−claw)-
free, (2K2, paw)-free.

– The problem falls in the NP-Complete class for the following

graph families: (K3, C4)-free, planar of maximum degree 3 and

(K4, C4, C5, C7, C8, C9, C10, C11, diamond, claw)-free

• Results over domination and Roman-domination restricted P5-free graphs:

131

– A robust algorithm to solve minimum dominating set problem restricted

to (P5,(s,t)-net)-free in O(m) time if s ≤ 2, O(m2) time if s ≤ 4, and

O(mns−3 +m
s
2) otherwise.

– A robust algorithm to solve minimum Roman-dominating set problem

restricted to (P5,(s,t)-net)-free in O(m) time if s ≤ 2, O(mn2) time if

s ≤ 4, and O(mns−3 +m
s
2) otherwise.

– A robust and extremely simple algorithm for both problems restricted P4-

free graphs that runs in O(m) time.

• Results over weighted and counting version of the Efficient-Edge-Domination

(DIM) problem:

– An O∗(min{4|D|, 1.7818n}) time algorithm with linear space complex-

ity,where |D| is the size of a dominating set. Note that whenever |D|
is a constant, the algorithm runs in linear time on the graph size.

– An O(nm2µ) algorithm where µ is the number of maximal independent

sets in the graph. This leads to an O∗(1.44225n) time algorithm for

general graphs and O∗(1.41421n) for bipartite graphs. Note that whenever

the number of maximal independent sets µ is bounded by a polynomial

function, the algorithm runs in polynomial time.

– An O(1.1939nm) time algorithm with linear space complexity.

– Bounds to improve algorithms from O(n + m) to O(n) time for chordal,

dually-chordal and biconvex graphs.

– An improvement from O(n2) time algorithm for the unweighted-version

problem restricted to claw-free graphs to an O(n) algorithm for the

weighted and counting version.

• Results over the efficient and perfect domination problem for vertices and edges

restricted to circular-arc graphs

132

– Polynomial time algorithms for the Minimum weighted efficient edge

domination, the Minimum weighted perfect vertex domination and the

minimum weighted perfect edge domination problems

• Results over the variants of Cluster-Vertex-Deletion problem:

– An O(n) time algorithm for the WCVD problem and O(n · D) time for

the WDCVD problem, restricted to proper interval graphs.

– An O(n+m) time algorithm for the WCVD problem and O(D · (n+m))

time for the WDCVD problem, restricted to interval graphs.

– An O(m) time algorithm for the WCVD problem and O(D ·m) time for

the WDCVD problem, restricted to circular-arc graphs.

– An O(m lg n) time with O(n + m) space complexity algorithm for the

WCVD problem and O(D ·n lg lg n) for the WDCVD problem, restricted

to permutation graphs.

– A polynomial-time algorithm for the WDCVD problem, restricted to

trapezoid graphs.

– A polynomial-time algorithm for the WCVD problem, and a proof that

the UDCVD problem is NP-Complete, when restricted to split graphs.

– A proof that the UCV D problem is NP-Complete, when restricted to

bipartite graphs.

133

Bibliography

[1] Asratian, A. S., Denley, T. M. J., and Häggkvist, R. (1998). Bipartite Graphs and

Their Applications. Cambridge University Press, New York, NY, USA. 2

[2] Bacso, G. and Tuza, Z. (1990). Dominating cliques in P5-free graphs. Periodica

Mathematica Hungarica, 21(4):303 – 308. 34

[3] Baker, K. A., Fishburn, P. C., and Roberts, F. S. (1972). Partial orders of

dimension 2. Networks, 2(1):11–28. 2

[4] Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustering. Machine

Learning, 56(1):89–113. x, 105

[5] Ben-Dor, A., Shamir, R., and Yakhini, Z. (1999). Clustering gene expression

patterns. Journal of Computational Biology, 6(3/4):281–297. x, 105

[6] Bertossi, A. A. (1984). Dominating sets for split and bipartite graphs. Inf. Process.

Lett., 19:37–40. iv, vi, 15, 17, 23, 26, 28

[7] Biggs, N., Lloyd, E. K., and Wilson, R. J. (1986). Graph Theory, 1736-1936.

Clarendon Press, New York, NY, USA. 4

[8] Björklund, A. (2010). Determinant Sums for Undirected Hamiltonicity. In

Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer

Science, FOCS ’10, pages 173–182, Washington, DC, USA. IEEE Computer

Society. 40

134

[9] Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. (2007). Fourier meets

möbius: fast subset convolution. In [66], pages 67–74. 40

[10] Böcker, S. (2012). A golden ratio parameterized algorithm for cluster editing. J.

