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Resumen

Soluciones conjuntistas a la ecuaci�on de Yang-Baxter,
invariantes de nudos y cohomolog��a.

En el Cap��tulo 2 de�nimos una bi�algebra B cuya homolog��a y cohomolog��a coinci-
den con las de biquandle de�nidas en [CJKS] y otras generalizaciones de cohomolog��a
del caso quandle o rack (por ejemplo la de�nida en [CES2]). La estructura algebraica
encontrada permite demostrar con transparencia la existencia de un producto asociativo
en la cohomolog��a de biquandles. Este producto era conocido para el caso rack (con una
demostraci�on topol�ogica, por lo que nuestra construcci�on provee de una prueba completa-
mente algebraica e independiente) pero era desconocido en el caso general de biquandles.
Tambi�en esta estructura algebraica descubierta permite mostrar la existencia de mor�s-
mos de comparaci�on con cohomolog��a de Hochschild que, eventualmente, podr�an proveer
de ejemplos de c�alculo de cociclos, que (en grado dos para nudos, y en grado tres para
super�cies) pueden ser utilizados para calcular invariantes. M�as a�un, explicitamos un
mor�smo de comparaci�on que se factoriza por un complejo que, como bim�odulo, es la
extensi�on de escalares de un �algebra de Nichols.

En [AG] se de�ne un 2-cociclo de quandle como una aplicaci�on � : X �X ! H donde
(X; ?) es un quandle y H es un grupo (no necesariamente abeliano) tal que

�(x1; x2)�(x1 ? x2; x3) = �(x1; x3)�(x1 ? x3; x2 ? x3)

y �(x; x) = 1.
En el Cap��tulo 3 generalizamos esa de�nici�on para biquandles (X; �) adaptando las

ecuaciones existentes y agregando una equaci�on m�as:
Una funci�on f : X � X ! H es un 2-cociclo trenzado no conmutativo si

� f
�

x1; x2

�
f
�

�2(x1; x2); x3

�
= f

�
x1; �1(x2; x3)

�
f
�

�2(x1; �1(x2; x3)); �2(x2; x3)
�

, y

� f
�

�1(x1; x2); �1(�2(x1; x2); x3)
�

= f
�

x2; x3

�

8x1; x2; x3 2 X.
De�nimos un grupo, Unc, y un 2-cociclo no conmutativo universal, �, tales que para

todo grupo H y f : X � X ! H 2-cociclo no conmutativo, existe un �unico mor�smo de
grupos f : Unc ! H tal que f = f � �. Mostramos que Unc es funtorial. De�nimos una
asignaci�on de pesos a cada cruce en un nudo/link y, probando que cierto producto es in-
variante por movimientos de Reidemeister obtuvimos un nuevo invariante de nudos/links
que generaliza el invariante obtenido en [CEGS].

Para cada grupo Unc de�nimos cocientes U
nc y mostramos que estos, si bien son en

general mucho m�as chicos que Unc, guardan la misma informaci�on que el primero con
respecto al c�alculo de invariantes. Hemos calculado Unc y U

nc para ciertos ejemplos
de biquandles peque~nos. Para poder trabajar con ejemplos de cardinal mayor a tres
utilizamos GAP (System for Computational Discrete Algebra). Esto �ultimo nos permiti�o
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colorear links con biquandles (no provenientes de quanldles) de mayor cardinal y as��
distinguir nudos-links concretos (e.g.: el trebol de su imagen especular, la no trivialidad
del link Whitehead, etc). Es decir, encontramos ejemplos que muestran que nuestro
invariante generaliza estrictamente el de�nido en [CEGS]. Estos ejemplos ya se dan con
biquandles de tama~no muy chico (cardinal 3) y permiten distinguir sensiblemente nudos
distintos (e.g.: link Borromeo de tres \no nudos" separados , link de Whitehead de dos
\no nudos", trebol de su imagen especular).

Palabras clave: invariante de knot-links, cohomolog��a de Yang-Baxter.
Quandle, biquandle, rack, bi�algebra, �algebra de Hopf, algebra trenzada.



Abstract

Set theoretic solutions of the Yang-Baxter equation, knot
invariants and cohomology.

In Chapter 2, we de�ne a bialgebra B such that its homology and cohomology are
the same as the biquandle ones de�ned in [CJKS] and other genalizations of cohomology
of the quandle-rack case (for example de�ned in [CES2]).This algebraic structure enable
us to show an associative product in biquandle cohomology. This product was known
for the rack case (with topological proof) but unknown in biquandle case. This algebraic
structure also allows to de�ne comparison morphisms with other cohomology theories
that could eventually provide cocycle examples (of degree two for knots and degree three
for surfaces) for computing invariants. Furthermore, we give an explicit comparison
morphism that factorizes by a complex that, as bimodule, is the scalar extension of a
Nichols algebra.

In [AG] a quandle 2-cocycle is de�ned as a map � : X � X ! H where (X; ?) is a
quandle and H is a group (not necessarily abelian) such that

�(x1; x2)�(x1 ? x2; x3) = �(x1; x3)�(x1 ? x3; x2 ? x3)

and �(x; x) = 1.
In Chapter 3 we generalized this de�nition to biquandles (X; �):
A function f : X � X ! H is a non commutative braided 2-cocycle if veri�es both

� f
�

x1; x2

�
f
�

�2(x1; x2); x3

�
= f

�
x1; �1(x2; x3)

�
f
�

�2(x1; �1(x2; x3)); �2(x2; x3)
�

, and

� f
�

�1(x1; x2); �1(�2(x1; x2); x3)
�

= f
�

x2; x3

�

8x1; x2; x3 2 X.
We de�ne a group, Unc and a universal non commutative 2-cocycle � such that for

every group H and f : X � X ! H a non commutative 2-cocycle, exist a unique group
morphism f : Unc ! H such that f = f � �. We show that Unc is functorial. De�ne an
assignment of a weight to each crossing in a knot-link. A certain product of these weights
is invariant under Reidemester moves, then a new invariant for knot-links is obtained
generalising the one obtained in [CEGS]. For each group Unc we de�ned quotients U

nc
which keep the same data when computing the invariant and have smaller cardinal. We
calculated Unc and U

nc for certain biquandles of small cardinality. To be able to work
with more examples we worked with GAP (System for Computational Discrete Algebra).
Creating programs we were able to color links with bigger biquandles (not coming from
quandles) and found examples that show our invariant generalizes the one de�ned in
[CEGS]. This examples are achived using biquandles of cardinality three and distinguish
knots-links (e.g.: Borromean link from three separeted unknots, Whitehead link from two
unknots, trefoil knot and its mirror). .

Key words: Knot-links invariants, Yang-Baxter cohomology.
Quandle, biquandle, rack, bialgebra, Hopf algebra, braided algebra.
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Introducci�on

Una soluci�on conjuntista de la ecuaci�on de Yang-Baxter es un conjunto X provisto de
una biyecci�on � : X � X ! X � X que veri�ca

(� � Id)(Id � �)(� � Id) = (Id � �)(� � Id)(Id � �)

donde la igualdad es como biyecci�on en X � X � X. Gr�a�camente, esta identidad se la
suele visualizar como

  ��~~   ��~~

=

donde, si �(x; y) = (�(1)(x; y); �(2)(x; y)), en cada cruce se introducen etiquetas con ele-
mentos en X con la regla

x
KKK

KKK

%%KKKK

y

yysss
sss

sss
ss

�(1)(x; y) �(2)(x; y)

Dada una soluci�on conjuntista de la ecuaci�on de Yang Baxter y un anillo conmutativo k,
el k-m�odulo libre con base X: V := �x2Xkx tiene una trenza

c : V 
 V ! V 
 V

de�nida por c(x 
 y) := z 
 t si �(x; y) = (z; t), pues veri�ca

(c 
 Id)(Id 
 c)(c 
 Id) = (Id 
 c)(c 
 Id)(Id 
 c):

Estas soluciones juegan un rol central en el problema de clasi�caci�on de �algebras de
Nichols, clasi�caci�on de �algebras de Hopf, y sus aplicaciones al estudio de categor��as
tensoriales, con aplicaciones en topolog��a de dimensiones bajas como invariantes de nudos.
Un caso particular muy estudiado es cuando la trenza es de la forma

�(x; y) = (y; �(2)(x; y))

que denominaremos \soluci�on tipo rack". Esta tesis contiene generalizaciones de cons-
trucciones del caso tipo rack al caso general, y construcciones nuevas en el caso general
que tienen aplicaciones nuevas tanto en el caso general como el de tipo rack.
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2 INTRODUCCI�ON
La teor��a de (co)homolog��a para soluciones conjuntistas de la ecuaci�on de Yang-Baxter

fue considerada simult�aneamente por matem�aticos del �area de �algebras de Hopf (e.g.
Andruskiewitsch-Gra~na para el caso rack) como por top�ologos interesados en invariantes
de nudos y super�cies anudadas (Carter, Saito, Elhamdadi, Fenn, Rourke, Sanderson,
Ceniceros, Green, Nelson, entre otros). Por un lado, si c(x 
 y) = z 
 t es la trenza en
V que proviene de linealizar la de X, y si f : X � X ! k� es una funci�on a valores en
las unidades del anillo k, la noci�on de 2-cociclo (en notaci�on multiplicativa) puede verse
como la condici�on sobre f para que la aplicaci�on cf : V 
 V ! V 
 V dada por

cf (x 
 y) = f(x; y)z 
 t

veri�que la ecuaci�on de trenzas.
Desde el punto de vista de invariantes de nudos, la condici�on de cociclo se obtiene

pidiendo cierta invarianza ante movimientos de Reidemeister, de manera tal que, dado
un 2-cociclo f : X � X ! A, donde A es un grupo abeliano, el procedimiento conocido
como \state-sum invariant" produce un invariante de nudos a valores en el �algebra de
grupo Z[A].

Uno de los primeros objetos algebraicos asociados a una soluci�on (X; �) es el llamado
grupo envolvente GX , que es el grupo con generadores en X y con la relaci�on

xy � zt si �(x; y) = (z; t)

y tambi�en podemos considerar la k-algebra de semigrupo como la k-algebra con genera-
dores en X y las mismas relaciones. En el Cap��tulo 2, dado (X; �) soluci�on de la ecuaci�on
de Yang-Baxter, se de�ne una bi�algebra diferencial graduada (B; �; d) tal que al conside-
rar cierta estructura de bim�odulo sobre A = khXi=hxy �zt : x; y 2 X; (z; t) = �(x; y)i =
k[M ], se recuperan los complejos asociados a soluciones conjuntistas de la ecuaci�on de
Yang-Baxter de�nidos en [CES2] tomando respectivamente productos tensoriales sobre
A u HomA�A (ver Teorema 32). La estructura algebraica descubierta en B (i.e. bi�algebra
diferencial graduada) permite demostrar de manera sencilla y puramente algebraica la
existencia de un producto \cup" en cohomolog��a (ver Proposici�on 42). Este hecho era
conocido para el caso rack con demostraci�on topol�ogica (ver [C]), pero desconocido para
el caso general.

Como segunda aplicaci�on de la existencia de la bialgebra B se obtienen mor�smos
de comparaci�on con la cohomolog��a de Hochschild del �algebra del semigrupo envolvente
de X (ver Teorema 59), y un estudio detallado de un posible mor�smo de comparaci�on
muestra una relaci�on nueva con el �algebra de Nichols asociada a �� (donde � es una
soluci�on general de YBeq).

En el Cap��tulo 3, dado un biquandle (X; �), de�nimos un 2-cociclo trenzado no con-
mutativo f que generaliza la noci�on an�aloga para quandles dada en [AG]. Dada una
elecci�on de biquandle X, un 2-cociclo trenzado no conmutativo f y un link orientado
L, se de�nen pesos para cada cruce y un conjunto de clases de conjugaci��on de ciertos
productos de los antes mencionados pesos. Se muestra que estas clases de conjugaci�on
son invariantes por movimientos de Reidemeister. Es decir, se prueba que estas clases de
conjugaci�on de�nen un invariante de nudos/links. En una segunda instancia se de�ne un
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Introducci�on 3
grupo universal que gobierna todos los 2-cociclos para un biquandle X dado, es decir, un
grupo Unc(X) junto con un 2-cociclo � : X � X ! Unc(X) tal que si f : X � X ! G es
un 2-cociclo no conmutativo trenzado a valores en un grupo G, entonces existe un �unico
mor�smo de grupos ef : Unc(X) ! G tal que f = ef�. Por ejemplo, si Unc(X) es el grupo
trivial, entonces lo es todo 2-cociclo. Por otro lado, si Unc(X) es no trivial, este grupo
universal contiene toda la informaci�on que alg�un grupo podr��a tener usando 2-cociclos.

M�as adelante se de�ne una versi�on reducida del grupo Unc. Dada una aplicaci�on
 : X ! Unc(X) se construye un cociente llamado U

nc(X), que en particular es un grupo,
y existe un 2-cociclo � : X �X ! U

nc(X) con la siguiente propiedad: (Teorema 111): Si
f : X � X ! G es un 2-cociclo, entonces existe un 2-cociclo cohom�ologo (ver De�nici�on
92) f : X � X ! G y un mor�smo de grupos ef tal que

f = ef�:

Como el invariante de�nido no cambia bajo cociclos cohom�ologos (Proposici�on 102), el
invariante producido por f es el mismo que el proveniente de f. Este paso al cociente
permite mejorar y facilitar los c�alculos y resultados en ejemplos concretos.

Sobre el �nal del cap��tulo se muestran ejemplos de c�alculos concretos de invariantes
de nudos y links encontrados con este procedimiento.

En el Cap��tulo 4 mostramos algunos de los programas utilizados en la b�usqueda de
ejemplos concretos.

El primer cap��tulo de la tesis contiene las de�niciones generales. Los aportes originales
contenidos en esta tesis se encuentran en los Cap��tulos 2 y 3 que corresponden mayori-
tariamente a los trabajos A di�erential bialgebra associated to a set theoretical solution
of the Yang-Baxter equation ArXiv:math/1508.07970, y Link and knot invariants from
non-abelian Yang-Baxter 2-cocycles, ArXiv:math/1507.02232.
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Introduction

A set-theoretic solution of the Yang-Baxter equation is a set X provided with a bijection
� : X � X ! X � X that veri�es

(� � Id)(Id � �)(� � Id) = (Id � �)(� � Id)(Id � �)

for every (x; y; z) 2 X � X � X. Graphically

  ��~~   ��~~

=

where �(x; y) = (�(1)(x; y); �(2)(x; y)), in each crossing labels are introduced with elements
in X following the rule

x
KKK

KKK

%%KKKK

y

yysss
sss

sss
ss

�(1)(x; y) �(2)(x; y)

For each set-theoretical solution of the Yang-Baxter equation and a commutative ring k,
the free k-module with basis X: V := �x2Xkx has a braiding

c : V 
 V ! V 
 V

de�ned by c(x 
 y) := z 
 t si �(x; y) = (z; t), as veri�es

(c 
 Id)(Id 
 c)(c 
 Id) = (Id 
 c)(c 
 Id)(Id 
 c)

This kind of solutions play a central role in classifying Nichols algebras, Hopf algebras,
and their application to the study of tensor categories, low dimension topologies such as
knot invariants. A (well known) particular case is when the braiding is like

�(x; y) = (y; �(2)(x; y))

which are called \rack solutions". This thesis contains generalizations of constructions
made for rack case and new constructions, with new applications for both, general case
and rack case.

Cohomology theory for set theoretic solutions of the Yang-Baxter equation was con-
sidered simultaneously by mathematicians coming from Hopf algebra’s area (e.g. An-
druskiewitsch and Gra~na for rack case) and topologist interested in knot invariants or
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6 INTRODUCTION
knoted surfaces (Carter, Saito, Elhamdadi, Fenn, Rourke, Sanderson, Ceniceros, Green,
Nelson, among others). On one hand, if c(x 
 y) = z 
 t is a braiding on V coming from
linearizing the braid in X, and if f : X � X ! k� where k� is the set of units of a ring
k, then the notion of 2-cocycle (multiplicative notation) could be written as a condition
on f , such that cf : V 
 V ! V 
 V given by

cf (x 
 y) = f(x; y)z 
 t

veri�es braid equation.
From the knot invariant point of view, the cocycle condition is obtained by invariance

under Reidemeister moves, so given a 2-cocycle f : X � X ! A, where A is an abelian
group, the \state-sum invariant" procedure gives a knot invariant in coe�cients of the
group algebra Z[A].

One of the most common objects associated to a solution (X; �) is the enveloping
group GX , which is generated by X and relations

xy � zt if �(x; y) = (z; t):

It also can be considered the semigroup k-algebra as the k-algebra with generators in
X and same relations. In Chapter 2, given (X; �) a solution of Yang-Baxter equation,
we de�ne a di�erential graded bialgebra (B; �; d) such that, when considering certain
bimodule structure on A = khXi=hxy � zt : x; y 2 X; (z; t) = �(x; y)i = k[M ], the
complexes associated to set theoretic solutions of the Yang-Baxter equation de�ned in
[CES2] are recovered, taking tensor products on A, or HomA�A (see Theorem 32). The
algebraic structure shown in B (i.e. di�erential graded bialgebra) allowed us to prove the
existence of a \cup" product in cohomology, using purely algebraic methods (see Theorem
42). This fact was known for the rack case with topological proof ([C]), but unknown for
the general case.

As a second application of the existence of the bialgebra B, comparison morphisms
with Hochschild’s cohomology of the enveloping semigroup of X, (see Theorem 59) are
obtained. A detailed study of a possible comparison morphism shows a new relation with
the Nichols algebra associated to ��.

In Chapter 3, given (X; �) we de�ne a braided noncommutative 2-cocycle f that gen-
eralizes the one de�ned for quandles given in [AG]. Given a biquandle X, a braided non-
commutative 2-cocycle f and an oriented link L, for each crossing we de�ne weights and
a set of conjugacy classes of certain products of the earlier mentioned weights. We show
this conjugacy classes are invariant under Reidemeister moves, then de�ne a link/knot
invariant. Secondly we de�ne a universal group, that governs all 2-cocycles for a given
biquandle X, meaning, a group Unc(X) together with a 2-cocycle � : X � X ! Unc(X)
such that if f : X � X ! G is a braided noncommutative 2-cocycle to coe�cients in G,
then a unique group morphism exists ef : Unc(X) ! G such that f = ef�. For example, if
Unc(X) is the trivial group, then 2-cocycle is also trivial. On the other hand, if Unc(X)
is not trivial, this universal group contains all information any group could have using
2-cocycles.

Later we de�ne a new and reduced version of this group, Unc. Given an application
 : X ! Unc(X) we construct a quotient called U

nc(X), which is a group and a 2-cocycle

6
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� : X �X ! U

nc(X) with the following property: (Theorem 111): If f : X �X ! G is a
2-cocycle, then there exists a cohomologous 2-cocycle (see De�nition 92) f : X �X ! G
and a group morphism ef such that

f = ef�:

As the de�ned invariant does not change under cohomologous cocycles (Proposition 102),
the invariant produced by f is the same as the one coming from f. This quotient improves
calculations and lead to more concrete results.

Over the end of the chapter concrete examples of link/knot invariants are shown.

In Chapter 4 some of the programs used to �nd concrete examples are shown.

The �rst chapter of this thesis contains general de�nitions. The original results in-
cluded in this thesis are included in chapters 2 and 3 that are based mostly on A dif-
ferential bialgebra associated to a set theoretical solution of the Yang-Baxter equation
ArXiv:math/1508.07970, and Link and knot invariants from non-abelian Yang-Baxter
2-cocycles, ArXiv:math/1507.02232.