Discrete Algorithms, 16:79–89. 106

[11] Böcker, S., Briesemeister, S., Bui, Q. B. A., and Truß, A. (2009). Going weighted:

Parameterized algorithms for cluster editing. Theor. Comput. Sci., 410(52):5467–

5480. 106

[12] Böcker, S., Briesemeister, S., and Klau, G. W. (2011). Exact algorithms for

cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–334. 106

[13] Böcker, S. and Damaschke, P. (2011). Even faster parameterized cluster deletion

and cluster editing. Inf. Process. Lett., 111(14):717–721. xi, 106

[14] Boliac, R., Cameron, K., and Lozin, V. V. (2004). On computing the dissociation

number and the induced matching number of bipartite graphs. Ars Comb., 72. 127

[15] Boliac, R. and Lozin, V. V. (2002). On the clique-width of graphs in hereditary

classes. In Proceedings of the 13th International Symposium on Algorithms and

Computation, ISAAC ’02, pages 44–54, London, UK. Springer-Verlag. 16, 17, 26

[16] Booth, K. S. and Johnson, J. H. (1982). Dominating sets in chordal graphs.

SIAM J. Comput., 11(1):191–199.

[17] Boral, A., Cygan, M., Kociumaka, T., and Pilipczuk, M. (2013). Fast branching

algorithm for cluster vertex deletion. CoRR, abs/1306.3877. xi, 106

[18] Brandstädt, A., Engelfriet, J., and Lozin, V. (2006). Clique-width for 4-vertex

forbidden subgraphs. Theory of Computing Systems, 39(4):561–590. 27

[19] Brandstädt, A., Fičur, P., Leitert, A., and Milanič, M. (2015). Polynomial-time

algorithms for weighted efficient domination problems in at-free graphs and dually

chordal graphs. Information Processing Letters, 115(2):256–262. 41

135

[20] Brandstädt, A., Hundt, C., and Nevries, R. (2010). Efficient edge domination

on hole-free graphs in polynomial time. In Proceedings of the 9th Latin

American conference on Theoretical Informatics, LATIN’10, pages 650–661, Berlin,

Heidelberg. Springer-Verlag. vii, 12, 40, 42, 45, 66, 69

[21] Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph Classes: A Survey.

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. 2, 4

[22] Brandstädt, A., Leitert, A., and Rautenbach, D. (2012). Efficient dominating

and edge dominating sets for graphs and hypergraphs. CoRR, abs/1207.0953. vii,

12, 40, 41, 42, 67, 82

[23] Brandstädt, A. and Lozin, V. V. (2003). On the linear structure and clique-width

of bipartite permutation graphs. Ars Comb., 67. 42

[24] Brandstädt, A. and Mosca, R. (2011). Dominating induced matchings for P7-free

graphs in linear Time. CoRR, abs/1106.2772. vii, 12, 40, 42

[25] Calamoneri, T., Finocchi, I., and Italiano, G. F., editors (2006). Algorithms and

Complexity, 6th Italian Conference, CIAC 2006, Rome, Italy, May 29-31, 2006,

Proceedings, volume 3998 of Lecture Notes in Computer Science. Springer. 138

[26] Cao, Y. and Chen, J. (2012). Cluster editing: Kernelization based on edge cuts.

Algorithmica, 64(1):152–169. 106

[27] Cardoso, D. M., Cerdeira, J. O., Delorme, C., and Silva, P. C. (2008). Efficient

edge domination in regular graphs. Discrete Applied Mathematics, 156(15):3060–

3065. vii, 12, 40, 42

[28] Cardoso, D. M., Korpelainen, N., and Lozin, V. V. (2011). On the complexity of

the dominating induced matching problem in hereditary classes of graphs. Discrete

Appl. Math., 159(7):521–531. vii, 12, 40, 42, 70, 71, 73, 75, 76

136

[29] Cardoso, D. M. and Lozin, V. V. (2009). Dominating induced matchings. In

[77], pages 77–86. vii, 12, 40, 41, 45, 49

[30] Chang, M. (1998). Efficient algorithms for the domination problems on interval

and circular-arc graphs. SIAM J. Comput., 27:1671–1694. 5, 82

[31] Chang, M. and Liu, Y. (1994). Polynomial algorithms for weighted perfect

domination problems on interval and circular-arc graphs. J. Inf. Sci. Eng.,

11(4):549–568. 89, 91, 93, 102

[32] Chao, H. S., Hsu, F., and Lee, R. C. T. (2000). An optimal algorithm for finding

the minimum cardinality dominating set on permutation graphs. Discrete Applied

Mathematics, 102(3):159–173. iv, vi, 5, 15, 17, 26, 29

[33] Chen, Z. and Zhang, S. (2002). Tight upper bound on the number of edges

in a bipartite K3,3-free or K5-free graph with an application. Inf. Process. Lett.,

84(3):141–145. 68

[34] Chiba, N. and Nishizeki, T. (1985). Arboricity and subgraph listing algorithms.

SIAM J. Comput., 14(1):210–223. 34

[35] Cockayne, E. J., Jr., P. A. D., Hedetniemi, S. M., and Hedetniemi, S. T. (2004).

Roman domination in graphs. Discrete Mathematics, 278(1-3):11 – 22. vi, 28, 29

[36] Cook, S. A. (1971). The complexity of theorem-proving procedures. In [62],

pages 151–158. i, 1

[37] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition. ii, 3

[38] Courcelle, B., Makowsky, J., and Rotics, U. (1999). Linear time solvable

optimization problems on graphs of bounded clique width. Theory of Computing

Systems, 33:125–150. 16, 17, 26

137

[39] Dabrowski, K. K., Lozin, V. V., Raman, R., and Ries, B. (2012). Colouring

vertices of triangle-free graphs without forests. Discrete Math., 312(7):1372 – 1385.

16, 17

[40] Dahllöf, V. and Jonsson, P. (2002). An algorithm for counting maximum

weighted independent sets and its applications. In [49], pages 292–298. 42

[41] Dahllöf, V., Jonsson, P., and Wahlström, M. (2005). Counting models for 2sat

and 3sat formulae. Theor. Comput. Sci., 332(1-3):265–291. 42

[42] Damaschke, P. (2005). On the fixed-parameter enumerability of cluster editing.

In [71], pages 283–294. 106

[43] Damaschke, P. (2006). Fixed-parameter tractable generalizations of cluster

editing. In [25], pages 344–355. 106

[44] Damaschke, P. (2013). Cluster editing with locally bounded modifications

revisited. In [73], pages 433–437. 106

[45] Dehne, F. K., Langston, M. A., Luo, X., Pitre, S., Shaw, P., and Zhang, Y.

(2006). The cluster editing problem: Implementations and experiments. In IN

PROC. 2ND IWPEC, pages 13–24. Springer. x, 105

[46] Downey, R. G. and Fellows, M. R. (1999). Parameterized Complexity. Springer-

Verlag. 530 pp. ii, 3

[47] Durán, G., Lin, M. C., Mera, S., and Szwarcfiter, J. (2008). Algorithms for

finding clique-transversals of graphs. Annals of Operations Research, 157:37–45.

10.1007/s10479-007-0189-x. 80, 81

[48] Durán, G., Lin, M. C., Mera, S., and Szwarcfiter, J. L. (2006). Algorithms

for clique-independent sets on subclasses of circular-arc graphs. Discrete Applied

Mathematics, 154(13):1783–1790. 80, 81

138

[49] Eppstein, D., editor (2002). Proceedings of the Thirteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA.

ACM/SIAM. 138

[50] Erdős, P., Goodman, A. W., and Pósa, L. (1966). The representation of a graph

by set intersections. Canadian Journal of Mathematics, 18:106–112. ii, 2, 4

[51] Farber, M. and Keil, J. M. (1985). Domination in permutation graphs. J.

Algorithms, 6(3):309–321. vi, 29

[52] Feige, U. (1998). A threshold of ln n for approximating set cover. J. ACM,

45(4):634–652. 5

[53] Felsner, S., Mller, R., and Wernisch, L. (1997). Trapezoid graphs and

generalizations, geometry and algorithms. Discrete Applied Mathematics, 74(1):13

– 32. 116, 118, 119, 121

[54] Fiat, A. and Sanders, P., editors (2009). Algorithms - ESA 2009, 17th Annual

European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings,

volume 5757 of Lecture Notes in Computer Science. Springer. 143

[55] Fomin, F. and Kratsch, D. (2010). Exact Exponential Algorithms. Texts in

theoretical computer science. Springer. 40, 56, 59, 60

[56] Fomin, F. V., Gaspers, S., Saurabh, S., and Stepanov, A. A. (2009). On two

techniques of combining branching and treewidth. Algorithmica, 54(2):181–207. 42

[57] Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

5, 6, 7, 25

[58] Gavril, F. (1974). Algorithms on circular-arc graphs. Networks, 4(4):357–369. 2

[59] Gavril, F. and Yannakakis, M. (1980). Edge dominating sets in graphs. SIAM

J. Appl. Math., 38(3):364–372. 17

139

[60] Golumbic, M. and Laskar, R. (1993). Irredundancy in circular arc graphs.