7
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Chapter 1

Preliminaries

Introducci�on al cap��tulo

En este cap��tulo introduciremos los objetos de estudio que utilizamos en esta tesis. Des-
pu�es de de�nir soluciones conjuntistas de la ecuaci�on de Yang-Baxter y mostrar breve-
mente algunas familias de soluciones (ej: de tipo rack, soluciones de (bi)Alexander),
presentamos las teor��as de homolog��a y cohomolog��a de este tipo de estructuras. Estas
teor��as de (co)homolog��a fueron principalmente desarrolladas por top�ologos (con el obje-
tivo de producir invariantes de nudos/links o super�cies anudadas) y expertos en �algebras
de Hopf (con el objetivo de producir �algebras Nichols). Terminaremos el cap��tulo des-
cribiendo un invariante llamado state-sum, asociado a un quandle Q y a un 2-cociclo
(conmutativo) f . Ninguno de los contenidos de este cap��tulo es original y est�a incluido
en la tesis a modo de contexto: en el Cap��tulo 2 probaremos resultados referentes a la
cohomolog��a usando un nuevo punto vista mientras que en el Cap��tulo 3 proponemos
una de�nici�on de 2-cociclo no conmutativo para biquandles (generalizando la de�nici�on
preexistente para quandles) y probamos que da lugar a un invariante de nudos/links.

Introduction to the chapter

In this chapter we introduce the objects of study of this thesis. After de�ning the set
theoretical solutions of the Yang-Baxter equation and briey showing some examples
(e.g. of rack type, (bi)Alexander solutions), we present the homology and cohomology
theories for this algebraic structure. These (co)homology theories were mainly developed
by topologists (in order to produce invariants of links/knots or knoted surfaces) and Hopf-
theorists (in order to produce Nichols algebras). We end this chapter by describing the
so-called state-sum invariant associated to a quandle Q and a (commutative) 2-cocycle
f . None of the contents of this chapter is new, we present them in order to put our
results in context: in Chapter 2 we prove general results about cohomology using a new
point of view, and in Chapter 3 we propose a de�nition of non-commutative 2-cocycles for
biquandles (generalizing a previous de�nition for quandles) and prove that they provide
knot/links invariants.

9



10 CHAPTER 1. PRELIMINARIES
1.1 The Yang-Baxter equation
A set theoretical solution of the Yang-Baxter equation (YBeq) is a pair (X; �) where
� : X � X ! X � X is a bijection satisfying

(Id � �)(� � Id)(Id � �) = (� � Id)(Id � �)(� � Id) : X � X � X ! X � X � X

The equation above is called the Yang-Baxter or braid equation. If � is a bilinear bijective
map satisfying YBeq then it is called a braiding on V .

1.1.1 First Examples: Racks and quandles
Let us consider a set X and a special type of solution of the form

�(x; y) = (y; �(2)(x; y))

Since �(2)(x; y) depends on x and y, one may see it as a binary operation, usually denoted
by / : X � X ! X:

x / y := �(2)(x; y)

If one writes the braid equation in this notation one gets:

x

��

y

��

z

xx

x

x/z
))

y

y/z

{{

z

��

x / y =

z y / z (x / y) / z z y / z (x / z) / (y / z)

This motivates the following de�nition:

De�nition 1. A set X with a binary operation / : X � X ! X is called a rack if

� � / x : X ! X is a bijection 8x 2 X and

� (x / y) / z = (x / z) / (y / z) 8x; y; z 2 X.

x / y is usually denoted by xy.
If X also veri�es that x / x = x then X is called a quandle.

It is clear that (X; /) is a rack if and only if

�/(x; y) := (y; x / y)

is a set theoretical solution of the YBeq.
An important example of rack is G a group, with x / y = y�1xy, since

� � / y : X ! X is a bijection with inverse (� /�1 y)(x) = yxy�1 and

� (x / y) / z = z�1y�1xyz and

(x / z) / (y / z) = (z�1xz) / (z�1yz) = (z�1y�1z)(z�1xz)(z�1yz)
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Generalizing for a given subset X � G, stable under conjugation, is also a rack with

the operation given by conjugation.

Example 2. Let Dn = f0; 1; 2; : : : ; n � 1g and de�ne i / j := 2j � i mod(n), then Dn is
a quandle. It can be identi�ed with the set of reections of Dn (the dihedral group with
2n elements) via j $ srj. In Hopf literature it is called \dihedral rack".

Example 3. Let R be a ring, t a unit in R and M an R-module, then

x / y := tx + (1 � t)y

gives a quandle structure on M . This structure is known as \Alexander quandle" (see
a�ne racks in [AG]).

Remark 4. Not every rack or quandle can be viewed as a subset of a group with conjugacy
operation. The easiest way to see that is the following property of groups: if G is a group
and x; y 2 G, then x commutes with y if and only if y commutes with x. If a quandle Q
could be embedded in a group G with conjugation as operation /, then x / y = y would
imply y / x = y.

Consider, for example, Q3 := (Z=3Z; /) with / de�ned as follows

x / y = �x � xy2:

One can check directly that Q3 is a quandle, and it is clear that 0 / y = 0 for all y, that
is, \y commutes with 0 for all y", but y / 0 = �y, so for y 2 f1; 2g \y does not commute
with 0".

1.1.2 Biquandles
In [KR], a generalization of quandles is proposed (we recall it with di�erent notation), a
solution of YBeq (X; �) is called non-degenerated, or birack if in addition,

1. for any x; z 2 X there exists a unique y such that �(1)(x; y) = z, (if this is the case,
�(1) is called left invertible), and

2. for any y; t 2 X there exists a unique x such that �(2)(x; y) = t, (if this is the case,
�(2) is called right invertible).

Diagrammatically:
x

BBB
B

  B
BB

B

9!y

~~|||
|||

||

z

9!x
BBB

  BB
BB

y

~~||
||

||
||

|

t
A birack is called biquandle if, given x0 2 X, there exists a unique y0 2 X such that

�(x0; y0) = (x0; y0). In other words, if there exists a bijective map s : X ! X such that

f(x; y) : �(x; y) = (x; y)g = f(x; s(x)) : x 2 Xg

Remark 5. Every quandle is a biquandle (with �(x; y) = (y; x / y)). Moreover, a rack
type solution is a biquandle if and only if the rack is a quandle.
Remark 6. When painting (see De�nition 8) a knot-link with a biquandle, knowing the
colors of two semiarcs (excluding the diagonals) means knowing all colors of the crossing.
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1.1.3 Some examples

1. Wada: given a group G,

�(x; y) = (xy�1x�1; xy2)

is a biquandle with s(x) = x�1. In case G is abelian �(x; y) = (�y; x + 2y).

2. Alexander biquandle: Let R be a ring, s; t 2 R two commuting units, and M an
R-module, then

�(x; y) = (s � y; t � x + (1 � st) � y); (x; y) 2 M � M

is a biquandle, with function s(x) = (s�1) � x. In the particular case s = �1, t = 1
one gets the abelian Wada’s solution. If s = 1 then one gets the solution induced
by the Alexander rack.

Example 7. A possible coloring of the trefoil knot using Wada biquandle:

1

’’PPPPPPPPPPPPPPBB 0
nnnnnnn

wwnnnnn
\\

2

’’PPPPPPPPPPPP 2
nnnnn

wwnnnnn

0

’’PPPPPPPPPPPPPP 1
nnnnn

wwnnnnnnn

1 0

1.1.4 Examples of Small size

The cardinal of the rack-quandle-biquandle X is called size.
Here we transcribe Bartholomew’s lists. Which are presented in a plain text format

as two matrices one for the up action (U) and one for the down action (D). Each matrix
is speci�ed row by row. All of the lists are presented as biracks, that is with both U and
D speci�ed; for the quandles and racks, the D action is the identity. Writen with previous
notation: �(x; y) = (Dxy; Uyx) where Uxy = x / y.

Biracks of size 2:

Number type U D
1 (Trivial) Quandle 12 12 12 12
2 Rack (not quandle) 21 21 12 12
3 Biquandle (not quandle) 21 21 21 21
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Biracks of size 3:

Number type U D
1 (Trivial) Quandle 123 123 123 123 123 123
2 Quandle 132 123 123 123 123 123
3 Quandle 132 321 213 123 123 123
4 Rack (not quandle) 312 312 312 123 123 123
5 Rack (not quandle) 321 123 321 123 123 123
6 Rack (not quandle) 321 321 321 123 123 123
7 Biquandle (not quandle) 123 132 132 123 132 132
8 Biquandle (not quandle) 123 132 132 132 132 132
9 Biquandle (not quandle) 123 312 231 132 132 132
10 Biquandle (not quandle) 123 123 213 123 123 213
11 Biquandle (not quandle) 132 132 132 132 132 132
12 Biquandle (not quandle) 213 132 321 231 231 231
13 Biquandle (not quandle) 231 231 231 312 312 312
14 Birack (not biquandle, not rack) 123 132 132 132 123 123
15 Birack (not biquandle, not rack) 132 123 123 132 132 132
16 Birack (not biquandle, not rack) 231 231 231 231 231 231

(1.1)

1.2 Known Rack homologies and cohomologies
In [CJKLS] rack/quandle (co)homology is de�ned as follows:

Let CR
n (X) be the free abelian group generated by n-tuples (x1; : : : ; xn) of elements

of a quandle X. De�ne a homomorphism @n : CR
n (X) ! CR

n�1(X) by

@n(x1; x2; : : : ; xn)

=
nX

i=2

(�1)i [(x1; x2; : : : ; xi�1; xi+1; : : : ; xn)

� (x1 / xi; x2 / xi; : : : ; xi�1 / xi; xi+1; : : : ; xn)] (1.2)

for n � 2 and @n = 0 for n � 1. Then CR
� (X) = fCR

n (X); @ng is a chain complex.
Let CD

n (X) be the subset of CR
n (X) generated by n-tuples (x1; : : : ; xn) with xi = xi+1

for some i 2 f1; : : : ; n � 1g if n � 2; otherwise let CD
n (X) = 0. If X is a quandle, then

@n(CD
n (X)) � CD

n�1(X)

and CD
� (X) = fCD

n (X); @ng is a sub-complex of CR
� (X). Put CQ

n (X) = CR
n (X)=CD

n (X)
and CQ

� (X) = fCQ
n (X); @0

ng, where @0
n is the induced homomorphism. Henceforth, all

boundary maps will be denoted by @n.
For an abelian group G, de�ne the chain and cochain complexes

CW
� (X; G) = CW

� (X) 
 G; @ = @ 
 id; (1.3)
C�

W(X; G) = Hom(CW
� (X); G); � = Hom(@; id) (1.4)

in the usual way, where W = D, R, Q.
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The groups of cycles and boundaries are denoted respectively by

ker(@) = ZW
n (X; G) � CW

n (X; G)

and
Im(@) = BW

n (X; G) � CW
n (X; G)

while the cocycles and coboundaries are denoted respectively by

ker(�) = Zn
W(X; G) � Cn

W(X; G)

and
Im(@) = Bn

W(X; G) � Cn
W(X; G):

In particular, a quandle 2-cocycle is an element � 2 Z2
Q(X; G), and the equalities

�(x; z) + �(x / z; y / z) = �(x / y; z) + �(x; y) (1.5)
and �(x; x) = 0 (1.6)

are satis�ed for all x; y; z 2 X.
The nth quandle homology group and the nth quandle cohomology group [CJKLS] of

a quandle X with coe�cient group G are

HQ
n (X; G) = Hn(CQ

� (X; G)) = ZQ
n (X; G)=BQ

n (X; G);
Hn

Q(X; G) = Hn(C�
Q(X; G)) = Zn

Q(X; G)=Bn
Q(X; G): (1.7)

De�nition 8. A coloring of an oriented classical knot diagram by a quandle X is a
function C : R ! X, where R is the set of arcs in the diagram, satisfying the condition
depicted in next �gure.

C(r1) = x
PPPPP

’’PPPPP

C(r2) = y

wwnnnnnnnnnnnnnn

y C(r3) = x / y

y

’’PPPPPPPPPPPPPP C(r3) = x / y
nnnnn

wwnnnnn

C(r1) = x C(r2) = y

Note that locally the colors do not depend on the orientation of the under-arc. The
quandle element C(r) assigned to an arc r by a coloring C is called a color of the arc.
This de�nition of colorings on knot diagrams has been known, see [FR, F] for example.
Henceforth, all the quandles that are used to color diagrams will be �nite.
Remark 9. When painting Redemeister type III move (see ??), the bottom arcs show the
second quandle axiom (self-distributivity).

De�nition 10. Let an oriented knot diagram, a quandle X, and a quandle 2-cocycle
� 2 Z2

Q(X; A) be given. A (Boltzmann) weight, B(�; C) (that depends on �), at a crossing
� is de�ned as follows. Let C denote a coloring. De�ne

B(�; C) = �(x; y)�(�)

where x; y are the incoming arcs in case the crossing is positive or x; y are the outcoming
arcs in case the crossing is negative. De�nition 8, the leftmost is positive and the rightmost
is negative. We will recall this notion in De�nition 20.
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The partition function, or a state-sum, is the expression

X

C

Y

�

B(�; C):

The product is taken over all crossings of the given diagram, and the sum is taken over
all possible colorings. The values of the partition function are taken to be in the group
ring Z[A] where A is the coe�cient group written multiplicatively. The partition function
depends on the choice of 2-cocycle �. This is proved [CJKLS] to be a knot invariant (see
De�nition 14), called the (quandle) cocycle invariant.

1.2.1 Twisted quandle homology
In [CES1] there is a generalization of quandle homology that considers coe�cients in
Alexander quandles. Here we recall such structure.

Let � = Z[T; T �1], and let CTR
n (X) = CTR

n (X; �) be the free module over � generated
by n-tuples (x1; : : : ; xn) of elements of a quandle X. De�ne a homomorphism @ = @T

n :
CTR

n (X) ! CTR
n�1(X) by

@T
n (x1; x2; : : : ; xn)

=
nX

i=1

(�1)i [T (x1; x2; : : : ; xi�1; xi+1; : : : ; xn)

� (x1 / xi; x2 / xi; : : : ; xi�1 / xi; xi+1; : : : ; xn)] (1.8)

for n � 2 and @T
n = 0 for n � 1. Note that the i = 1 terms contribute (1�T )(x2; : : : ; xn).

Then
CTR

� (X) = fCTR
n (X); @T

n g

is a chain complex. For any �-module A, let

CTR
� (X; A) = fCTR

n (X) 
� A; @T
n g

be the induced chain complex, where the induced boundary operator is represented by
the same notation. Let

Cn
TR(X; A) = Hom�(CTR

n (X); A)

and de�ne the coboundary operator

� = �n
TR : Cn

TR(X; A) ! Cn+1
TR (X; A)

by
(�f)(c) = (�1)nf(@c)

for any c 2 CTR
n (X) and f 2 Cn

TR(X; A). Then

C�
TR(X; A) = fCn

TR(X; A); �n
TRg

is a cochain complex. The n-th homology and cohomology groups of these complexes are
called twisted rack homology group and twisted rack cohomology group, and are denoted
by HTR

n (X; A) and Hn
TR(X; A), respectively.
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Let CTD

n (X; A) be the subset of CTR
n (X; A) generated by n-tuples (x1; : : : ; xn) with

xi = xi+1 for some i 2 f1; : : : ; n � 1g if n � 2; otherwise let CTD
n (X; A) = 0. If X is a

quandle, then
@T

n (CTD
n (X; A)) � CTD

n�1(X; A)

and
CTD

� (X; A) = fCTD
n (X; A); @T

n g

is a sub-complex of CTR
� (X; A). Similar subcomplexes C�

TD(X; A) = fCn
TD(X; A); �n

T g are
de�ned for cochain complexes.

The n-th homology and cohomology groups of these complexes are called twisted
degeneracy homology group and cohomology group, and are denoted by HTD

n (X; A) and
Hn

TD(X; A), respectively.
Take

CTQ
n (X; A)=CTR

n (X; A)=CTD
n (X; A)

and
CTQ

� (X; A)=fCTQ
n (X; A); @T

n g;

where all the induced boundary operators are denoted by @ = @T
n : A cochain complex

C�
TQ(X; A) = fCn

TQ(X; A); �n
T g

is similarly de�ned. Note again that all boundary and coboundary operators will be
denoted by @ = @T

n and � = �n
T , respectively. The n-th homology and cohomology groups

of these complexes are called twisted homology group and cohomology group, and are
denoted by

HTQ
n (X; A) = Hn(CTQ

� (X; A)); Hn
TQ(X; A) = Hn(C�

TQ(X; A)): (1.9)

The groups of (co)cycles and (co)boundaries are denoted using similar notations.
For W = D; R; or Q (denoting the degenerate, rack or quandle case, respectively), the

groups of twisted cycles and boundaries are denoted (resp.) by

ker(@) = ZTW
n (X; A) � CTW

n (X; A)

and
Im(@) = BTW

n (X; A) � CTW
n (X; A):

The twisted cocycles and coboundaries are denoted respectively by

ker(�) = Zn
TW(X; A) � Cn

TW(X; A)

and
Im(@) = Bn

TW(X; A) � Cn
TW(X; A):

Thus the (co)homology groups are given as quotients:

HTW
n (X; A) = ZTW

n (X; A)=BTW
n (X; A);

Hn
TW(X; A) = Zn

TW(X; A)=Bn
TW(X; A):

The following list provides some known facts ([C]):
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� In [EG] a formula is proved for the rank of HR

n (X; Q) for X a �nite rack. In
particular for a connected quandle (a quandle with only one orbit) these dimensions
are all one, as they are for the one point rack. This means that is important to
study �nite characteristic case.

� In [Mo] (for corrections see [Ma]) the third cohomology group is computed for
Alexander quandles associated to a �nite �eld k where T is multiplication by some
w 2 k�.

� In [LN] it is proved that the torsion subgroup of HR
n (X) is annihilated by dn for

X a rack (jXj = d) with homogeneous orbits. For example: Alexander racks. In
particular, all torsion in the homology of Rp (Rn is the set of reections in the
dihedral group of order 2n) is p-primary.

� For p = 3 the torsion in the homology of Rp is of exponent p (see [NP]). It is true
for general p (see [C]).

� There exists a monomorphism ha : HQ
n (Rp) ! HQ

n+2(Rp) for small n and p (see
[NP]). The ranks of these groups form a delayed (shifted) Fibonacci sequence (see
[C]).

1.2.2 Biquandle and quandle homology (with trivial coe�cients)
Let (X; R) be a Yang-Baxter set (that is a set X and R : X � X ! X � X a solution
of YBeq). In [CES2] there are some computations of (low degree) boundary homomor-
phisms, we transcribe here those computations. Ri(x; y) = �(i)(x; y) for i 2 f1; 2g.

1. The boundary homomorphism in case @2 is given by:

@2(x; y) = (x) + (y) � (R1(x; y)) � (R2(x; y)):

2. For @3:

@3(x; y; z)
= (x; y) + (R2(x; y); z) + (R1(x; y); R1(R2(x; y); z))
� f(y; z) + (x; R1(y; z)) + (R2(x; R1(y; z)); R2(y; z))g

3. For @4:

@4(x1; x2; x3; x4)
= (x1; x2; x3) + (R2(x1; R1(x2; x3)); R2(x2; x3); x4)

+(x1; R1(x2; x3); R1(R2(x2; x3); x4)) + (x2; x3; x4)
� f(R1(x1; x2); R1(R2(x1; x2); x3); R1(R2(R2(x1; x2); x3); x4)) + (R2(x1; x2); x3; x4)

+(x1; x2; R1(x3; x4)) + (R2(x1; R1(x2; R1(x3; x4))); R2(x2; R1(x3; x4)); R2(x3; x4))g:

In Chapter 2, we give a general formula for boundary homomorphisms.
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1.3 State-sum invariant: a brief survey of knots and

links
In this chapter we introduce some general notions and de�nitions used in knot theory.

We begin with a colloquial de�nition. Take a piece of string, tie a knot in it and glue
the ends together. A knot is just a knoted loop of string, except we think of the string
as having no thickness, its cross-section being a single point.

We will not distinguish between the original closed knotted curve and all the defor-
mations of that curve through space that do not allow the curve to pass through itself.

De�nition 11. A knot (in R3) is a continuous and injective function f : S1 ! R3 where
S1 = fx 2 R2=jjxjj = 1g. In the set of knots an equivalence relation is de�ned, two
knots given by f and g are called isotopic if and only if exists a continuous function
H : S1 � [0; 1] ! R3 such that Ht : z 7! H(z; t) is a knot for every t 2 [0; 1], H0 = f and
H1 = g.

Trefoil knot and mirror image
A knot is called tame when is isotopic to another one given by a �nite piecewise linear
function. To avoid pathologies we will only consider tame knots.

An orientation in S1 induces an orientation on the knot. In this work, a knot will
always be an oriented knot.

Given a knot K, there are many pictures/projections (orthogonal projections to planes
of R2) of K. A projection is called general if there are no triple intersections like the one
in the following diagram:

??
??

??
??

??
??

??
??

��
��

��
��

��
��

��
��

A projection includes information of every crossing as in the following picture:

???

��??
?

����
��

��
�

��?
??

??
?? ���

�����

Given a projection of a knot-link, the isotopy class of the knot-link can be recovered.
In 1926, Reidemeister gave a combinatorial method to change the projection of a

knot-link without changing the isotopy class. There are three (non oriented) Reidemeister
moves, which are shown in next �gure.

Theorem 12. Two knots are equivalent if and only if given a (any) pair of projections,
they are connected by a �nite number of Reidemeister moves.
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Figure 1.1: Reidemeister moves

Proof. See, for example, Theorem 1.14 [BZG].

A Link is a set of knotted loops tied up together, formally:

De�nition 13. A link is a set of functions f1; � � � ; fn such that every fi de�nes a knot
and Imfi \ Imfj 6= for every i 6= j.

A knot will be considered a link of one component.

In the �gure 1.3 many non isotopic knots and links are shown.
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Figure1:3

One of the most important problems in knot theory is to distinguish knots. A knot
invariant is a function that associates the same value to every knot of the same isotopy
class.

De�nition 14. A knot invariant is a property that does not change under ambient
isotopy.

A very well known invariant is the knot group.

De�nition 15. For a knot K, �1(R3 � K; �) (’ �1(S3 � K; �)), the fundamental group
of the complement of the knot in R3 (or S3) is called the group of the knot or knot
group of K where � denotes a base point. Since two groups with di�erent base points are
conjugated, � is usually omited.

Another simple and well known way to distinguish links is based on colorings.
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In 1956 R. Fox de�ned a generalization to the well known \three coloring". Here we

recall the generalization.
A knot is said to be p-colorable for 2 � p a prime, if each arc in a given projection of

a knot can be assigned with a number of Zp = f0; : : : ; p � 1g such that in every crossing

b
>>>

>>>

a

��
��

��
��

c

the equation
2a � b � c = 0

stands.
A classical result is the following:

Theorem 16. The total amount of p-colorings is a knot invariant.

Example 17. The trefoil knot (see 31 in 1.3) is 3-colorable (using more than one color).
The unknot (see 01 in 1.3) is not colorable using more than one color. This fact tells both
knots are di�erent.

A generalization of colorings led to the de�nition of quandles. Quandles model Reide-
meister’s moves. This new structure allowed Joyce and Matveev [J, M] to de�ne another
knot invariant, the fundamental quandle, yielding a complete invariant of oriented clas-
sical knots.

Let K be a knot with n arcs (a1; : : : ; an) and m crossings. Label the arcs as in the
next �gure and consider, for each crossing � , the relation

ak
BBB

  BB
B

~~}}}
}}}

}}}

ai aj
  B

BBB
BBB

BB aj

}}}

~~}}}
ak ai

r� : aj / ai = ak: (1.10)

The fundamental quandle of the knot K is the following quandle:

Q(K) = ha1; a2; : : : ; an : r1; : : : ; rmi;

where the relations r1; : : : ; rm are given by the formula (1.10).

Theorem 18. The fundamental quandle is a knot invariant.

Proof. See [J, M].

De�nition 19. Given two quandles Q1; Q2, a map f : Q1 ! Q2 is called a quandle
morphism if 8x; y 2 Q1 f(x /Q1 y) = f(x) /Q2 f(y) is veri�ed.

A coloring of a knot K by the quandle X is a quandle morphism Q(K) ! X. The
total amount of such quandle morphisms is a knot invariant denoted ColX(K).
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De�nition 20. A sign is associated to every crossing in an oriented diagram of a knot
according to the following:

???

��??
?

����
��

��
� ???

��??
?

??

��
��

��
�

positive negative

Given a link of two strands (conected components) L1; L2 there is an invariant based
on the signs of the crossings which is called the linking number.

The linking number is de�ned as follows: calculate the sign for every crossing where
both components are involved, the total number of positive crossings n1 minus the total
number of negative crossings n2 is equal to twice the linking number. That is:

l(L1; L2) =
n1 � n2

2

De�nition 21. Given a quandle (X; /),

GX = FX=hxy = (x / y); x; y 2 Xi;

is the enveloping group of the quandle where FX is the free group with the elements of X
as a base. In 1982 Joyce showed that the enveloping group of the fundamental quandle
satis�es GQ(K) ’ �1(K) 8K (see 15).

In [CJKLS] invariants based on 2-cocycles are de�ned. We recall some constructions
here (same as in formula 1.5 but with multiplicative notation).

De�nition 22. [CJKLS] Let X be a quandle, A an abelian group. A function f :
X � X ! A is called an abelian 2-cocyle if

� f(x; y)f(x / y; z) = f(x; z)f(x / z; y / z)

� f(x; x) = 1

8x; y; z 2 X.

This de�nition (if written in additive notation) corresponds to a 2-cocycle in 1.5.

De�nition 23. [CJKLS] Let f and g be two 2-cocycles, f and g are called cohomologous
(or equivalent) if there exists  : X ! A such that

f(x; y) = (x)g(x; y)(x / y)�1

for all x; y 2 X.

In Chapter 3 we generalize these constructions to non abelian 2-cocycles.

Let K be a knot, X a quandle and A an abelian group. Given a 2-cocycle

f : X � X ! A
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the partition function �X;f (K) is de�ned by

�X;f (K) =
X

C

Y

�

!f (C; �); (1.11)

where the product is taken over all crossings � and the sum is taken over all colorings of
K.

The formula (1.11) de�nes an element in Z[A].

Theorem 24. �X;f de�nes a knot invariant (called state sum).

This notion of two cocycle was generalized for non commutative groups (see [AG] in
the context of Hopf Algebras) and used in [CEGS] for constructing knot/link invariants.
We generalize the non commutative version to general biquandles and produce knot/link
invariants. Moreover, we produce a universal group with universal cocycle, and if one
considers its abelianization, then one gets (usually nontrivial) commutative cocycles that
can be used in the state sum procedure.
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Chapter 2

A d.g. bialgebra associated to (X; �)

Introducci�on al cap��tulo:
En este cap��tulo, para cada soluci�on conjuntista de la ecuaci�on de Yang Baxter (X; �),
de�nimos un �algebra diferencial graduada B = B(X; �), que contiene al �algebra de
semigrupo A = A�(X) = kfXg=hxy = zt : �(x; y) = (z; t)i, tal que k 
A B 
A k y
HomA�A(B; k) son respectivamente las estructuras de homolog��a y cohomolog��a usuales
asociados a una soluci�on conjuntista de la ecuaci�on Yang-Baxter. Probamos que esta
estructura de �algebra diferencial graduada tiene una estructura natural de bi�algebra dife-
rencial graduada (Teorema 26). Tambi�en, dependiendo de las propiedades de la soluci�on
(X; �) (libre de cuadrados, de tipo quandle, biquandle, involutiva,...) esta bi�algebra
d.g. B tiene cocientes naturales que dan lugar a los subcomplejos standard al calcular
cohomolog��a de quandle, cohomolog��a de biquandle, etc.

Como primera consecuencia de nuestra construcci�on, damos una prueba simple y pu-
ramente algebraica de la existencia de un producto cup en cohomolog��a. Esto era conocido
para cohomolog��a de rack (ver [C]), la prueba est�a basada en m�etodos topol�ogicos, y era
desconocido para biquandles o soluciones generales de la ecuaci�on de Yang-Baxter. Como
segunda consecuencia, mostramos la existencia de un mor�smo de comparaci�on entre la
(co)homolog��a de Yang-Baxter y la (co)homolog��a de Hochschild del �algebra de semigrupo
A. Mirando cuidadosamente, este mor�smo de comparaci�on, probamos que se factoriza
a trav�es de un complejo de tipo A 
 B 
 A, donde B es el �algebra de Nichols asociada
a la soluci�on (X; ��). Este resultado nos lleva a nuevas preguntas, por ejemplo cuando
(X; �) es involutiva (eso es cuando �2 = Id) y la caracter��stica es cero mostramos que
este complejo es ac��clico (Proposici�on 51), nos preguntamos si esto es cierto en alguna
otra caracter��stica, y no necesariamente en soluciones involutivas.

En caracter��stica cero, la cohomolog��a de racks y quandles est�a completamente deter-
minada por la cantidad de componentes conexas del rack (resp. quandle). Para soluciones
arbitrarias de la ecuaci�on de YB esto no es sabido. De cualquier manera, la mayor��a de
las t�ecnicas para demostrar el resultado en el caso rack se generalizan, y hemos probado
una cota superior para los n�umeros de Betti de la cohomolog��a de YB.

Finalmente consideramos soluciones involutivas de la ecuaci�on de YB y probamos que
otro complejo natural asociado a este tipo de soluciones es isomorfo al complejo usual

25
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de soluciones de Yang-Baxter. En particular, la cota para los n�umeros de Betti de este
complejo asociado a soluciones involutivas es una consecuencia del resultado general para
cohomolog��a de YB.

Introduction to the chapter:
In this chapter, for a set theoretical solution of the Yang-Baxter equation (X; �), we de�ne
a d.g. algebra B = B(X; �), containing the semigroup algebra A = kfXg=hxy = zt :
�(x; y) = (z; t)i, such that k 
A B 
A k and HomA�A(B; k) are respectively the standard
homology and cohomology complexes attached to general set theoretical solutions of the
Yang-Baxter equation. We prove that this d.g. algebra has a natural structure of d.g.
bialgebra (Theorem 26). Also, depending on properties of the solution (X; �) (square free,
quandle type, biquandle, involutive,...) this d.g. bialgebra B has natural (d.g. bialgebra)
quotients, giving rise to the standard sub-complexes computing quandle cohomology (as
sub-complex of rack homology), biquandle cohomology, etc.

As a �rst consequence of our construction, we give a very simple and purely algebraic
proof of the existence of a cup product in cohomology. This was known for rack coho-
mology (see [C]), the proof was based on topological methods, but it was unknown for
biquandles or general solutions of the Yang-Baxter equation. A second consequence is
the existence of a comparison map between Yang-Baxter (co)homology and Hochschild
(co)homology of the semigroup algebra A. Looking carefully this comparison map we
prove that it factors through a complex of "size" A 
 B 
 A, where B is the Nichols al-
gebra associated to the solution (X; ��). This result leads to new questions, for instance
when (X; �) is involutive (that is �2 = Id) and the characteristic is zero we show that this
complex is acyclic (Proposition 51), we wander if this is true in any other characteristic,
and for non necessarily involutive solutions.

Let M = MX be the monoid freely generated in X with relations

xy = zt

8x; y; z; t such that
�(x; y) = (z; t):

Denote GX the group with the same generators and relations. For example, when � = ip
then M = N(X)

0 and GX = Z(X)
0 . If � = Id then M is the free (non abelian) monoid in

X. If � comes from a rack (X; /) then M is the monoid with relations xy = y(x / y) and
GX is the group with relations x / y = y�1xy.

In characteristic zero, rack and quandle cohomology is completely determined by the
connected components of the rack (resp. quandle). For arbitrary solutions of the YBeq
this is not known, however most of the techniques for the rack case can be generalized,
and we were able to prove an upper bound for the Betti numbers of YB cohomology.

Finally we consider involutive solutions of the YBeq and we prove that another com-
plex associated to these type of solutions is actually isomorphic to the standard one,
that is, the one considered for the general case. In particular, the bound for the Betti
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numbers of the complex attached to involutive solutions is a consequence of the bound
for the general YB cohomology.

2.1 A d.g. bialgebra associated to (X; �)

Let k be a commutative ring with 1. Fix X a set, and � : X � X ! X � X a solution of
the YBeq. Let A�(X) (denoted simply by A if X and � are understood) the quotient of
the free k algebra on generators X modulo the ideal generated by elements of the form
xy � zt whenever �(x; y) = (z; t):

A = khXi=hxy � zt : x; y 2 X; (z; t) = �(x; y)i = k[M ]

It can be easily seen that A is a k-bialgebra declaring x to be grouplike for any x 2 X,
since A agrees with the semigroup-algebra on M (the monoid freely generated by X with
relations xy � zt). If one considers GX the group freely generated by X with relations
xy = zt, then k[GX ] is the (non commutative) localization of A, where one has inverted
the elements of X. An example of an A-bimodule that will be used later, which is actually
a k[GX ]-module, is k with the A-action determined on generators by

x�y = �; 8x; y 2 X

Note that is the trivial action given by the counit.

De�nition 25. We de�ne bB(X; �) (also denoted by bB) the algebra freely generated by
three copies of X, denoted x, ex and x0, with relations as follows: whenever �(x; y) = (z; t)
we have

� xy0 � z0t,

� xey � ezt,

� exy0 � z0et

and we de�ne B(X; �) (also denoted by B) as the quotient of bB by the additional relations

� xy � zt,

� x0y0 � z0t0:

The main object of study of this chapter is the algebra B. Declaring

jxj = jx0j = 0; jexj = 1;

the relations de�ning B are homogeneous, so B is a graded algebra.

Theorem 26. The algebra B admits the structure of a di�erential graded bialgebra, with
d the unique superderivation satisfying

d(x) = d(x0) = 0; d(ex) = x � x0

and comultiplication determined by

�(x) = x 
 x; �(x0) = x0 
 x0; �(ex) = x0 
 ex + ex 
 x;

the counit is given by
"(x) = 1 = "(x0); "(ex) = 0:
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Remark 27. By di�erential graded bialgebra we mean that

� the algebra structure on B 
 B is the one of super vector spaces, that is

(b 
 c)(b0 
 c0) = (�1)jb0jjcjbb0 
 cc0;

� the di�erential is both a derivation with respect to multiplication, and coderivation
with respect to comultiplication.

Proof. In order to see that d is well-de�ned as super derivation, one must check that the
relations are compatible with d. The �rst relations are easier since

d(xy � zt) = d(x)y + xd(y) � d(z)t � zd(t) = 0 + 0 � 0 � 0 = 0

and similar for the others (this implies that d is A-linear and A0-linear), for the others:

d(xey � ezt) = xd(ey) � d(ez)t = x(y � y0) � (z � z0)t

= xy � zt � (xy0 � z0t) = 0

d(exy0 � z0et) = (x � x0)y0 � z0(t � t0) = xy0 � z0t � (x0y0 � z0t0) = 0:

It is clear now that d2 = 0 since d2 vanishes on generators. In order to see that � is
well-de�ned, we compute

�(xey � ezt) = (x 
 x)(y0 
 ey + ey 
 y) � (z0 
 ez + ez 
 z)(t 
 t)

= xy0 
 xey + xey 
 xy � z0t 
 ezt � ezt 
 zt

and using the relations we get

= xy0 
 xey + xey 
 xy � xy0 
 xey � xey 
 xy = 0

similarly

�(x0ey � ezt0) = (x0 
 x0)(y0 
 ey + ey 
 y) � (z0 
 ez + ez 
 z)(t0 
 t0)

= x0y0 
 x0ey + x0ey 
 x0y � z0t0 
 ezt0 � ezt0 
 zt0

= x0y0 
 x0ey + x0ey 
 x0y � x0y0 
 x0ey � x0ey 
 x0y = 0:

This proves that B is a bialgebra, and d is (by construction) a derivation. Let us see that
it is also a coderivation:

(d 
 1 + 1 
 d)(�(x)) = (d 
 1 + 1 
 d)(x 
 x) = 0 = �(0) = �(dx)

for x0 is the same. For ex:

(d 
 1 � 1 
 d)(�(ex)) = (d 
 1 � 1 
 d)(x0 
 ex + ex 
 x)

= dx0 
 ex + x0 
 dex + dex 
 x � ex 
 dx

= x0 
 (x � x0) + (x � x0) 
 x = x0 
 x � x0 
 x0 + x 
 x � x0 
 x

= �x0 
 x0 + x 
 x = �(x � x0) = �(dex)
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It is enough to check cosassociativity on generators because � is an algebra map and

d is a derivation.
Notice that � is coassociative since x; x0 are grouplike and ex are skew-primitives.
Let us denote �(x; y) = (�(1)(x; y); �(2)(x; y)) and �i : X l ! X l where

�i := idi�1
X � � � Idl�i�1

X

Remark 28. In particular

d(ex1 : : : exn ) =
nX

i=1

(�1)i+1ex1 : : : exi � 1 d(exi )exi +1 : : : exn

=
nX

i=1

(�1)i+1ex1 : : : exi � 1 (xi � x0
i)exi +1 : : : exn

=

Iz }| {
nX

i=1

(�1)i+1ex1 : : : exi � 1 xiexi +1 : : : exn

�

IIz }| {
nX

i=1

(�1)i+1ex1 : : : exi � 1 x0
iexi +1 : : : exn

Using the relations in B one has

I =
nX

i=1

(�1)i+1ex1 : : : exi � 1 ey(1)
i +1 ;i

: : : ey(1)
n;i

y(2)
n;i

where
yi+1;i = (�(1)(xi; xi+1); �(2)(xi; xi+1));
yi+2;i = (�(1)(y(2)

i+1;i; xi+2); �(2)(y(2)
i+1;i; xi+2));

yi+3;i = (�(1)(y(2)
i+2;i; xi+3); �(2)(y(2)

i+2;i; xi+3));
...

...
yn;i = (�(1)(y(2)

n�1;i; xn); �(2)(y(2)
n�1;i; xn))

and similarly

II =
nX

i=1

(�1)i+1(z(1)
1;i )0ez(2)

1;i
: : : ez(2)

i � 2;i
ez(2)

i � 1;i
exi +1 : : : exn

where

zi�1;i = (�(1)(xi�1; xi); �(2)(xi�1; xi));
zi�2;i = (�(1)(xi�2; z(1)

i�1;i); �(2)(xi�2; z(1)
i�1;i));

...
...

z1;i = (�(1)(x1; z(1)
2;i ); �(2)(x1; z(1)

2;i )):

@f(x1; : : : ; xn) = f(d(ex1 : : : exn )) =
nX

i=1

(�1)i+1
�

f(x1; : : : ; xi�1; y(1)
i+1;i; : : : ; y(1)

n;i )y
(2)
n;i � (z(1)

1;i )0f(z(2)
1;i ; : : : ; z(2)

i�1;i; xi+1; : : : ; xn)
�
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Example 29. In low degrees we have

� d(ex) = x � x0

� d(exey) = (ezt � exy) � (x0ey � z0et), where as usual �(x; y) = (z; t).

� d(ex1 ex2 ex3 ) = AI � AII

where

AI = e�(1) (x1 ;x2)e�(1) (�(2) (x1 ;x2);x3)�(2)(�(2)(x1; x2); x3)�ex1 e�(1) (x2 ;x3)�(2)(x2; x3)+ex1 ex2 x3

AII = x0
1ex2 ex3 ��(1)(x1; x2)0e�(2) (x1 ;x2)ex3 +�(1)(x1; �(1)(x2; x3))0e�(2) (x1 ;�(1) (x2 ;x3))e�(2) (x2 ;x3)

In particular, if f : B ! k is an A0 � A linear map, then

f(d(ex1 ex2 ex3 )) =

f(e�(1) (x1 ;x2)e�(1) (�(2) (x1 ;x2);x3)) � f(ex1 e�(1) (x2 ;x3)) + f(ex1 ex2 )

�f(ex2 ex3 ) + f(e�(2) (x1 ;x2)ex3 ) � f(e�(2) (x1 ;�(1) (x2 ;x3))e�(2) (x2 ;x3))

Erasing the e’s we notice the relationship with the cohomological complex given in
[CES2], see Theorem 32 below.

If X is a rack and �(x; y) = (y; x / y) = (x; xy), then

� d(ex) = x � x0

� d(exey) = (eyxy � exy) � (x0ey � y0exy )

� d(exeyez) = exeyz � exezyz + eyezxyz � x0eyez + y0exy ez � z0exz eyz .