Discrete Applied Mathematics, 44(13):79 – 89. 83

[61] Grinstead, D. L., Slater, P. J., Sherwani, N. A., and Holmes, N. D. (1993).

Efficient edge domination problems in graphs. Inf. Process. Lett., 48(5):221–228.

vii, 12, 40, 42

[62] Harrison, M. A., Banerji, R. B., and Ullman, J. D., editors (1971). Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker

Heights, Ohio, USA. ACM. 137

[63] Hedetniemi, S. and Laskar, R. (1990). Bibliography on domination in graphs and

some basic definitions of domination parameters. Discrete Mathematics, 86(13):257

– 277. 6

[64] Hüffner, F., Komusiewicz, C., Liebtrau, A., and Niedermeier, R. (2014).

Partitioning biological networks into highly connected clusters with maximum edge

coverage. IEEE/ACM Trans. Comput. Biology Bioinform., 11(3):455–467. 106

[65] Johnson, D. S. (1973). Approximation algorithms for combinatorial problems. In

Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC

’73, pages 38–49, New York, NY, USA. ACM. 5

[66] Johnson, D. S. and Feige, U., editors (2007). Proceedings of the 39th Annual

ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-

13, 2007. ACM. 135

[67] Jünger, M., Reinelt, G., and Rinaldi, G., editors (2003). Combinatorial

Optimization - Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th

International Workshop, Aussois, France, March 5-9, 2001, Revised Papers,

volume 2570 of Lecture Notes in Computer Science. Springer. 144

[68] Kloks, T., Kratsch, D., and Müller, H. (2000). Finding and counting small

induced subgraphs efficiently. Inf. Process. Lett., 74(3-4):115–121. 27

140

[69] Korpelainen, N. (2009). A polynomial-time algorithm for the dominating induced

matching problem in the class of convex graphs. Electronic Notes in Discrete

Mathematics, 32:133–140. vii, 12, 40, 42

[70] Kratsch, D. (2000). Domination and total domination on asteroidal triple-free

graphs. Discrete Applied Mathematics, 99(1–3):111 – 123. iv, vi, 15, 17, 21, 26, 29,

37

[71] Kratsch, D., editor (2005). Graph-Theoretic Concepts in Computer Science,

31st International Workshop, WG 2005, Metz, France, June 23-25, 2005, Revised

Selected Papers, volume 3787 of Lecture Notes in Computer Science. Springer. 138

[72] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520. ii, 3

[73] Lecroq, T. and Mouchard, L., editors (2013). Combinatorial Algorithms - 24th

International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised

Selected Papers, volume 8288 of Lecture Notes in Computer Science. Springer. 138

[74] Lekkeikerker, C. and Boland, J. (1962). Representation of a finite graph by a set

of intervals on the real line. Fundamenta Mathematicae, 51(1):45–64. 2

[75] Liedloff, M., Kloks, T., Liu, J., and Peng, S. (2008). Efficient algorithms for

roman domination on some classes of graphs. Discrete Applied Mathematics,

156(18):3400–3415. vi, 29, 30, 38, 39

[76] Lin, M. C., McConnell, R. M., Soulignac, F. J., and Szwarcfiter, J. L. (2008).

On cliques of helly circular-arc graphs. Electronic Notes in Discrete Mathematics,

30:117–122. 86

[77] Lipshteyn, M., Levit, V. E., and McConnell, R. M., editors (2009). Graph

Theory, Computational Intelligence and Thought, Essays Dedicated to Martin

Charles Golumbic on the Occasion of His 60th Birthday, volume 5420 of Lecture

Notes in Computer Science. Springer. 137

141

[78] Livingston, M. and Stout, Q. F. (1988). Distributing resources in hypercube

computers. In Proceedings of the third conference on Hypercube concurrent

computers and applications: Architecture, software, computer systems, and general

issues - Volume 1, C3P, pages 222–231, New York, NY, USA. ACM. vii, 12, 40

[79] Lozin, V. V. and Milanič, M. (2006). Domination in graphs of low degree. Rutcor

Research Report (RRR) New Jersey 27. 23

[80] Lu, C. L., Ko, M., and Tang, C. Y. (2002). Perfect edge domination and efficient

edge domination in graphs. Discrete Applied Mathematics, 119(3):227–250. vii, 12,

40, 42, 67, 85, 86, 95, 99, 100

[81] Lu, C. L. and Tang, C. Y. (1998). Solving the weighted efficient edge domination

problem on bipartite permutation graphs. Discrete Applied Mathematics, 87(1-

3):203–211. vii, 12, 40, 42

[82] McConnell, R. M. (2003). Linear-time recognition of circular-arc graphs.