� In general, expressions I and II are

I =
nX

i=1

(�1)i+1ex1 : : : exi � 1 exi +1 : : : exn xxi +1 :::xn
i

II =
nX

i=1

(�1)i+1x0
iexx i

1
: : : exx i

i � 1
exi +1 : : : exn

then

@f(x1; : : : ; xn) = f(d(ex1 : : : exn )) =
nX

i=1

(�1)i+1 �f(x1; : : : ; xi�1; xi+1; : : : ; xn)xxi +1 :::xn
i � x0

if(x1
xi ; : : : ; xxi

i�1; xi+1; : : : ; xn)
�

Let us consider k 
k[M0] B 
k[M ] k. Then d represents the canonical di�erential
of rack homology and @f(ex1 : : : exn ) = f(d(ex1 : : : exn )) gives the traditional rack
cohomology structure.
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In particular, taking trivial coe�cients:

@f(x1; : : : ; xn) = f(d(ex1 : : : exn )) =

nX

i=1

(�1)i+1 �f(x1; : : : ; xi�1; xi+1; : : : ; xn) � f(x1
xi ; : : : ; xxi

i�1; xi+1 : : : ; xn)
�

Proposition 30. If � : X � X ! X � X is a set theoretical solution of the YBeq then,
as k-modules,

bB �= TX 0 
 TE 
 TX

and
B �= A0 
 TE 
 A

where A0 = TX 0=(x0y0 = z0t0 : �(x; y) = (z; t)) and A = TX=(xy = zt : �(x; y) = (z; t)).

Remark 31. The isomorphism is actually as braided (tensor product of) algebras. More
easily, we will only use the fact that the second isomorphism is as left A0-module and
right A-module.

As a corollary we get our �rst main theorem in this chapter. Proposition 30 will be
proven after the proof of the following theorem.

Theorem 32. Taking k the trivial A0-A-bimodule, the complexes associated to set theo-
retical Yang-Baxter solutions de�ned in [CES2] can be recovered as

(C�(X; �); @) ’ (k 
A0 B� 
A k; @ = idk 
A0 d 
A idk);

(C�(X; �); @�) ’ (HomA0�A(B; k); @� = d�):

Assuming Proposition (30) we show a proof for Theorem 32.

Proof. In this setting every expression in x; x0; ex, using the relations de�ning B, can be
written as x0

i1
: : : x0

in
ex1 : : : exk xj1 : : : xjl , tensorizing leaves the expression

1 
 ex1 : : : exk 
 1

This shows that T = k 
k[M0] B 
k[M ] k ’ Tfexgx2X , where ’ means isomorphism of
k-modules. This also induces isomorphisms of complexes

(C�(X; �); @) ’ (k 
A0 B� 
A k; @ = idk 
A0 d 
A idk);

(C�(X; �); @�) ’ (HomA0�A(B; k); d�):
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To obtain a proof for Proposition 30, some notions have to be de�ned:
Call Y = hx; x0; exix2X the free monoid in three copies of X with unit 1, khY i the k

algebra associated to Y . Let us de�ne w1(x; y0) = xy0, w2(x; y) = xey and w3(x; y0) = exy0.
Let S = frx;y0

1 ; rx;y
2 ; rx;y0

3 gx2X y02X0 be the reduction system de�ned as follows: r�;�
i :

khY i ! khY i are k-module endomorphisms de�ned on monoids by the following rule:
rx;y0

1 �x all elements except monoids of the form Aw1(x; y0)B = Axy0B where rx;y0

1 ()
r1(xy0) = z0t, r2(xey) = ezt and r3(exy0) = z0et.
Note that S has more than 3 elements, each ri is a family of reductions.

De�nition 33. A reduction ri acts trivially on an element a if wi does not appear in a,
ie: let V; W be words in Y , if V wiW appears with coe�cient 0.

Following [B], a 2 khY i is called irreducible if V wiW does not appear in any monomial
of a for i 2 f1; 2; 3g. Call kirrhY i the k submodule of irreducible elements of khY i. A
�nite sequence of reductions is called �nal in a if rin � � � � � ri1 (a) 2 kirr(Y ). An element
a 2 khY i is called reduction-�nite if for every sequence of reductions rin acts trivially on
rin � 1 �� � ��ri1 (a) for su�ciently large n. If a 2 K(Y ) is reduction-�nite, then any maximal
sequence of reductions, such that each rij acts non trivially on ri( j � 1)

: : : ri1 (a), will be
�nite, and hence a �nal sequence. It follows that the reduction-�nite elements form a
k-submodule of khY i. An element a 2 khY i is called reduction-unique if is reduction
�nite and its image under every �nite sequence of reductions is the same. This common
value will be denoted rs(a).

De�nition 34. Given a monomial a 2 khY i we de�ne the disorder degree of a,

disdeg(a) =
nxX

i=1

rpi +
nx 0X

i=1

lpj

where rpi is the position of the i-th letter \x" counting from right to left, lpi is the
position of the i-th letter \x0" counting from left to right, nx and nx0 are the number of
letters x and x0 in a.

If a =
Pn

i=1 kiai where ai are monomials in letters of X; X 0; eX and ki 2 K � f0g,

disdeg(a) :=
nX

i=1

disdeg(ai)

Example 35. � disdeg(x1ey1 x2z0
1x3z0

2) = (2 + 4 + 6) + (4 + 6) = 22

� disdeg(xeyz0) = 3 + 3 = 6 and disdeg(x0eyz) = 1 + 1

� disdeg(
Qn

i=1 x0
i
Qm

i=1 eyi

Qk
i=1 zi) = n(n+1)

2 + k(k+1)
2

The reduction r1 lowers disorder degree in two and reductions r2 and r3 lowers disorder
degree in one.

Remark 36. � kirr(Y ) = f
P

A0eBC : A0 word in X 0; eB word in ex; C word in Xg.

� kirr ’ TX 0 
 TE 
 TX
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Take for example a = xeyz0, there are two possible sequences of �nal reductions:

r3 � r1 � r2 or r2 � r1 � r3. The result will be a = A0eBC and a = D0eEF respectively, where
A = �(1)

�
�(1)(x; y); �(1)(�(2)(x; y); z)

�
;

B = �(2)
�
�(1)(x; y); �(1)(�(2)(x; y); z)

�
;

C = �(2)
�
�(2)(x; y); z

�
;

D = �(1)
�
x; �(1)(y; z)

�
;

E = �(1)
�
�(2)(x; �(1)(y; z); �(2)(y; z))

�
;

F = �(2)
�
�(2)(x; �(1)(y; z); �(2)(y; z))

�
:

We have A = D, B = E and C = F as � is a solution of YBeq.
Then r3 � r1 � r2(xeyz0) = r2 � r1 � r3(xeyz0).

A monomial a in khY i is said to have an overlap ambiguity if a = ABCDE with
wi = BC and wj = CD. We shall say the overlap ambiguity is resolvable if there exist
compositions of reductions, r; r0 such that r(Ari(BC)DE) = r0(ABrj(CD)E). Notice
that it is enough to take r = rs and r0 = rs.

Remark 37. In our case, there is only one type of overlap ambiguity and is the one we
solved previously. That is because there is no rule with x0 on the left nor rule with x on
the right, so there will be no overlap ambiguity including the family r1. There is only
one type of ambiguity involving reductions r2 and r3.

Now we know that every element is reduction unique and �nite.
rs is a projector and I = hxy0 � z0t; xey � ezt; exy0 � z0eti is trivially included in the

kernel.

Remark 38. Notice ker(rs) = I
An explanation of this fact would be: rs is a projector, an element a 2 ker(rs) must

be a = b � rs(b) where b 2 khY i. It is enough to prove it for monomials b.

� if a = 0 the result follows trivially.

� if not, then take a monomial b of a where at least one of the products xy0, xey or
exy0 appear. Let us suppose b has a factor xy0 (the rest of the cases are analogous).

b = Axy0B where A or B may be empty words. r1(b) = Ar1(xy0)B = Az0tB. Now
we can rewrite:

b � rs(b) = Axy0B � Az0tB| {z }
2I

+Az0tB � rs(b). As r1 lowers disdeg in two, we have

disdeg(Az0tB � rs(b)) < disdeg(b � rs(b)) then in a �nite number of steps we get
b =

PN
k=1 ik where ik 2 I. It follows that b 2 I.

The following corollary ends the proof of Proposition 30.

Corollary 39. The proyector rs induces a k-linear isomorphism:

khY i=hxy0 � z0t; xey � ezt; exy0 � z0eti ! TX 0 
 TE 
 TX:

Returning to the bialgebra B, taking quotients and noticing that

x1 : : : xn =
Y

�m � � � � � �1(x1; : : : ; xn)
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where

�i = ��1
ji

analogously with x0
1 : : : x0

n, follows the proof of Proposition 30.
This ends the proof of Theorem 32.

Example 40. � If the coe�cients are trivial, f 2 C1(X; k) and we identify C1(X; k) =
kX , then

(@f)(x; y) = f(d(exey)) = �f(x) � f(y) + f(z) + f(t)

where �(x; y) = (z; t) (If instead of considering HomA0�A, we consider HomA�A0

then
(@f)(x; y) = f(d(exey)) = f(x) + f(y) � f(z) � f(t)

but with �(z; t) = (x; y)).

� Again with trivial coe�cients, and � 2 C2(X; k) �= kX2 , then

(@�)(x; y; z) = �(d(exeyez)) = �

0

@
Iz }| {

xeyez �
IIz }| {

x0eyez �
IIIz }| {

exyez +
IVz }| {

exy0ez +
Vz }| {

exeyz �
V Iz }| {

exeyz0

1

A

If considering HomA0�A then, using the relations de�ning B, the terms I; III; IV
and V I changes leaving

@�(x; y; z) = �(�(1)(x; y); �(1)(�(2)(x; y); z)) � �(y; z) � �(x; �(1)(y; z))+

�(�(2)(x; y); z) + �(x; y) � �(�(2)(x; �(1)(y; z)); �(2)(y; z))

� If M is a k[T ]-module (notice that T need not be invertible as in [CES1]) then M
can be viewed as an A0 � A-bimodule via

x0m = m; mx = Tm:

The actions are compatible with the relations de�ning B:

(mx)y = T 2m ; (mz)t = T 2m

and
x0(y0m) = m ; z0(t0m) = m

and using these coe�cients we get twisted cohomology as in [CES1] but for general
YB solutions. If one takes the special case of (X; �) being a rack, namely �(x; y) =
(y; x / y), then the general formula gives

@f(x1; : : : ; xn) = f(d(ex1 : : : exn )) =
nX

i=1

(�1)i+1 �Tf(x1; : : : ; xi�1; xi+1; : : : ; xn) � f(x1
xi ; : : : ; xxi

i�1; xi+1; : : : ; xn)
�

that agrees with the di�erential of the twisted cohomology de�ned in [CES1].
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Next remark is well-known but we include it here because we will use it very often.

Remark 41. Let � be a solution of YBeq. If c(x 
 y) = f(x; y)�(1)(x; y) 
 �(2)(x; y), then
c is a solution of YBeq if and only if f is a 2-cocycle.

c1 � c2 � c1(x 
 y 
 z) =

= a

Iz }| {
�(1)��(1)(x; y); �(1)(�(2)(x; y); z)

�

 �(2) ��(1)(x; y); �(1)(�(2)(x; y); z

�

 �(2) ��(2)(x; y); z)

�

where
a = f(x; y)f

�
�(2)(x; y); z

�
f
�
�(1)(x; y); �(1)(�(2)(x; y); z)

�

c2 � c1 � c2(x 
 y 
 z) =

b

IIz }| {
�(1)(x; �(1)(y; z)) 
 �(1)��(2)(x; �(1)(y; z)); �(2)(y; z)

�

 �(2) ��(2)(x; �(1)(y; z); �(2)(y; z))

�

where
b = f(y; z)f

�
x; �(1)(y; z)

�
f
�
�(2)(x; �(1)(y; z)); �(2)(y; z)

�

Writing YBeq with this notation leaves:

� is a braiding , I = II (2.1)

Take f a two-cocycle, then

0 = @f(x; y; z) = f(d(exeyez)) = f((x � x0)eyez � ex(y � y0)ez + exey(z � z0))

is equivalent to the following equality

f(xeyez) + f(exy0ez) + f(exeyz) = f(x0eyez) + f(exyez) + f(exeyz0)

using the relations de�ning B we obtain

f
�
e�(1) (x;y)e�(1) (�(2) (x;y);z)�(2)(�(2)(x; y)z)

�
+ f

�
�(1)(x; y)0e�(2) (x;y)ez

�
+ f (exeyz)

= f (x0eyez) + f
�
exe�(1) (y;z)�(2)(y; z)

�
+ f

�
�(1)(x; �(1)(y; z))0e�(2) (x;�(1) (y;z))e�(2) (y;z)

�
:

If G is an abelian multiplicative group and f : X � X ! (G; � ) then last formula says

f
�
e�(1) (x;y)e�(1) (�(2) (x;y);z)�(2)(�(2)(x; y)z)

�
f
�
�(1)(x; y)0e�(2) (x;y)ez

�
f (exeyz)

= f (x0eyez) f
�
exe�(1) (y;z)�(2)(y; z)

�
f
�
�(1)(x; �(1)(y; z))0e�(2) (x;�(1) (y;z))e�(2) (y;z)

�

which is exactly the condition a = b, when the action is trivial.
Notice that if the action is trivial, then the equation above simpli�es giving

f
�
e�(1) (x;y)e�(1) (�(2) (x;y);z)

�
f
�
e�(2) (x;y)ez

�
f (exey) (2.2)

= f (eyez) f
�
exe�(1) (y;z)

�
f
�
e�(2) (x;�(1) (y;z))e�(2) (y;z)

�

which is precisely the formula on [CES2] for Yang-Baxter 2-cocycles (with R1 and R2
instead of �(1) and �(2)).
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2.2 1st application: multiplicative structure on co-

homology
Proposition 42. The coproduct � induces an associative product in HomA0�A(B; k) (the
graded Hom).

Proof. It is clear that � induces an associative product on Homk(B; k) (the graded Hom),
and HomA0�A(B; k) � Homk(B; k) is a k-submodule. We will show that it is in fact a
subalgebra.

Consider the A0�A diagonal structure on B
B (i.e. x0
1:(b1
b2):x2 = x0

1b1x2
x0
1b2x2)

and denote B 
D B the k-module B 
 B considered as A0 � A-bimodule in this diagonal
way. We claim that � : B ! B 
D B is a morphism of A0 � A-modules:

�(x0
1yx2) = x0

1yx2 
 x0
1yx2 = x0

1(y 
 y)x2

same with y0, and with ex:

�(x0
1eyx2) = (x0

1 
 x0
1)(y0 
 ey + ey 
 y)(x2 
 x2) = x0

1�(ey)x2:

Dualizing � one gets:

�� : HomA0�A(B 
D B; k) ! HomA0�A(B; k):

Consider the natural map

� : Homk(B; k) 
 Homk(B; k) ! Homk(B 
 B; k)

�(f 
 g)(b1 
 b2) = f(b1)g(b2)

and denote �j by
�j = �jHomA 0� A (B;k)
HomA 0� A (B;k)

Let us see that
Im(�j) � HomA0�A(B 
 B; k) � Homk(B 
 B; k)

If f; g : B ! k are two A0 �A-module morphisms (recall k has trivial actions, i.e. x0� = �
and �x = x), then

�(f 
 g)(x0(b1 
 b2)) = f(x0b1)g(x0b2) = (x0f(b1))(x0g(b2))

= f(b1)g(b2) = x0�(f 
 g)(b1 
 b2)

�(f 
 g)((b1 
 b2)x) = f(b1x)g(b2x) = (f(b1)x)(g(b2)x)

= (f(b1)g(b2))x = �(f 
 g)(b1 
 b2)x:

So, it is possible to compose �j and �� (� � �), and obtain in this way an associative
multiplication in HomA0�A(B; k).

Now we will describe several natural quotients of B, each of them gives rise to a
subcomplex of the cohomological complex of X with trivial coe�cients that are not only
subcomplexes but also subalgebras; in particular they are associative algebras.
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2.2.1 Square free case
A solution (X; �) of YBeq satisfying �(x; x) = (x; x) 8x 2 X is called square free. For
instance, if X is a rack, then this condition is equivalent to X being a quandle.

In the square free situation, we add the condition exex � 0. In a similar way as before,
we have the following:

If (X; �) is a square-free solution of the YBeq, let us denote sf the two sided ideal of
B generated by fexexgx2X .

Proposition 43. The ideal sf is di�erential Hopf. More precisely,

d(exex) = 0 and �(exex) = x0x0 
 exex + exex 
 xx:

Remark 44. Recall B is graded and we use the Kosul signed convention. This proposition
is false if taking the not signed tensor product structure in B 
 B.

In particular B=sf is a di�erential graded bialgebra. We may identify
HomA0�A(B=sf; k) � HomA0�A(B; k) as the elements f such that f(: : : ; x; x; : : : ) = 0.
If X is a quandle, these construction leads to the quandle-complex. We have that
HomA0�A(B=sf; k) � HomA0�A(B; k) is not only a subcomplex, but also a subalgebra.

2.2.2 Biquandles
If (X; �) is a biquandle, for all x 2 X we add in B the relation exes(x) � 0. Let us denote
bQ the two sided ideal of B generated by fexes(x)gx2X .

Proposition 45. bQ is a di�erential Hopf ideal. More precisely, d(exes(x)) = 0 and
�(exes(x)) = x0s(x)0 
 exes(x) + exes(x) 
 xs(x).

In particular B=bQ is a di�erential graded bialgebra. We may identify

HomA0�A(B=bQ; k) �= ff 2 HomA0�A(B; k) : f(: : : ; x; s(x); : : : ) = 0g � HomA0�A(B; k)

In [CES2], the condition f(: : : ; x0; s(x0); : : : ) = 0 is called the type 1 condition. A conse-
quence of the above proposition is that HomA0�A(B=bQ; k) � HomA0�A(B; k) is not only
a subcomplex, but also a subalgebra. Before proving this proposition we will review some
other similar constructions.

2.2.3 Identity case
The two cases above may be generalized in the following way:

Consider S � X � X a subset of elements verifying �(x; y) = (x; y) for all (x; y) 2 S.
De�ne idS to be the two sided ideal of B given by idS = hexey=(x; y) 2 Si.

Proposition 46. idS is a di�erential Hopf ideal. More precisely, d(exey) = 0 for all
(x; y) 2 S and �(exey) = x0y0 
 exey + exey 
 xy.

In particular B=idS is a di�erential graded bialgebra.
If one identi�es HomA0�A(B=idS; k) � HomA0�A(B; k) as the elements f such that

f(: : : ; x; y; : : : ) = 0 8(x; y) 2 S

we have that HomA0�A(B=idS; k) � HomA0�A(B; k) is not only a subcomplex, but also a
subalgebra.
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2.2.4 Flip case
Consider the condition exey + eyex � 0 for all pairs such that �(x; y) = (y; x). For such
a pair (x; y) we have the equations xy = yx, xy0 = y0x, x0y0 = y0x0 and xey = eyx. Note
that there is no equation for exey. The two sided ideal D = hexey +eyex : �(x; y) = (y; x)i
is a di�erential and Hopf ideal.

Notice the ip is involutive, the above ideal has the following generalization:

2.2.5 Involutive case
Assume �2(x; y) = (x; y). This case is called involutive in [ESS]. De�ne Invo the two
sided ideal of B given by Invo = hexey + ezet : (x; y) 2 X; �(x; y) = (z; t)i.

Proposition 47. Invo is a di�erential Hopf ideal. More precisely, d(exey + ezet) = 0 for
all (x; y) 2 X (with (z; t) = �(x; y)) and if ! = exey +ezet then �(!) = x0y0 
! +! 
xy.

In particular B=Invo is a di�erential graded bialgebra. If one identi�es

HomA0�A(B=Invo; k) � HomA0�A(B; k)

then
HomA0�A(B=Invo; k) � HomA0�A(B; k)

is not only a subcomplex, but a subalgebra.
The following conjecture is true in characteristic zero, and also true in any character-

istic considering the ip.

Conjecture 48. The bialgebra B=Invo is acyclic in positive degrees.

Example 49. If � = flip and X = fx1; : : : ; xng then A = k[x1; : : : ; xn] = SV , the
symmetric algebra on V = �x2Xkx. In this case (B=Invo; d) �= (S(V ) 
 �V 
 S(V ); d)
gives the Koszul resolution of S(V ) as S(V )-bimodule.

Example 50. If � = Id, X = fx1; : : : ; xng and V = �x2Xkx, then A = TV the tensor
algebra. If 1

2 2 k, then (B=invo; d) �= TV 
 (k � V ) 
 TV gives the Koszul resolution
of TV as TV -bimodule. Notice that we don’t really need 1

2 2 k, one could replace
invo = hexey + exey : (x; y) 2 X � Xi by idXX = hexey : (x; y) 2 X � Xi.

Proposition 51. If Q � k, then B=Invo is acyclic in positive degrees.

Proof. In B=Invo it can be de�ned h as the unique (super)derivation such that:

h(ex) = 0; h(x) = ex; h(x0) = �ex

Let us see that h is well-de�ned:

h(xy � zt) = exy + xey � ezt � zet = 0;

h(xy0 � z0t) = exy0 � xey + ezt � z0et = 0;

h(x0y0 � z0t0) = �exy0 � x0ey + ezt0 + z0et = 0;
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h(xey � ezt) = exey + ezet = 0:

In particular these equations show that h is not well-de�ned on B.

h(exy0 � z0et) = exey + ezet = 0;

h(zt0 � x0y) = ezt0 � zet + exy � x0ey = 0;

h(zet � exy) = ezet + exey = 0;

h(ezt0 � x0ey) = ezet + exey = 0;

h(exey + ezet) = 0:

Notice that [h; d] = hd + dh is also a derivation. One easily computes

h(ex) = 2ex; h(x) = x � x0; h(x0) = x0 � x

or equivalently

h(ex) = 2ex; h(x + x0) = 0; h(x � x0) = 2(x � x0):

One can also easily see that B=Invo is generated by ex; x�, where x� = x � x0, and that
their relations are homogeneous. We see that hd + dh is nothing but the Euler derivation
with respect to the grading de�ned by

deg ex = 2; deg x+ = 0; deg x� = 2:

We conclude automatically that the homology vanishes for positive degrees of the ex’s
(and similarly for the x�’s).

Next, we generalize Propositions 43, 45, 46 and 47.

2.2.6 Braids of order N
Let (x0; y0) 2 X � X such that �N(x0; y0) = (x0; y0) for some N � 1. If N = 1 we have
the \identity case" and all subcases, if N = 2 we have the \involutive case". Denote

(xi; yi) := �i(x0; y0)

1 � i � N � 1

Notice that the following relations hold in B:

? xN�1yN�1 � x0y0, xN�1y0
N�1 � x0

0y0, x0
N�1y0

N�1 = x0
0y0

0,

? xN�1eyN � 1 � ex0 y0, exN � 1 y0
N�1 � x0

0ey0 ,

and for 1 � i � N � 1:

? xi�1yi�1 � xiyi, xi�1y0
i�1 � x0

iyi, x0
i�1y0

i�1 = x0
iy0

i,

? xi�1eyi � 1 � exi yi, exi � 1 y0
i�1 � x0

ieyi .
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Take ! =

PN�1
i=0 exi eyi , then we claim that

d! = 0;

and
�! = x0y0 
 ! + ! 
 x0

0y0
0:

For that, we compute

d(!) =
N�1X

i=0

(xi � x0
i)eyi � exi (yi � y0

i) =

N�1X

i=0

(xieyi � exi yi) �
N�1X

i=0

(x0
ieyi � exi y

0
i) = 0

For the comultiplication, we recall that

�(ab) = �(a)�(b)

where the product on the right hand side is de�ned using the Koszul sign rule:

(a1 
 a2)(b1 
 b2) = (�1)ja2 jjb1 ja1b1 
 a2b2:

So, in this case we have

�(!) =
N�1X

i=0

�(exi eyi ) =

N�1X

i=0

(x0
iy

0
i 
 exi eyi � x0

ieyi 
 exi yi + exi y
0
i 
 xieyi + exi eyi 
 xiyi)

the middle terms cancel telescopically, giving

=
N�1X

i=0

(x0
iy

0
i 
 exi eyi + exi eyi 
 xiyi)

and the relation xiyi � xi+1yi+1 gives

= x0
0y0

0 
 (
N�1X

i=0

exi eyi ) + (
n�1X

i=0

exi eyi ) 
 x0y0

= x0
0y0

0 
 ! + ! 
 x0y0:

Then the two-sided ideal of B generated by ! is a Hopf ideal. If instead of a single ! we
have several !1 : : : !n, we simply remark that the sum of di�erential Hopf ideals is also a
di�erential Hopf ideal.

Remark 52. If X is �nite then for every (x0; y0) there exists N > 0 such that �N(x0; y0) =
(x0; y0).
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Remark 53. Let us suppose (x0; y0) 2 X �X is such that �N(x0; y0) = (x0; y0) and u 2 X
an arbitrary element. Consider the element

(Id � �)(� � Id)(u; x0; y0) = (ex0; ey0; u00)

graphically
u

@@@
@

��@@
@

x0

��~~~
~~~

~~
y0

��
ex

��

u0

@@@

  @
@@

y0

~~~~
~~

~~
~~

ex ey u00

then �N(ex0; ey0) = (ex0; ey0). An explanation could be:

(�N � id)(ex0; ey0; u00) = (�N � id)(id � �)(� � id)(u; x0; y0) =

(�N�1 � id)(� � id)(id � �)(� � id)(u; x0; y0) =

using YBeq
(�N�1 � id)(id � �)(� � id)(id � �)(u; x0; y0) =

repeating the procedure N � 1 times leaves

(id � �)(� � id)(id � �N)(u; x0; y0) = (id � �)(� � id)(u; x0; y0) = (ex0; ey0; u00)

2.3 2nd application: Comparison with Hochschild
cohomology

B is a di�erential graded algebra, and on each degree n it is isomorphic to A
(TV )n 
A,
where V = �x2Xkex. In particular Bn, is free as Ae-module. We have for free the
existence of a comparison map

� � � // Bn // � � � // B2
d // B1

d // B0

� � � // A0(TX)nA
�=

// � � � // �x;y2XA0exeyA
�=

d // �x2XA0exAd // A0A
�=

� � � // A 
 V 
n 
 A
eId��

// � � � // A 
 V 
2 
 A
eId��

d2 // A 
 V 
 A
eId��

d1 // A 
 A
Id��

m // A
Id��

// 0

� � � // A 
 A
n 
 A // � � � // A 
 A
2 
 A b0 // A 
 A 
 A b0 // A 
 Am // A // 0

Corollary 54. For all A-bimodule M , there exist natural maps

eId� : HY B
� (X; M) ! H�(A; M)

eId
�

: H�(A; M) ! H�
Y B(X; M)

that are the identity in degree zero and 1.
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Moreover, one can choose an explicit map with extra properties. For that we recall

some de�nitions: there is a set theoretical section to the canonical projection from the
Braid group to the symmetric group

Bn // // Sn
tt

Ts := �i1 : : : �ik
s = �i1 : : : �ik

�oo

where

� � 2 Sn are transpositions of neighboring elements i and i + 1, so-called simple
transpositions,

� �i are the corresponding generators of Bn,

� �i1 : : : �ik is one of the shortest words representing s.

This inclusion factorizes trough

Sn ,! B+
n ,! Bn:

It is a set inclusion not preserving the monoid structure.
The following three de�nitions are well-known and will be used in our next theorem.

De�nition 55. The permutation sets

Shp1 ;:::;pk := fs 2 Sp1+���+pk =s(1) < � � � < s(p1); � � � ; s(p + 1) < � � � < s(p + pk)g ;

where p = p1 + � � � + pk�1, are called shu�e sets.

Remark 56. It is well-known that a braiding � gives an action of the positive braid monoid
B+

n on V 
n, i.e. a monoid morphism

� : B+
n ! EndK(V 
n)

de�ned on generators �i of B+
n by

�i 7! Id
(i�1)
V 
 � 
 Id
(n�i+1)

V :

Then there exist a natural extension of a braiding in V to a braiding in T (V ).

�(v 
 w) = (�k : : : �1) � � � � � (�n+k�2 : : : �n�1) � (�n+k�1 : : : �n)(vw) 2 V k 
 V n

for v 2 V 
n, w 2 V k and vw being the concatenation.
Graphically

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR : : :

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 


uulllllllllllllllllllllllllllllllllllll

uulllllllllllllllllllllllllllllllllllll : : :

uulllllllllllllllllllllllllllllllllllll

: : : 
 : : :



2.3. 2nd application: Comparison with Hochschild cohomology 43
De�nition 57. The quantum shu�e multiplication on the tensor space T (V ) of a braided
vector space (V; �) is the k-linear extension of the map

� � = � p;q
� : V 
p 
 V 
q ! V 
(p+q)

v 
 w 7! v � � w :=
X

s2Shp;q

T �
s (vw):

Notation: T �
s stands for the lift Ts 2 B+

n acting on V 
n via the braiding �. The algebra
Sh�(V ) := (TV; � �) is called the quantum shu�e algebra on (V; �).

It is well-known that � � is an associative product on TV (see for example [Le] for
details) that makes it a Hopf algebra with deconcatenation coproduct.

De�nition 58. Let V be a braided vector space, then the quantum symmetrizer map
QS� : V 
n ! V 
n is de�ned by

QS�(v1 
 � � � 
 vn) =
X

�2Sn

T �
� (v1 
 � � � 
 vn)

where T �
� is the lift T �

� 2 B+
n of � , acting on V 
n via the braiding �.

In terms of shu�e products the quantum symmetrizer can be computed as

! � � � :=
X

�2Shp;q

T �
� (! 
 �)

The quantum symmetrizer map can also be de�ned as

QS�(v1 
 � � � 
 vn) = v1 � � � � � � � vn

With this notation, our next result reads as follows:

Theorem 59. The A0-A-linear quantum symmetrizer map

A0V 
nA
eId // A 
 A
n 
 A

a0
1ex1 � � � exn a2

� // a1 
 (x1 � �� � � � � �� xn) 
 a2

is a chain map lifting the identity. Moreover, eId : B ! (A 
 TA 
 A; b0) is a di�erential
graded algebra map, where in TA the product is � ��, and in A
TA
A the multiplicative
structure is not the usual tensor product algebra, but the braided one. In particular, this
map factors through A
B 
A, where B is the Nichols algebra associated to the braiding
�0(x 
 y) = �z 
 t, where x; y 2 X and �(x; y) = (z; t).

Remark 60. The Nichols algebra B is the quotient of TV by the ideal generated by
(skew)primitives that are not in V , so the result above explains the good behavior of the
ideals invo, idS, or in general the ideal generated by elements of the form ! =

PN�1
i=0 exi eyi

where �(xi; yi) = (xi+1; yi+1) and �N(x0; y0) = (x0; y0). It would be interesting to know
the properties of A 
 B 
 A as a di�erential object, since it appears to be a candidate
of Koszul-type resolution for the semigroup algebra A (or similarly the group algebra
k[GX ]).
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The rest of the chapter is devoted to the proof of Theorem 59.

Lemma 61. Let � be a braid in the braided (sub)category that contains two associative
algebras A and C, meaning there exist bijective functions

�A : A 
 A ! A 
 A; �C : C 
 C ! C 
 C; �C;A : C 
 A ! A 
 C

such that
��(1; �) = (�; 1) and ��(�; 1) = (1; �) for � 2 fA; C; C; Ag

�C;A � (1 
 mA) = (mA 
 1)(1 
 �C;A)(�C;A 
 1)

and
�C;A � (mC 
 1) = (1 
 mC)(�C;A 
 1)(1 
 �C;A)

Diagrammatically

C

��

A
mA

��@
@@

@@
@@ A

��~~
~~

~~
~

�C;AOOOO
OOOO

’’OOOO
OOO

A

wwooooooooooooooo

A C
=[�]

C
�C;AOOOO

OOO

’’OOOO
OOO

A

wwooooooooooooooo A

��
A

��

C
@@@

��@@
@

A

��~~
~~

~~
~

A

��@
@@

@@
@@ A

��~~
~~

~~
~

C

��
A C

and
C

mC

��@
@@

@@
@@

C

��~~
~~

~~
~

A

��
C

�C;AOOOO
OOO

’’OOOO
OOO

A

wwooooooooooooooo

A C
=[��]

C

��

C
OOOO

OOO

’’OOOO
OOO

A

wwooooooooooooooo

C
@@@

��@@
@

A

��~~
~~

~~
~

C

��
A

��

C

��@
@@

@@
@@

C

��~~
~~

~~
~

A C
Assume that they satisfy the braid equation with any combination of �A; �C or �A;C. Then,
A 
� C = A 
 C with product de�ned by

(mA 
 mC) � (IdA 
 �C;A 
 IdC) : (A 
 C) 
 (A 
 C) ! A 
 C

is an associative algebra. In diagram:

A

��

C
�@@@

��@@
@

A

��~~
~~

~~
~

C

��
A

mA

��@
@@

@@
@@ A

��~~
~~

~~
~

C
mC

��@
@@

@@
@@

C

��~~
~~

~~
~

A C
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Proof. Take m � (1 
 m)((a1 
 c2) 
 ((a2 
 c2) 
 (a3 
 c3)) use [�], associativity in A,
associativity in C then [��] and the result follows.

Lemma 62. Let M be the monoid freely generated by X module the relation xy = zt
where �(x; y) = (z; t), then, � : X � X ! X � X naturally extends to a braiding in M
and veri�es both

� � (m 
 Id) = (Id 
 m) � (� 
 Id) � (Id 
 �)
and

� � (Id 
 m) = (m 
 Id) � (Id 
 �) � (� 
 Id):
Graphically:

M
m

!!BB
BBB

BBB
M

}}|||
|||

||
M

Id
��

M
�QQQQQQQ

((QQQQQQQ

M

vvmmmmmmmmmmmmmmm

M M
=

M
Id

��

M
�QQQQQQQ

((QQQQQQQ

M

vvmmmmmmmmmmmmmmm

M
�BBB

!!BB
B

M

}}|||
|||

||
M

��
M

��

M
m

!!BB
BBB

BBB
M

}}|||
|||

||

M M

M

��

M

!!BB
BBB

BBB
M

m

}}|||
|||

||

M
�QQQQQQQ

((QQQQQQQ

M

vvmmmmmmmmmmmmmmm

M M
=

M
�BBB

!!BB
B

M

}}|||
|||

||
M

��
M

��

M
�QQQQQQQ

((QQQQQQQ

M

}}|||
|||

||

M
m

!!BB
BBB

BBB
M

}}|||
|||

||
M

Id
��

M M
Proof. It is enough to prove that the extension mentioned before is well-de�ned in
the quotient. Inductively, it will be enough to see that �(axyb; c) = �(aztb; c) and
�(c; axyb) = �(c; aztb) where �(x; y) = (z; t), and this follows immediately from the
braid equation:

A diagram for the �rst equation is the following:

a

��

x
>>

>
>>

>

�#>>>>>>

y

{� ��
��

��
�

��
��

��
� b

>>
>

��>
>>>

c

����
��

��
��

�

��

z

��

t BBBBBB

�%BB
B

BB
B

}}|||
|||

|||

��

��

EEE
E

EEE
E

�&EEEEEE||yyy
yyy

yyy

�� ��
@@@

@

��@@
@@

��~~
~~

~~
~~

~

�� �� ��� �

=

a

��

x

��

y

��

b
CCC

!!CC
CC

c

}}{{
{{

{{
{{

�� ��

HHH
H

HHH
H

 (HHH
H

HHH
H

zzvvv
vvv

vvv
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��
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G

GGG
G

�’GGG GGG{{www
www

www

�� ��
@@@

@

��@@
@@

��~~
~~

~~
~~

~ DDD
D

DDD
D

�&DDDDx� zz
zzz

zzz

zzz
zzz

zz

���� ��
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As �� = ���� the result follows.

Lemma 63. m � � = m, diagrammatically:

M
QQQQQQQ

((QQQQQQQ

M

vvmmmmmmmmmmmmmmm

M
m

!!BB
BBB

BBB
M

}}|||
|||

||

M
=

M
m

!!BB
BBB

BBB
M

}}|||
|||

||

M
Id

��
M

Proof. Using successively that m � �i = m, we have:

m � �(x1 : : : xn; y1 : : : yk) = m
�
(�k : : : �1) : : : (�n+k�1 : : : �n)(x1 :::xn y1 :::yk )

�

= m
�
(�k�1 : : : �1) : : : (�n+k�1 : : : �n)(x1 :::xn y1 :::yk )

�
= : : :

= m(x1 : : : xn; y1 : : : yk):

Corollary 64. If one considers A = k[M ], then the algebra A veri�es all diagrams in
previous lemmas.

Lemma 65. If T = (TA; � �) there are bijective functions

�T;A := �jT 
A : T 
 A ! A 
 T

and
�A;T := �jA
T : A 
 T ! T 
 A

that veri�es the hypothesis of Lemma 61, and the same for (TA; � ��).

Corollary 66. A 
 (TA; � ��) 
 A is an algebra.

Proof. Use Lemma 61 twice and the result follows.

Corollary 67. Taking A = k[M ], then the standard resolution of A as A-bimodule has
a natural algebra structure de�ning the braided tensor product as follows:

A 
 TA 
 A = A 
� (T cA; � ��) 
� A:

Recall the di�erential of the standard resolution is de�ned as b0 : A
n+1 ! A
n

b0(a0 
 : : : 
 an) =
n�1X

i=0

(�1)ia0 
 : : : 
 aiai+1 
 : : : 
 an

for all n � 2. If A is a commutative algebra then the Hochschild resolution is an algebra
viewed as �n�2A
n = A 
 TA 
 A, with right and left A-bilinear extension of the shu�e
product on TA, and b0 is a (super) derivation with respect to that product (see for instance
Prop. 4.2.2 [L]). In the braided-commutative case we have the analogous result:
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Lemma 68. b0 is a derivation with respect to the product mentioned in Corollary 67.

Proof. Recall the commutative proof as in Prop. 4.2.2 [L]. Denote � the product

(a0 
 : : : 
 ap+1) � (b0 
 : : : 
 bq+1) = a0b0 
 ((a1 : : : 
 ap) � (b1 
 : : : 
 bq)) 
 ap+1bq+1

Since �n�2A
n = A 
 TA 
 A is generated by A 
 A and 1 
 TA 
 1, we check on
generators. For a 
 b 2 A 
 A, b0(a 
 b) = 0, in particular, it satis�es Leibnitz rule for
elements in A 
 A. Also, b0 is A-linear on the left, and right-linear on the right, so

b0�(a0 
 an+1) � (1 
 a1 
 � � � 
 an 
 1)
�

= b0(a0 
 a1 
 � � � 
 an 
 an+1)

= a0b0(1 
 a1 
 � � � 
 an 
 1)an+1 = (a0 
 an+1) � b0(1 
 a1 
 � � � 
 an 
 1)

= 0 + (a0 
 an+1) � b0(1 
 a1 
 � � � 
 an 
 1)

= b0(a0 
 an+1) � (1 
 a1 
 � � � 
 an 
 1) + (a0 
 an+1) � b0(1 
 a1 
 � � � 
 an 
 1):

Now consider (1 
 a1 
 : : : 
 ap 
 1) � (1 
 b1 
 : : : 
 bq 
 1), it is a sum of terms where
two consecutive tensor terms can be of the form (ai; ai+1), or (bj; bj+1), or (ai; bj) or
(bj; ai). When one computes b0, multiplication of two consecutive tensor factors will give,
respectively, terms of the form

� � � 
 aiai+1 
 � � � ; � � � 
 bjbj+1 
 � � � ; � � � 
 aibj 
 � � � ; � � � 
 bjai 
 � � �

The �rst type of terms will recover

b0((1 
 a1 
 � � � 
 an 
 1)) � (1 
 b1 
 � � � 
 bq 
 1)

and the second type of terms will recover

�(1 
 a1 
 � � � 
 an 
 1) � b0((1 
 b1 
 � � � 
 bq 
 1)):

On the other hand, the di�erence between the third and forth type of terms is just a
single trasposition so they have di�erent signs, while aibj = bjai because the algebra is
commutative, if one take the signed shu�e then they cancel each other.