Algorithmica, 37(2):93–147. 82

[83] McKee, T. A. (1999). Topics in intersection graph theory. 7

[84] Merris, R. (2003). Split graphs. Eur. J. Comb., 24(4):413–430. 2

[85] Milanič, M. (2013). Hereditary efficiently dominatable graphs. Journal of Graph

Theory, 73(4):400–424. 41

[86] Müller, H. and Brandstädt, A. (1987). The NP-completeness of steiner tree and

dominating set for chordal bipartite graphs. Theor. Comput. Sci., 53:257–265. 17

[87] Nicolai, F. and Szymczak, T. (2001). Homogeneous sets and domination: A

linear time algorithm for distance - hereditary graphs. Networks, 37(3):117–128.

vi, 21, 29

142

[88] Orlovich, Y. Dolgui, A., Finke, G., Gordon, V., and Werner, F. (2011). The

complexity of dissociation set problems in graphs. Discrete Applied Mathematics,

159(13):1352 – 1366. 127

[89] Poghosyan, A. and of the West of England, U. (2010). The Probabilistic Method

for Upper Bounds in Domination Theory. PhD thesis. University of the West of

England. 4

[90] Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition. ii, 3

[91] Shih, W. and Hsu, W. (1989). An O(nlogn+mloglogn) maximum weight clique

algorithm for circular-arc graphs. Information Processing Letters, 31(3):129 – 134.

114, 115

[92] Spinrad, J. (2003). Efficient Graph Representations.: The Fields Institute

for Research in Mathematical Sciences. Fields Institute monographs. American

Mathematical Soc. 76, 83

[93] Tsukiyama, S., Ide, M., Ariyoshi, H., and Shirakawa, I. (1977). A new algorithm

for generating all the maximal independent sets. SIAM J. Comput., 6(3):505–517.

55

[94] van Rooij, J. M. M., Nederlof, J., and van Dijk, T. C. (2009). Inclusion/exclusion

meets measure and conquer. In [54], pages 554–565. 42

[95] Vazirani, V. V. (2001). Approximation Algorithms. Springer-Verlag New York,

Inc., New York, NY, USA. ii, 3

[96] Vinterbo, S. A. (2007). A stab at approximating minimum subadditive join. In

Dehne, F. K., Sack, J., and Zeh, N., editors, WADS, volume 4619 of Lecture Notes

in Computer Science, pages 214–225. Springer. 125

143

[97] Wahlström, M. (2008). A tighter bound for counting max-weight solutions to

2sat instances. In Proceedings of the 3rd international conference on Parameterized

and exact computation, IWPEC’08, pages 202–213, Berlin, Heidelberg. Springer-

Verlag. 42

[98] Wikipedia (2014a). Bipartite graph — wikipedia, the free encyclopedia. [Online;

accessed 20-November-2014]. 9

[99] Wikipedia (2014b). Circular-arc graph — wikipedia, the free encyclopedia.

[Online; accessed 20-November-2014]. 10

[100] Wikipedia (2014c). Interval graph — wikipedia, the free encyclopedia. [Online;

accessed 20-November-2014]. 8

[101] Wikipedia (2014d). Permutation graph — wikipedia, the free encyclopedia.

[Online; accessed 20-November-2014]. 10

[102] Wikipedia (2014e). Split graph — wikipedia, the free encyclopedia. [Online;

accessed 20-November-2014]. 11

[103] Woeginger, G. J. (2001). Exact algorithms for np-hard problems: A survey. In

[67], pages 185–208. 40

[104] Yannakakis, M. (1982). The complexity of the partial order dimension problem.

17

[105] Zverovich, I. E. (2003). The domination number of (Kp,P5)-free graphs.

Australasian Journal of Combinatorics, 27:95–100. vi, 15, 26, 29

144

	Portada
	Resumen
	Introducción
	Complejidad restringida por subgrafos inducidos prohibidos
	Algoritmos restringidos a grafos P5-free
	Dominación eficiente por aristas
	Dominación Perfecta y Eficiente
	Eliminación de vértices para formar clusters
	Conclusiones
	Abstract
	Agradecimientos
	Contents
	1. Introduction
	2. Complexity restricted by forbidden induced subgraphs
	3. Domination and Roman-Domination algorithms
	4. Efficient Edge Domination
	5. Efficient and Perfect Domination
	6. Cluster Vertex Deletion
	7. Conclusions
	Bibliography