In the braided shu�e product, the summands are indexed by the same set of shu�es,
so we have the same type of terms, that is, when computing b0 of a (signed) shu�e
product, one may do the product of two elements in coming form the �rst factor, two
elements of the second factor. or a mixed term. For the mixed terms, they will have the
form

� � � 
 AiBj 
 � � � , or � � � 
 �(1)(Ai; Bj)�(2)(Ai; Bj) 
 � � �

As in the algebra A we have AiBj = �(1)(Ai; Bj)�(2)(Ai; Bj) then this terms will cancel
leaving only the terms corresponding to

b0(1 
 a1 
 � � � 
 ap 
 1) � �� (1 
 b1 
 � � � 
 bq
)

and
�(1 
 a1 
 � � � 
 ap 
 1) � �� b0(1 
 b1 
 � � � 
 bq 
 1)

respectively.
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Corollary 69. There exist a comparison morphism f : (B; d) ! (A 
 TA 
 A; b0) which
is a di�erential graded algebra morphism, f(d) = b0(f), simply de�ning it on ex (x 2 X)
and verifying f(x0 � x) = b0(f(ex)).

Proof. De�ne f on ex, extend k-linearly to V , multiplicatively to TV , and A0-A linearly
to A0 
 TV 
 A = B. In order to see that f commutes with the di�erential, by A0-A-
linearity it su�ces to check on TV , but since f is multiplicative on TV it is enough to
check on V , and by k-linearity we check on basis, then we only need f(dex) = b0f(ex).

Corollary 70. The function f jT X is the quantum symmetrizer map, and therefore Ker(f)\
TX � B de�nes the Nichols ideal associated to ��.

Proof.

f(ex1 � � � exn ) = f(ex1 )�� � ��f(exn ) = (1
x1 
1)�� � ��(1
xn 
1) = 1
(x1 � � � � � xn)
1

The previous corollary explains why Ker(Id � �) � B2 gives a Hopf ideal and also
ends the proof of Theorem 59.

Question 71. Im(f) = A 
 B 
 A is a resolution of A as a A-bimodule? Namely, is
(A 
 B 
 A; d) acyclic?

This is the case for involutive solutions in characteristic zero, but also for � =ip in
any characteristic, and � = Id (notice this Id-case gives the Koszul resolution for the
tensor algebra). If the answer to that question is yes, and B is �nite dimensional then
A have necessarily �nite global dimension. Another interesting question is how to relate
generators for the relations de�ning B and cohomology classes for X.

2.4 Yang-Baxter cohomology in characteristic zero

2.4.1 Action of GX in cohomology
Let k be the A0 � A-bimodule, with trivial A0 � A actions, Cn(X; k) �= HomA0�A(Bn; k)
is also a GX � GX-bimodule with

(f � y�1)(ex) = f(exy0)

and
(x�1� f)(ex) = f(xex)

where ex = ex1 : : : exn � 1 .
Notice none of the actions are of diagonal type.
Let us de�ne

Ry(f)(ex1 : : : exn � 1 ) = (�1)n�1f(ex1 : : : exn � 1 ey)

and
Lx(f)(ex1 : : : exn � 1 ) = f(exex1 : : : exn � 1 )
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for f : Bn ! k.

For c : Xn ! k and y 2 X, denote yc(x1; : : : ; xn�1) = c(y; x1; : : : ; xn�1) (respectively
cy(x1; : : : ; xn�1) = (�1)n�1c(x1; : : : ; xn�1; y)).

Then we have:

(Ry@ + @Ry)(f)(ex) = Ry@f(ex) + @Ryf(ex) =

Ry(f)(d(ex)) + @((�1)n�1f(exey)) = (�1)n�2f(d(ex)ey) + (�1)n�1f(d(exey)) =

(�1)n�2f(d(ex)ey � d(exey)) = (�1)n�2f
�
d(ex)ey � (d(ex)ey) + (�1)n�1exd(ey)

�
=

f (ex(y � y0)) = f(exy) � f(exy0) = f(ex) � (f � y�1)(ex)

(Ry@ + @Ry)(f)(ex) = f(ex) � (f � y�1)(ex): (2.3)
Analogously for Lx we have:

(Lx@ + @Lx) (f)(ex) = (x�1� f)(ex) � f(ex):

This fact allow us to generalize Lemma 3.1, [EG], where the calculations where made
for X a rack.

Lemma 72. (1) The coboundary operator @ : Cn(X; k) ! Cn+1(X; k) is a map of
GX � GX-bimodules. In particular, there are natural actions of GX on the groups
of cocycles Zn(X; k), coboundaries Bn(X; k), and cohomology Hn(X; k).

(2) Hn(X; k) is a trivial GX � GX-bimodule.

Proof. (1) Straightforward.

(2) From the above calculations we have

(Ry@ + @Ry)(f)(ex) = �f(ex) + (f � y�1)(ex)

as f 2 Zn(X; k) then [f � y�1] = [f ] in Hn(X; k).
Analogously,

(Lx@ + @Lx) (f)(ex) = (x�1� f)(ex) � f(ex)
as f 2 Zn(X; k) then [x�1� f ] = [f ] in Hn(X; k).

By Lemma 72 we consider the subcomplex

C�
binv(X; k) = GX C�(X; k)GX

and de�ne the braided invariant cohomology

H�
binv(X; k) = H�(C�

binv(X; k)

In char(k) = 0, the natural map

� : H�
binv(X; k) ! H�(X; k)

is a quasi isomorphism of complexes.
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Remark 73. If f 2 Zn

binv(X; k), by Lemma 72 part (2), we have Ry(f)and Lx(f) are
elements in Zn�1(X; k) 8x; y 2 X.

The following lemma will show that the \naive" product is well-de�ned in cohomology,
if one multiply (bi)invariant cocycles.

Ca(X; k) � Cb(X; k) ! Ca+b(X; k):

(f 
 g)(x1 : : : xaxa+1 : : : xa+b) = f(x1 : : : xa)g(xa+1 : : : xa+b)
This map will be denoted by (f; g) 7! f 
 g.

Lemma 74. Suppose that k is a trivial GX-bimodule. Then for any f 2 C i
binv(X; k),

g 2 Cj
binv(X; k) one has

d(f 
 g) = df 
 g + (�1)if 
 dg:

Proof. Note that, as f is invariant, we have

f(ex1 : : : exi xi+1) � f(ex1 : : : exi x
0
i+1) = 0

analogously for g we have

g(exi +1 : : : exi + j +1 xi+j+1) � g(exi +1 : : : exi + j +1 x0
i+j+1) = 0:

d(f 
 g)(x1; : : : ; xi+j+1) = (f 
 g)
�
d(ex1 : : : exi + j +1 )

�
=

(f 
 g)

 i+j+1X

k=1

(�1)k+1ex1 : : : exk � 1 (xk � x0
k)exk +1 : : : exi + j +1

!

=

(f 
 g)

 
iX

k=0

(�1)k+1ak + bi+1 +
i+j+1X

k=i+2

(�1)k+1ck

!

where ak; bi+1 and ck are the corresponding normal forms of the elements

ex1 : : : exk � 1 (xk � x0
k)exk +1 : : : exi + j +1

As both, f; g 2 Cbinv(X; k) we have that

f 
 g(bi+1) = 0
iX

k=0

(�1)k+1(f 
 g)(ak) = (df 
 g)(x1 : : : xi+j+1)

and
i+j+1X

k=i+2

(�1)k+1(f 
 g)(ck) = (�1)i(f 
 dg)(x1 : : : xi+j+1):

Last lemma shows that if f 2 Zi
binv(X; k) and g 2 Zj

binv(X; k) then f 
g 2 Zi+j
binv(X; k).

Furthermore, by the same lemma, the cohomology class of f 
 g depends only of the
cohomology classes of f and g. Thus, we have a product

H�
binv(X; k) � H�

binv(X; k) ! H�
binv(X; k):

We will call this product structure \naive product".
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2.4.2 Cohomology of �nite biracks
In this section we will assume that X is a �nite birack. Let k be the trivial GX-bimodule
where char(k) = 0.

For each n, Cn(X; k) is a left and right GX-module, and this action factors through
some �nite group G � S(Xn), hence, on each term of this complex we have a projector
given by

P =
1

jGj

X

g2G

g

which projects to GX-(bi)invariants. This projector commutes with the di�erential, so
the complex C�(X; k) is representable as a direct sum of complexes:

C�(X; k) = C�
binv(X; k) � (1 � P )C�(X; k):

Let Orb(X) = GXnX=GX be the set of GX-(bi)orbits on X, and m = j Orb(X)j. The
main result in this section is

Theorem 75. Under these conditions, identifying H� �= H�
inv, and considering the naive

product structure, there is an injective algebra morphism

� : H�(X; k) ! Fun(Orb(X)�; k)

In particular dimkHn(X; k) � mn

Remark 76. This result generalizes the result for racks obtained by [CJKS].
In [EG] rack case is analyzed, and give an isomorphism instead of an injection. We

follow the arguments in [EG].

Proof. Since k = H0(X; k), we have an obvious multiplication mapping

� : T �(H1(X; k)) ! H�(X; k)

which is compatible with the algebra and module structures. Thus, all we have to show
is that � is an isomorphism.

By induction in degree, let us show that � is injective. As the base of induction is
clear, suppose the statement is known in degrees < n.

Take c 2 Fun(Orb(X)n; k) such that �(c) = 0 in Hn. This means that the pullback
f : Xn ! M of the function c is a coboundary: f = �(c) = dg where g 2 Cn�1

binv . Because
f is (bi)invariant, and

C� = C�
binv � (1 � P )C�

we can assume that g is (bi)invariant. This means that for any x; y 2 X, we have

fy = (dg)y = �d(gy)

(analogously xf = x(dg) = �d(xg)).
But fy is a pullback of a function

cy 2 Fun(Orb(X)n�1; k)

so by the inductive assumption cy = 0 in Hn 8y. Hence c = 0.

Conjecture 77. � is an isomorphism.

In rack case � is known to be an isomorphism.
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2.5 Homology for cyclic sets and involutive solutions
De�nition 78. [R] A cycle set, or right-cyclic quasigroup, is a set X with a binary
operation � satisfying

(a � b) � (a � c) = (b � a) � (b � c) (2.4)

and having all the left translations a 7! b � a bijective, the inverse operation being
denoted by a 7! b � a. As pointed out by Rump [R], these give rise to involutive braidings

�(a; b) = ((b � a) � b; b � a)

and all right non-degenerate involutive braidings can be obtained this way.

In [LV] a complex associated to the structure mentioned above is considered. Here
we recall de�nitions:

De�nition 79. The cycles/boundaries/homology groups of a cycle set (X; �) with coef-
�cients in an abelian group A are the cycles/ boundaries/ homology groups of the chain
complex Ccs

n ((X; �); A) = A[X�n], n � 0, with

@n(x1; : : : ; xn) =
Xn�1

i=1
(�1)i((x1; : : : ; bxi; : : : ; xn)

� (xi � x1; : : : ; xi � xi�1; xi � xi+1; : : : ; xi � xn));

where (x1; : : : ; bxi; : : : ; xn) = (x1; : : : ; xi�1; xi+1; : : : ; xn), and @1 = 0. The cocycle is de�ned
by @(f) = f(@), as usual, on C�

cs(X; A) = HomZ(Ccs
� (X; Z); A) ’ Fun(Xn; A).

One of the main results of this section is the following:

Theorem 80. Consider (X; �) a cyclic set, � its corresponding involutive solution of the
YBeq, and k a commutative ring. There exists explicit isomorphisms of complexes

Ccs
� ((X; �); k) �= CY B

� (X; k)

C�
cs((X; �); k) �= C�

Y B(X; k)

In order to prove the theorem above we are going to de�ne a modi�cation of the
previously de�ned bialgebra B.

De�nition 81. Given a biquandle (X; �), we may de�ne B(X; �) (also denoted by B)
the algebra freely generated by four copies of X, denoted x, x0, x0 (the inverse of x0) and
ex, with relations as follows: whenever �(x; y) = (z; t) we have

� x0 x0 � 1 and x0 x0 � 1,

� xy0 � z0t,

� t y0 � z0 x,

� xey � ezt,

� exy0 � z0et,
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� ety0 � z0ex,

� xy � zt,

� x0y0 � z0t0, t0y0 = z0x0 and y0 x0 � t0 z0:

As before, we can construct B in steps. First de�ne

Y := hx; x0; x0; exix2X

the free monoid in X with unit 1, khY i the k-algebra associated to Y . Take the k-module

B1 := khY i=hx0 x0 = 1 = x0x0i

We will show that B1=Y ’ Tf(X�1)0g 
 TE 
 TX.
De�ne w1 = xy0, w2 = xey, w3 = exy0 (as before) and w4 = t y0 , w5 = et y0.

Let S = fr1; r2; r3; r4; r5g be the reduction system de�ned as follows: ri : B1 ! B1 the
families of k-module endomorphisms such that ri �x all elements except wi: r1(xy0) = z0t,
r2(xey) = ezt, r3(exy0) = z0et (as before), r4(t y0) = z0 x and r5(et y0) = z0 x where
�(x; y) = (z; t).

Following the construction given for B, a reduction ri acts trivially on an element a
if wi does not appear in any monomial of a, ie: AwiB appears with coe�cient 0. An
element a 2 B1 is called irreducible if AwiB does not appear for i 2 f1; 2; 3g.

The irreducible elements will be the ones such that every reduction acts trivially.
De�nitions such as \�nal reduction" (denoted by rs(a)), \reduction �nite", \reduction
unique", etc, will be analogous.

A generalization for disdeg would be the following:

De�nition 82. Given a monomial a 2 B1 we de�ne the disorder degree of a,

disdeg’(a) =
nxX

i=1

rpi +
nx 0X

i=1

lpj

where rpi is the position of the i-th letter \x" counting from right to left, and lpi is the
position of the i-th letter \x0 or x0" counting from left to right.

The extension of this de�nition for a �nite sum of monomials is obvious.
Now the reductions r1; r4 reduce disorder degree in two and reductions r2, r3 and r5

reduce disorder degree in one. This implies that every element will be reduction �nite but
we have to check overlap ambiguities, there are only two of them and we have analyzed
one already.

The \new" overlap ambiguity is a = xey z0 and there are two possible sequences of
�nal reductions: r2 � r4 � r5 or r5 � r4 � r2.

Let us start with r5 � r4 � r2(xey z0), calculate r2(xeyz0):

x
BBB

B

  BB
B

y

~~|||
|||

||

�1 �2

inversely �1
BBB

  BB
BB

�2

~~|||
|||

||

x y
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Now apply r4:

9!a
CCC

!!CC
C

z

}}{{
{{

{{
{{

9!b �2

inversely b
@@@

@

  @
@@

�2

~~~~
~~

~~
~

a z

Finally r5:
9!u

CCC

!!CC
C

b

}}{{{
{{{

{{{

9!v �1

inversely v
???

?

��??
??

�1

�����
���

��

u b

Take the �rst diagram on the left, and the following two from the right. Join them
together in the only composable way, you get one of the diagrams of the third Reidemeister
move. Now consider r2 � r4 � r5(xey z0), calculate r5(xey z0):

9!A
BBB

!!BB
BB

z

}}||
||

||
||

9!B y

inversely B
???

��?
??

y

�����
���

��

A z

Apply r4:
9!C

DDD

!!DD
DD

B

}}zzz
zzz

zz

9!D x

inversely D
@@@

  @@
@

x

~~~~~
~~~

~~

C B

Finally r2:
C

???

��?
??

A

����
��

��
��

� �

inversely �
???

?

��?
??

�

�����
���

��

C A

Take the �st two diagrams on the right, and the following from the left. Join them
together in the only composable way, and get the remaining diagram of the third Reide-
meister move.

Both diagrams are the same considering that X is a biquandle and 3 of the entries
(x; y; z) are the same (this fact leads all the out coming arcs are the same). Graphically:

D

��

x

  

y

}}

V

**

x

yy

y

		

=

� � z U a z

Remark 83. All overlap ambiguities are solvable.

Proof. There is no rule with x0; x0 on the left nor rule with x on the right, so there will
be no overlap ambiguity including the family r1; r4.
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As before, rs is a proyector and the kernel is

I = hxy0 � z0t; xey � ezt; exy0 � z0et; t y0 � z0 x; et y0 � z0 exi

.

Corollary 84. The map rs induces a k-linear isomorphism:

B1=I ! TfX 0; X 0g 
 TE 
 TX

Call B2 := B1=I, then

B = B2=hxy � zt; x0y0 � z0t0; y0 x0 � t0 z0; t0 y0 � z0 x0i

.

Remark 85. If we add x = x�1, say fx; x0; ex; x; x0gx2X the set of generators of the
di�erential graded bialgebra B de�ned similarly as B, then B is a di�erential graded
Hopf bialgebra

B = k[G0
X ] 
 TX 
 k[GX ]

As an application of B we will prove that the complex considered by [LV] for (left
invariant) involutive solutions is actually isomorphic to the YB-standard complex.

Same as before, it is possible to check that B is a di�erential graded bialgebra adding
the following de�nitions: d(x0) = 0 and �(x0) = x0 
 x0

De�nition 86. Call Jx := x0 ex

Another set of generators of B can be obtained using fx; x0; x0; Jxgx2X .

Remark 87. (1) The subalgebra generated by fx0; y0gx;y2X is isomorphic to k[GX ] (in-
stead of k[MX ] as before).

(2) A normal form can be de�ned (same as before), i.e. B ’ k[GX0] 
 TX 
 A.

(3) k is a k[GX0] � k[MX ] trivial (bi)module.

In the involutive case we have the following simpli�cation of the commuting relations:

Remark 88. Recall the notation �(x; y) = ((y �x)�y; y �x), we have the following relations:

yJx = Jy�ay;

and
Jty0 = y0Jy�t:

Proof.
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Notice that if Jx := x0ex and d(Jx) = x0x � 1 then

d(Jx1 � � � Jxn ) =
nX

i=1

(�1)i+1Jx1 � � � Jxi � 1 (x0x � 1)Jxi +1 � � � Jxn

=
nX

i=1

(�1)i+1 �x0
iJxi �x1 � � � Jxi �xi � 1 Jxi �xi +1 � � � Jxi �xn xi � Jx1 � � � Jxi � 1 Jxi +1 � � � Jxn

�

Which is, after tensoring with trivial coe�cients, the de�nition of homology groups
given in [LV], and Theorem 80 is proved.

As a corollary of our last theorem we give a (upper) bound for Betti numbers, [LV]
conjecture the opposite bound, which is clearly implied by Conjecture 77.



Chapter 3

An oriented knot/link invariant
based on Yang-Baxter solutions

Introducci�on al cap��tulo:
La primera parte de este cap��tulo consiste en una generalizaci�on a biquandles y de la
noci�on de 2-cociclo no conmutativo dada en [AG] para quandles. Es tambi�en una gen-
eralizaci�on al caso no conmutativo de parte del trabajo sobre cociclos conmutativos en
[CEGS]. En este sentido, obtuvimos en principio nuevos invariantes basados en biquan-
dles que no provienen de quandles, admitiendo 2-cociclos no conmutativos, eso es, cuyo
grupo universal (ver secci�on 2 o 3) es no abeliano.

En la segunda secci�on, de�nimos un grupo universal que gobierna todos los 2-cociclos
para un biquandle X. Eso es, un grupo Unc(X) junto con un 2-cociclo � : X�X ! Unc(X)
tal que si f : X � X ! G es 2-cociclo no conmutativo a valores en un grupo G, entonces
existe un �unico mor�smo de grupos ef : Unc(X) ! G tal que f = ef�. Por ejemplo, si
Unc(X) es el grupo trivial, entonces todo 2-cociclo lo es. Por otro lado, si Unc(X) es
no trivial, esta propiedad universal dice que contiene toda la informaci�on que cualquier
grupo podr��a dar usando 2-cociclos.

En la tercer secci�on, damos una versi�on reducida del grupo Unc que depende de una
aplicaci�on  : X ! Unc(X). El conjunto construido se nota U

nc(X), en particular es un
grupo y existe un 2-cociclo � : X � X ! U

nc(X) con la siguiente propiedad (Teorema
111): si f : X � X ! G es un 2-cociclo, entonces existe un 2-cociclo cohom�ologo (ver
de�nici�on 92) f : X � X ! G y un mor�smo de grupos ef tal que f = ef�. Como el
invariante de�nido en la primer secci�on no cambia por cociclos cohom�ologos (Proposici�on
102), el invariante producido por f es el mismo que el proveniente de f, de este modo
todos los invariantes son gobernados por el grupo U

nc que, en general, es m�as chico que
Unc.

En la �ultima secci�on mostramos algunos ejemplos obtenidos con GAP. Una observaci�on
interesante es que, si (X; �) es una soluci�on de la ecuaci�on de Yang-Baxter, entonces
tambi�en lo es � := ��1, y si � otorga estructura de biquandle a X, tambi�en � dar�a
estructura de biquandle. Uno podr��a sospechar que � es, en alg�un sentido, equivalente a
� y que probablemente no d�e nueva informaci�on, pero este no es el caso. En la secci�on
4 hay un ejemplo (con X de cardinal 3) tal que � siempre da invariante trivial, mientras
que � es no trivial.

57
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CHAPTER 3. AN ORIENTED KNOT/LINK INVARIANT BASED ON

YANG-BAXTER SOLUTIONS

Introduction to the chapter:
The �rst part of this chapter consists of a generalization to biquandles and of the notion
of non-commutative 2-cocycle given in [AG] for quandles. It is also a generalization to
the non-commutative case of part of the work in [CEGS] for commutative cocycles. In
this way, we obtain in principle new invariants based on biquandles that do not come
from quandles, admiting non-commutative 2-cocycles, that is, whose universal group (see
section 2 or 3) is non abelian.

In the second section we de�ne a universal group governing all 2-cocycles for a given
biquandle X, that is, a group Unc(X) together with a 2-cocycle � : X � X ! Unc(X)
such that if f : X � X ! G is a noncommutative 2-cocycles with values in a group G,
then there is a unique group homomorphism ef : Unc(X) ! G such that f = ef�. For
instance, if Unc(X) is the trivial group, then every 2-cocycle is trivial. On the opposite,
if Unc(X) is non-trivial, this universal property says that it carries all information that
any group could give using 2-cocycles.

In the third section, we give a reduced version of Unc, it depends on a map  : X !
Unc(X). The constructed set is called U

nc(X), in particular it is a group and there is
given a 2-cocycle � : X � X ! U

nc(X) with the following property (Theorem 111):
if f : X � X ! G is a 2-cocycle, then there exists a cohomologous (see de�nition 92)
2-cocycle f : X �X ! G and a group homomorphism ef such that f = ef�. Since the
invariant de�ned in section 1 is unchanged for cohomologous cocycles (Proposition 102),
the invariant produced with f is the same as the one coming from f, so we see that all
invariants are governed by the group U

nc, which is, in general, much smaller than Unc.
In section 4 we exhibit some examples of computations. An interesting observation

is that, if (X; �) is a solution of the Yang-Baxter equation, then also is � := ��1, and
if � makes X into a biquandle (see de�nition below), then also � gives a biquandle
structure. One may suspect that � is, in a sense, equivalent to � and probably gives no
new information, but this is not the case: the �rst examples of section 4 are made of a
solution (with X of cardinality 3) such that � always give trivial invariant, but � give
non-trivial.

3.1 Non-abelian 2-cocycles
In the following de�nition we generalize the notion of non commutative 2-cocycles given
in [CEGS] from quandle case, to biquandle case.

Let (X; �) be a biquandle and H a (not necessarily abelian) group.

De�nition 89. A function f : X � X ! H is a braid non-commutative 2-cocycle if

� f
�
x1; x2

�
f
�
�(2)(x1; x2); x3

�
= f

�
x1; �(1)(x2; x3)

�
f
�
�(2)(x1; �(1)(x2; x3)); �(2)(x2; x3)

�
,

and

� f
�
�(1)(x1; x2); �(1)(�(2)(x1; x2); x3)

�
= f

�
x2; x3

�

are satis�ed for any x1; x2; x3 2 X.
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Note that (in abelian case) if multiply the right-hand sides of both equations and

similarly left-hand sides then we obtain De�nition 2.2.

De�nition 90. If f further satis�es f(x; s(x)) = 1 for all x 2 X then it will be called of
type I.

Remark 91. If f is a braided noncommutative 2-cocycle and � : X ! H is an arbitrary
function such that �(y) = �(�(1)(x; y)), then

f 0(x; y) = �(x)f(x; y)��1(�(2)(x; y))

is also a braided noncommutative 2-cocycle. If moreover f is of type I, and �(x) = �(s(x))
for all x 2 X, then f 0 is also of type I.

De�nition 92. Two cocycles f; f 0 are cohomologous (f � f 0) if there is a function
 : X ! H such that (x) = (s(x)), (y) = (�(1)(x; y)) and

f 0(x; y) = (x)f(x; y)[(�(2)(x; y))]�1; 8x; y 2 X:

This notion of cohomology does not come necessarily from a chain complex, for ex-
ample when H is noncommutative the product of cocycles does not necessarily give a
cocycle as a result.

Remark 93. It is easy to see that � is an equivalence relation.

An equivalence class is called a cohomology class. The set of cohomology classes is
denoted by

H2
NC(X; H)

This de�nitions, in case (X; /) is a quandle and considering �(x; y) = (y; x/y), agree with
the ones in [CEGS], since in this case the second condition of De�nition 89 is trivial. As
in the rack/quandle case, if H is not commutative, H2

NC(X; H) need not to be a group,
it is just a set.

Remark 94. If H happens to be commutative and f : X � X ! H is a 2-cocycle in the
non commutative sense, then f is necessarily a special (invariant under the action of GX)
type of 2-cocycle with trivial coe�cients in the sense of [CES2], but our de�nition is more
restrictive, because we ask for a set of equations of the form ab = a0b0 and c = c0 (plus
being type I), while in the usual abelian 2-cocycles the equation is of the form abc = a0b0c0

(plus being type I).

Remark 95. The �rst condition of De�nition 89 is invariant under inverting �, namely, f
satis�es it for � if and only if f does it for ��1. On the other hand, the second condition
is not invariant under inverting �. For example, if (X; /) is a rack and �(x; y) = (y; x/y),
then the second condition is trivially satis�ed for any function f (and hence, this de�nition
is equivalent, in this setting, to the one given in [CEGS]), while �(x; y) = (y /�1 x; x)
means that f must be invariant under the action of the Inner group associated to the
rack X.
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YANG-BAXTER SOLUTIONS
3.1.1 Weights
Let X be a biquandle, H a group, f : X � X ! H a braided non-abelian 2-cocycle. Let
L = K1 [ � � � [ Kr be a classical oriented link diagram on the plane, where K1; : : : ; Kr
are connected components, for some positive integer r.

De�nition 96. A coloring of L by X is a rule that assigns an element of X to each
semi-arc of L, in such a way that for every crossing

x
>>

>

��>
>>

y

�����
���

��

z t

a

��=
==

==
==

= b
��

�

����
�

c d

we have (z; t) = �(x; y) if the crossing is positive, and (c; d) = ��1(a; b) if the crossing is
negative.

ColX(L) will denote the set of all possible colorings of L by X.

Example 97. The following diagram represents a projection of the trefoil knot, colored
by a biquandle (X; �)

(�3(x; y))(1)

))SSSSSSSSSSSSSSSDD (�3(x; y))(2)

kkkkk
kk

uukkkkkkk
ZZ

(�2(x;y))(1)

))TTTTTTTTTTTTTTT
(�2(x;y))(2)

jjjjjjj

uujjjjjjj

�(1) (x;y)

**TTTTTTTTTTTTTTTTTT
�(2) (x;y)

jjjjj
jj

ttjjjjjjjjjjj

x y

Then, the trefoil is colorable by (X; �) if and only if there exists (x; y) 2 X � X such
that �3(x; y) = (x; y).

Let C 2 ColX(L) be a coloring of L by X and (b1; : : : ; br) a set of base points on
the components (K1; : : : ; Kr). Let � (i), for i = 1; : : : ; r the set of crossings such that the
under-arc is from the component i. Let (� (i)

1 ; : : : ; � (i)
k( i )

) be the crossings in � (i), i = 1; : : : ; r
such that appear in this order when one travels Kj in the given orientation.

De�nition 98. At a positive crossing � , let x� ; y� be the color on the incoming arcs. The
Boltzmann weight at � is Bf (�; C) = f(x� ; y� ). At a negative crossing � , denote �(x� ; y� )
the colors on the incoming arcs. The Boltzmann weight at � is

Bf (�; C) = [f(x� ; y� )]�1

Bf;� = f(x� ; y� ) : x�
RRRR

RR

((RRR
y�

vvlllllllll

�(1)(x� ; y� ) �(2)(x� y� )
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Bf;� = [f(x� ; y� )]�1 : �(1)(x� ; y� )

))RRRR
RRRR

RR
�(2)(x� ; y� )

lll
uullll

ll
x� y�

We will show that a convenient product of these weights is invariant under Reidemeis-
ter moves.

3.1.2 Reidemeister type I moves
First notice that �(x; s(x)) = (x; s(x)) implies ��1(x; s(x)) = (x; s(x)), so, adding any
orientation to the diagram

x@A BCEDs(x)GF

@A

x

x x
the condition [f(x; s(x))]�1 = 1 assures that the factor due to this crossing does not
count.

3.1.3 Reidemeister type II moves
We consider several cases:

Case 1:

�(1)(x; y)

y

��

�(2)(x; y)

x

++
�(1)(x; y) �(2)(x; y)

�(1)(x; y)

��

�(2)(x; y)

��
�(1)(x; y) �(2)(x; y)

Case 2:
yOO

�(1) (x;y)

x55

�(2) (x;y)

y x

yOO xOO

y x

Case 3: In this case and the following, start naming the top arcs of the diagrams on the
left, the rest of the arcs are known as X is a biquandle.

y

�(1) (x;y)

��

�(2)(x; y)44

x

y �(2)(x; y)

y

��

�(2)(x; y)OO

y �(2)(x; y)
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Case 4:

�(1)(x; y)OO

y

x

�(2) (x;y)

**�(1)(x; y) x

�(1)(x; y)OO
x

��
�(1)(x; y) x

The product of weights (following the orientation of the underarc) corresponding to
the diagrams on the left in cases 1 and 3 is [f(x; y)]�1f(x; y) = 1, in cases 2 and 4
is f(x; y)[f(x; y)]�1 = 1.

3.1.4 Reidemeister type III moves
While there are eight oriented Reidemeister type III moves, only four of them are di�erent.

Case 1: Start by naming the incoming-arcs x1; x2; x3. In case 1, as well as in the rest
of the cases, once chosen three arcs in both diagrams the remaining arcs are respectively
equal as � is a solution of YBeq.

x2

NNNNNNNNNNNNNNN

’’NNNNNNNNNNNNN

x3

xxppppppppppppppppppppppppppppp

x1
,,
�(2) (�(2) (x1 ;x2);x3)

�(1) (�(1) (x1;x2);�(1) (�(2) (x1;x2);x3)) �(2) (�(1) (x1;x2);�(1) (�(2) (x1;x2);x3))

x2

KKK
KKK

KKK
KKK

K

%%KKK
KKK

KKK
KKK

x3

yysss
sss

sss
sss

sss
sss

sss
sss

ss

x1 22
�(2) (�(2) (x1;�(1)(x2 ;x3));�(2) (x2 ;x3))

�(1)(x1;�(1)(x2 ;x3)) �(1)(�(2) (x1;�(1)(x2 ;x3));�(2) (x2 ;x3))

The product of the weights following the horizontal under-arc, in the �rst diagram, is:

I = f(x1; x2)f(�(2)(x1; x2); x3)

and in the second, is:

II = f(x1; �(1)(x2; x3))f(�(2)(x1; �(1)(x2; x3)); �(2)(x2; x3))

I = II is one of the equalities de�ning 2-cocycles, the other equation de�ning 2-
cocycles a�rms that the weights given to the remaining crossings are the same. Notice
that in the quandle coloring this condition is trivial, but in the biquandle coloring it is
not.
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Case 2: Start by naming the arcs �(2)(x1; x2), x2 and �(1)(x2; x3) in both diagrams.
The remaining arcs are known using the fact that X is a biquandle and (due to the braid
equation):

�(1) ��(1)(x1; x2); �(1)(�(2)(x1; x2); x3)
�

= �(1)(x1; �(1)(x2; x3))

x2 ee

KKK
KKK

KKK
KKK

KK

KKK
KKK

KKK
KKK

K

�(1)(x2; x3)

yysss
sss

sss
sss

sss
sss

sss
sss

ss

�(2)(x1; x2)
,,
�(2) (x1 ;�(1) (x2 ;x3))

�(1) (�(2) (x1 ;x2);x3) �(2) (�(1) (x1 ;x2);�(1) (�(2) (x1 ;x2);x3))

x2 ee

KKK
KKK

KKK
KKK

KK

KKK
KKK

KKK
KKK

K

�(1)(x2; x3)

yysss
sss

sss
sss

sss
sss

sss
sss

ss

�(2)(x1; x2) 22
�(2) (x1 ;�(1) (x2 ;x3))

�(1) (�(2) (x1 ;x2);x3) �(1) (�(2) (x1 ;�(1) (x2 ;x3);�(2) (x2 ;x3)))

The product (always multiplying to the right) of weights for the horizontal line (which
is the underarc in both crossings) in the �rst diagram is

I = [f(x1; x2)]�1f(x1; �(1)(x2; x3))

and for the second diagram is

II = f(�(2)(x1; x2); x3)[f(�(2)(x1; �(1)(x2; x3)); �(2)(x2; x3))]�1:

The remaining weights in both diagrams are a = [f(�(1)(x1; x2); �(1)(�(2)(x1; x2); x3))]�1

and b = [f(x2; x3)]�1. As f is a 2-cocycle, a = b.

Case 3: Name the incoming arcs by a; b and c.
Remark 99. YBeq is equivalent to the following equation, which explains the equality of
the out-coming arcs in both diagrams.

(� � 1)(1 � �)(� � 1) = (1 � �)(� � 1)(1 � �) (3.1)

c

??
??

??
??

??

��?
??

??
??

??

�2(�2(a;�(1) (b;c));�(2) (b;c))
??

��
��

��
��

��
��

��
��

��
��

b
**

�1(�2(a;�(1) (b;c));�(2) (b;c))

a �1(a;�(1) (b;c))
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c

>>
>>

>>
>>

>>

��>
>>

>>
>>

>>

�2(�2(a;b);c)
@@

��
��

��
��

��
��

��
��

��
��

b 44
�(2) (�1(a;b);�1(�2(a;b);c))

a �(1) (�1(a;b);�1(�2(a;b);c)

The product of weights for the horizontal line in the �rst diagram is

I = f(b; c)[f
�
�(�2(a; �(1)(b; c)); �(2)(b; c))

�
]�1

and for the second diagram is

II = [f(�(a; b))]�1f
�
�1(a; b); �1(�2(a; b); c)

�
:

Using (3.1) in I:

I = f(b; c)f
�
(�(2)(�1(a; b); �1(�2(a; b); c)); �2(�2(a; b); c))

�

Take the changes of variables (x1; d) = �(a; b) and (x2; x3) = �(d; c). Then

I = f(�(2)(x1; �(1)(x2; x3)); �(2)(x2; x3))[f(�(2)(x1; x2); x3)]�1

II = [f(x1; �(1)(x2; x3))]�1f(x1; x2):

We see that if f is a non-commutative 2 cocycle then I = II.
The weights that correspond to the other crossings are:

III = [f(�(a; �(1)(b; c)))]�1; IV = [f(�(�2(a; b); c))]�1

changing variables and composing (3.1) with 1 � �:

III = [f(�(1)(x1; x2); �(1)(�(2)(x1; x2); x3))]�1; IV = [f(x2; x3)]�1

III = IV is veri�ed as f is a 2-cocycle.

Case 4: We only exhibit the diagram corresponding to this case, the computations
are similar to the previous case.

WW

//
//

//

//
//

//

GG

��
��
��
��
��
��
�

##

WW

//
//

//

//
//

//

GG

��
��
��
��
��
��
�

;;

This shows, not only, that the product of the weights does not change under Reide-
meister moves but the remaining weights stay the same.

For a group element h 2 H, denote [h] the conjugacy class to which h belongs.
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De�nition 100. The set of conjugacy classes

�!
	(L; f) =

�!
	 (X;f)(L) = f[	i(L; C; f)]g 1�i�r

C2 Col X ( L )

where 	i(L; C; f) =
Qk(i)

j=1 Bf (� (i)
j ; C) (the order in this product is following the orientation

of the component) is called the conjugacy biquandle cocycle invariant of the link.

Theorem 101. The conjugacy biquandle cocycle invariant 	 is well de�ned.

Proof. The fact that 	 does not change under Reidemeister moves for �xed base points
was proven earlier. A change of base points causes cyclic permutations of Boltzmann
weights, and hence the invariant is de�ned up to conjugacy.

Proposition 102. If f; g are two cohomologous non-commutative 2-cocycle functions
then [	i(L; C; f)] = [	i(L; C; g)].

Proof. Take an oriented link L. Take the ith component of the link, start at a base point
and continue traveling the component using the orientation of the component. Every
crossing where the underarc belongs to the ith component will contribute a factor to 	i.

Let us suppose f(x1; x2) = (x1)g(x1; x2)[(�(2)(x1; x2))]�1. Take a string like the
horizontal line depicted in the following �gure, if reach an over crossing like the one in
the middle:

Notice that (x2) = (�(1)(x1; x2)) implies (x2) = (�(1)(x1; x2)), then every over
crossing will change the label on the semiarc but  will remain the same.

Will be enough to consider a concatenation of under crossings.
There are four cases to analyze:

(1) x2

��

x3

��

x1
�(2) (x1 ;x2) //

�(1)(x1; x2) �(1)(�(2)(x1;x2);x3)

(2) �2(x1; x2)OO
x3

��

x2
�(1) (x1 ;x2) //

x1
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(3)

��

OO

x3 //

x1 x2

(4) x3OO �(2)(x1; x2)OO

x2 // �(1)(x1; x2)

x1

In case 1), the product of weights for the horizontal line is: f(x1; x2)f(�(2)(x1; x2); x3) =

= (x1)g(x1; x2)(�(2)(x1; x2))
�1

(�(2)(x1; x2))g(�(2)(x1; x2); x3)(�(2)(�(2)(x1; x2); x3))
�1

In case 2):
[f(�(x1; x2))]�1f(�(1)(x1; x2); x3) = ab

where
a = (�(2)(�(x1; x2)))[g(�(x1; x2))]�1(�(1)(x1; x2))

�1

b = (�(1)(x1; x2))g(�(1)(x1; x2); x3)(�(2)(�(1)(x1; x2); x3))
�1

Note that: �(2)(�(x1; x2)) = x2.

In case 3):
f(�(x1; x3))[f(�(x2; x3))]�1 =

(�(1)(x1; x2))g(�(x1; x3))(�(2)(�(x1; x3)))
�1

(�(2)(�(x2; x3)))g(�(x2; x3))[(�(x2; x3))]�1

Note that: �(2)(�(x1; x3))) = �(2)(�(x2; x3)) = x3

And �nally, in case 4): [f(x2; x3)]�1[f(�(x1; x2))]�1 =

(�(2)(x2; x3))[g(x2; x3)]�1(x2)�1(�(2)(�(x1; x2)))[g(�(x1; x2))]�1(�1(x1; x2))�1

Note that: x2 = �(2)(�(x1; x2)).

3.2 Universal noncommutative 2-cocycle
Given a biquandle (X; �) and a group H, recall a noncommutative 2-cocycle is a function
f : X � X ! H satisfying

f
�
x; y
�
f
�
�(2)(x; y); z

�
= f

�
x; �(1)(y; z)

�
f
�
�(2)(x; �(1)(y; z)); �(2)(y; z)

�

and
f
�
�(1)(x; y); �(1)(�(2)(x; y); z)

�
= f

�
y; z
�

for any x; y; z 2 X, and is called type I if in addition f(x; s(x)) = 1.
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De�nition 103. We de�ne Unc = Unc(X; �), the Universal biquandle 2-cocycle group,
as the group freely generated by symbols (x; y) 2 X � X with relations

(Unc1) (x; y)(�(2)(x; y); z) = (x; �(1)(y; z))(�(2)(x; �(1)(y; z)); �(2)(y; z))

(Unc2) (�(1)(x; y); �(1)(�(2)(x; y); z)) = (y; z)

(Unc3) (x; s(x)) = 1

The following is immediate from the de�nitions:

Proposition 104. Let (X; �) be a biquandle:

� Denote [x; y] the class of (x; y) in Unc. The map

� : X � X ! Unc
(x; y) 7! [x; y]

is a type I non commutative 2-cocycle.

� Let H be a group and f : X � X ! H a type I non commutative 2-cocycle, then
there exists a unique group homomorphism f : Unc ! H such that f = f�.

X � X
�

��

f // H

Unc

9! f

;;wwwww

In particular, given (X; �), there exists non trivial 2-cocycles if and only if Unc is a
non trivial group.

Proposition 105. Unc is functorial. That is, if � : (X; �) ! (Y; �) is a morphism of set
theoretical solutions of the YBeq, namely � satisfy

(� � �)�(x; x0) = �(�x; �x0)

then, � induces a (unique) group homomorphism Unc(X) ! Unc(Y ) satisfying

[x; x0] 7! [�x; �x0]

Proof. We need to prove that the assignment (x; x0) 7! (�x; �x0) is compatible with the
relations de�ning Unc(X) and Unc(Y ) respectively, and that is clear since (� � �) � � =
� � (� � �).

Remark 106. In order to produce an invariant of knots or links, given a solution (X; �),
we need to produce a coloring of the knot-link by X, and then �nd a non commutative
2-cocycle, but since Unc is functorial, given X we always have the universal 2-cocycle
X � X ! Unc, and hence, we only need to consider all di�erent colorings.

Also, if � : X ! X is a bijection commuting with �, then, given a coloring and its
invariant calculated with the universal cocycle, we may apply � to each color and get
another coloring, and this will produce the same invariant pushed by � in Unc.
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Proposition 107. Given a link L of two strands colored using (both) colors f1; 2g, the
invariant obtained is 	i(L; C; f) = [i; j]ln(i;j) i; j 2 f1; 2g and i 6= j, where ln(i; j) is the
linking number between the two strands.

Proof. First notice that every component must be colored by a single color.
To every underarc of the component i with itself will correspond a [i; i] = 1 as weight.

Then these crossings will not change the product. Then one can think that each com-
ponent is unknoted with itself. It is well known that any two closed curves in space, if
allowed to pass through themselves but not each other, can be moved into a concatenation
of the following standard positions:

i
;;;

;

��;;
;;

j

����
��

��
��

j
;;

;

��;
;;

i

����
��

��
��

i j

This diagram will contribute a factor [i; j]1 to 	i ((j; i) to 	j) and if trying to calculate
the linking number will add 1 for each pair of crossings. Analogously in the next diagram:

j

��;
;;

;;
;;

; i
���

�

�����
�

i

��;
;;

;;
;;

; j
��

�

����
�

j i

so, the invariant 	i will be [i; j]
a� b

2 = [i; j]ln(i;j) where a; b are the total amount of
positive and negative crossings

Example 108. The Whitehead (see 52
1 in 1.3) link has linking number zero, the same hap-

pens taking the link consisting of two unknots. If you paint these links using Wada(Z3)
(see example below), Whitehead has only 3 possibilities, while there are 9 ways to paint
the pair of unknots.

3.2.1 Some examples of biquandles of small cardinality
We �rst list some well-known general constructions generating biquandle solutions:

1. If (X; /) is a rack, one may consider two di�erent solutions of the YBeq:

�(x; y) = (y; x / y); and �(x; y) := ��1(x; y) = (y /�1 x; x)

these solutions are biquandles if and only if (X; /) is a quandle, namely x / x = x
for all x 2 X, in this case the function s is the identity: s(x) = x.
When considering n.c. 2-cocycles, condition Unc2 is not preserved (in general) if
one changes � with ��1, so it is relevant to see � and ��1 as di�erent biquandles.
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2. Let � : X � X ! X � X denote the ip, namely �(x; y) = (y; x). Let �; � : X ! X

be two bijections of X. then

(� � �)�(x; y) = (�(y); �(x))

satis�es YBeq if and only if �� = ��, and this solution is a biquandle if and only if
� = ��1, in this case, the function s : X ! X is equal to ��1. In this way, the set
of bijections of X maps injectively into the set of biquandle structures on X, each
conjugacy class of a given bijection maps into an isomorphism class of biquandle
structures. Notice that every biquandle structure obtained in this way is involutive,
namely � = (� � ��1) � � veri�es �2 = Id.

3. Wada: if G is a group, then the formula �(x; y) = (xy�1x�1; xy2) is a biquandle,
with s(x) = x�1. As a particular case, if G is abelian and with additive notation
we have �(x; y) = (�y; x + 2y).

4. Alexander biquandle or Alexander switch:

Let R be a ring, s; t 2 R two commuting units, and M an R-module, then

�(x; y) = (s � y; t � x + (1 � st) � y); (x; y) 2 M � M

is a biquandle, with function s(x) = (s�1) � x. In the particular case s = �1, t = 1
one gets the abelian Wada’s solution. If s = 1 then one gets the solution induced
by the Alexander rack.

These general constructions are enough when considering solutions of small cardinal-
ity. For instance, if jXj = 2, call X = f0; 1g, one have the ip, satisfying s(1) = 1 and
s(0) = 0, and this condition fully characterize this solution. If s(0) 6= 0 then s(0) = 1
and necessarily s(1) = 0; this forces �(0; 0) = (1; 1) and �(1; 1) = (0; 0). This is actually
a biquandle coming from the bijection construction

�(x; y) = (y + 1; x � 1) : x; y 2 Z=2Z:

We will call this solution \the antiip".

If jXj = 3, we call the elements X = f0; 1; 2g and identify X = Z=3Z. The above
constructions give the following list:

1. There are three isomorphism classes of quandles of 3 elements:

(a) the trivial quandle (x / y = x for all x; y), this gives the ip solution (number
1 in 1.1).

(b) D3: x/y = 2y�x, for x; y 2 Z=3Z (number 3 in 1.1), which gives two solutions

�(x; y) = (y; x / y) = (y; 2y � x)

and its inverse
�(x; y) = (x /�1 y; x) = (2x � y; x)



70
CHAPTER 3. AN ORIENTED KNOT/LINK INVARIANT BASED ON

YANG-BAXTER SOLUTIONS
(c) another quandle which we call Q3 (number 2 in 1.1), with operation given by

� / 0 = (12) (the permutation 1 $ 2), and � / 1 = � / 2 = Id. The solution

�(x; y) = (y; x / y)

behaves like the ip for fx; yg = f1; 2g, but

�(0; 1) = (1; 0); �(1; 0) = (0; 2)

�(0; 2) = (2; 0); �(2; 0) = (0; 1):

One can check that this equalities can be achieved with the formula

�(x; y) = (y; �x � xy2) = (y; �x(1 + y2)) : x; y 2 Z=3Z

We also have the inverse solution.

2. If X = f0g
‘

f1; 2g, with �(0; i) = (i; 0) and �(i; 0) = (0; i), then the ip on f1; 2g
produces again the ip on three elements, but the other solution produce a new
solution (number 7 in 1.1) of the YBeq:

�(1; 2) = (1; 2); �(2; 1) = (2; 1);

�(1; 1) = (2; 2); �(2; 2) = (1; 1);

�(0; i) = (i; 0); �(i; 0) = (0; i):

One may check that this equalities are given by �(x; y) = (y + x2y; x + y2x).

3. Wada’s construction for Z3 gives the example �(x; y) = (�y; x � y) (number 9 in
1.1) and its inverse: �(x; y) = (y � x; �x).

4. Bijection biquandles:

(a) Using the bijection �(x) = �x (number 11 in 1.1) we have the solution
�(x; y) = (�y; �x),

(b) if �(x) = x + 1 then we have the solution �(x; y) = (y + 1; x � 1) (the inverse
solution is number 13 in 1.1). One can check that all bijections 6= Id are
conjugated to one of these.

For M = R = Z3, the units of R are �1: the Alexander biquandle gives Wada’s for
s = t = �1, the Dihedral quandle solution for s = 1 and t = �1, the ip for s = t = 1,
and the bijection solution �(x; y) = (�y; �x) when s = t = �1, so we have no new
solutions in this small cardinality considering the Alexander biquandle.

In this way, we obtain 10 solutions of the YBeq that are biquandles, if we don’t count
� in case we already have ��1 (for instance, if each quandle counts by one and not by
two), we obtain 7 = 3 quandles + 4 biquandles that are not quandles, in agreement with
A. Bartholomew and R. Finn’s classi�cation list (see [BF]). One may check that these
are non-isomorphic to each other, so we conclude the list is exhaustive.
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3.2.2 Computations of UNC

We will explicitly describe the group Unc for some examples, mainly in Z3:
From now on, abusing notation, elements in UNC will be denoted by (x; y) instead of

[x; y].

The ip

Take X = Z=mZ = f0; 1; 2; : : : ; n � 1g and �(x; y) = (y; x). In this case, conditions
(Unc1-3) of De�nition 103 mean

8
<

:

(x; y)(x; z) = (x; z)(x; y)
(y; z) = (y; z)
(y; y) = 1

The second condition is trivial, while the �rst means that the subgroup Ax � Unc de�ned
by Ax = h(x; y) : y 2 Xi is free abelian group with only one relation (x; x) = 1. We
conclude

Unc = �x2XZXnfxg;

the free product of jXj copies of the free abelian with jXj-1 generators. In particular, if
X = f0; 1g then Unc is the free group on 2 generators a = (0; 1) and b = (1; 0).

Bijection biquandle

Let � : X ! X be a bijection, and �(x; y) = (�(y); ��1(x)). Now conditions (Unc1-3)
mean 8

<

:

(x; y)(��1(x); z) = (x; �z)(��1(x); ��1(y))
(�(y); �(z)) = (y; z)

(�(y); y) = 1

or, equivalently (call z0 = �(z)):

8
<

:

(x; y)(x; z0) = (x; z0)(x; y)
(�(y); �(z)) = (y; z)

(�(y); y) = 1
So, for each x 2 X we consider as before Ax = h(x; y) : y 2 Xi �= ZXnf�� 1(x)g it is free

abelian on X n f��1xg, so Unc is a quotient of the free product over X:

Unc = (�x2XAx)=((x; y) � (�x; �y))

As a particular case, one can fully characterize the following example:

Involutive Zm

Let X = Zm and �(x; y) = (y +1; x�1), then Unc is the free abelian on m�1 generators.

Proof. The bijection being �(x) = x+1, so (x; y) � (x+1; y+1) implies that the inclusion
map A0 ! Unc is onto, hence Unc = A0 �= Zm�1

For example, if m = 2 we have the \antiip" solution, Unc �= Z in this case, if m = 3
then Unc = h(0; 0); (0; 1)i �= Z2.
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This is also a bijection biquandle with �(x) = �x, so the group is

Unc = A0 � A1 � A2=(x; y) � (�x; �y)

where Ax = h(x; y) : y 2 Z=3Z; y 6= �xi. The list of generators of Unc is a = (0; 1) =
(0; 2), b = (1; 0) = (2; 0), c = (1; 1) = (2; 2). The relation

(x; y)(x; z) = (x; z)(x; y)

gives cb = bc, so Unc = Free(a; b; c)=(bc � cb).

Quandle solutions

If (X; /) is a quandle and �(x; y) = (y; x / y), then the cocycle condition (Unc2) is trivial,
the group relations are

�
(x; y)(x / y; z) = (x; z)(x / z; y / z)

(x; x) = 1
This group is the same as the subgroup of units of the algebra 
(X) generated by �x;y,
x; y 2 X, de�ned by Andruskiewitsch-Gra~na in [AG]. Notice that these equations imply
(setting x = z):

(x; y)(x / y; x) = (x; y / x)
The situations x = y or y = z give trivial equations.

On the other hand, if we consider the inverse solution: �(x; y) = (y /�1 x; x) then
condition (Unc2) is not trivial, we have the relations

(x; y)(x; z) = (x; z /�1 y)(x; y)
(y /�1 x; z /�1 x) = (y; z)

(x; x) = 1
We see that, in presence of the second identity, the �rst one can be modi�ed into

(x; y)(x; z) = (x / y; z)(x; y) (UncQ)
or also

(x / z; y / z)(x; z) = (x / y; z)(x; y)
so, Unc(�) have the same generators as Unc(�) but with \opposite relations", together
with the additional relation (x; y) = (x / z; y / z). Notice that (UncQ), with x = z, says

(x; y)(x; x) = (x / y; x)(x; y) ) (x; y) = (x / y; x)(x; y) ) 1 = (x / y; x):

This equation, for x = y, gives 1 = (x / x; x) = (x; x), that is, 1 = (x / y; x) implies the
type I condition. So, we may list a set of relations for Unc(�) in the following way

8
<

:

(x; y)(x; z) = (x / y; z)(x; y) (UncQ1)
(x / y; x) = 1 (UncQ2)

(x / z; y / z) = (x; y) (UncQ3)



3.2. Universal noncommutative 2-cocycle 73
Corollary 109. Let Q be a quandle and consider the biquandle solution

�(a; b) = (b /�1 a; a):

If Q is such that for every z 2 Q there exists y with z = x / y, then Unc(�) = 1.

Proof. Given (z; x), let y be such that z = x / y, then (z; x) = (x / y; x) = 1.

Example 110. If (X; /) = Dn = (Z=nZ; x / y = 2y � x) with n is odd then Unc(�) = 1.
When z is even take x an even element, when z is odd take x any odd element in X.

The quandle D3 (X = Z3)

For x; y 2 f0; 1; 2g consider �(x; y) = (y; 2y � x). We have the relations

�
(x; y)(2y � x; z) = (x; z)(2z � x; 2z � y)

(x; x) = 1

If x = z we get (x; y)(2y � x; x) = (x; 2x � y). When x; y; z are all di�erent, then
2y � x = z, 2z � x = y and 2z � y = x so we get

(x; y)(2y � x; z) = (x; z)(2z � x; 2z � y) () (x; y)(z; z) = (x; z)(y; x)

() (x; y) = (x; 2y � x)(y; x)

which is equivalent to the previous case. For instance, x = 0, y = 1, z = 2 gives
(0; 1) = (0; 2)(1; 0), and because every permutation of the set X is an automorphism of
the quandle D3, we conclude that the full list of relations is the following:

(0; 1) = (0; 2)(1; 0); (1; 2) = (1; 0)(2; 1)

(2; 0) = (2; 1)(0; 2); (0; 2) = (0; 1)(2; 0)

(2; 1) = (2; 0)(1; 2); (1; 0) = (1; 2)(0; 1)

Let us call a := (0; 2), b := (1; 0) and c := (2; 1), with this notation we have

(0; 1) = ab; (1; 2) = bc; (2; 0) = ca

a = abca; c = cabc; b = bcab

so abc = 1, we get c = (ab)�1. It follows that Unc is free on generators a, b.

For the inverse solution �(x; y) = (2x � y; x), Corollary 109 says Unc(�) = 1.
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Consider the solution induced by the quandle operation

x / y = �x � xy2

We have �(x; y) = (y; �x � xy2) = (y; �x(1 + y2)), so the relations of Unc are
�

(x; y)(�x � xy2; z) = (x; z)(�x � xz2; �y � yz2)
(x; x) = 1

If x = z then (x; y)(�x � xy2; x) = (x; �y � yx2). This equality, for x = 0 gives

(0; y)(0; 0) = (0; �y) ) a := (0; 1) = (0; 2)

while for y = 0 gives

(x; 0)(�x; x) = (x; 0) ) 1 = (�x; x) = (1; �1) = (�1; 1)

De�ne b := (1; 0) and c := (�1; 0). It is long but trivial to check there are no extra
relations, so Unc = Free(a; b; c).

If we consider the solution � = ��1 then equations (UncQ1-3) are

(UncQ1) (x; y)(x; z) = (�x � xy2; z)(x; y)
(UncQ2) (�x � xy2; x) = 1
(UncQ3) (�x � xz2; �y � yz2) = (x; y)

(UncQ2) says 1 = (x; x) = (�x; x), so 1 = (0; 0) = (1; 1) = (2; 2) = (1; �1) = (�1; 1).
Equation (UncQ3) says (�x; �y) = (x; y), so we only have 2 generators: a := (1; 0) =
(�1; 0) and b := (0; 1) = (0; �1). Equation (UncQ1) is trivial if x = 0 or y = 0 or z = 0,
so we conclude Unc(�) = Free(a; b).

(anti-ip)
‘

f0g: �(x; y) = (y + x2y; x + xy2)

The �xed points are (0; 0), (2; 1) and (1; 2), so (Unc3) says 1 = (0; 0) = (2; 1) = (1; 2).
(Unc2) gives

(y + x2y; z + (x + xy2)2z) = (y; z)
Notice that in Z3 we have (1 + y2)2 = 1 � y2 + y4 = 1, so z + (x + xy2)2z = z + x2z;
hence, this relation says (y(1 + x2); z(1 + x2)) = (y; z), which is equivalent to

(�y; �z) = (y; z)

Finally (Unc1) gives (x; y)(x(1+y2); z) = (x; z(1+y2))(x(1+z2); y(1+z2)), or equivalently

(x; y)(x; (1 + y2)z) = (x; z(1 + y2))(x; y)

So, the list of relations is
8
<

:

(x; y)(x; z0) = (x; z0)(x; y)
(x; y) = (�x; �y)

1 = (0; 0) = (1; 2) = (2; 1)

We conclude that the list of generators of Unc is a = (0; 1) = (0; 2), b = (1; 0) = (2; 0)
and c = (1; 1) = (2; 2), and the relation is bc = cb: Unc = Free(a; b; c)=(bc = cb).
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Wada: �(x; y) = (�y; x � y) (X = Z3)

The �xed points are (x; �x), that is (0; 0); (1; 2); (2; 1), so (0; 0) = (1; 2) = (2; 1) = 1.
Conditions (Unc1-2) are:

(x; y)(x � y; z) = (x; �z)(x + z; y � z)

(�y; �z) = (y; z)

so, for x = z = 0 we have

(0; y)(�y; 0) = (0; 0)(0; y) ) (�y; 0) = 1 ) (1; 0) = (�1; 0) = 1

It remains to consider a := (0; 1) = (0; �1) and b := (1; 1) = (�1; �1). If z = �x then

(x; y)(x � y; �x) = (x; x)(0; y + x)

so, for y = 0 we get (x; 0) = (x; x)(0; x), and setting x = 1 we have 1 = a:b. We conclude
Unc = hai �= Z.

For the inverse solution: �(x; y) = (y � x; �x), the �xed points are the same, so
(0; 0) = (1; 2) = (2; 1) = 1. Conditions Unc1-2 are

�
(x; y)(�x; z) = (x; z � y)(�x; �y)

(y � x; z + x) = (y; z)

Unc2 says that (x; y) � (0; y + x), so we have two generators: a := (1; 0) = (0; 1) = (2; 2)
and b := (1; 1) = (0; 2) = (2; 0), and condition Unc1 is equivalent to

(0; y + x)(0; z � x) = (0; z � y + x)(0; �y � x)

If x = z then (0; y + x)(0; 0) = (0; �y � x)(0; �y � x), so a = b2 and b = a2, hence

a4 = a ) a3 = 1

One can check that there are no extra relations, so Unc = ha : a3 = 1i.

3.2.3 Tables

We collect the information in the following tables:

X �(x; y) order #� \ (X � X)� Unc

Zn (y; x) 2 n �n(Zn�1)
Zn (y + 1; x � 1) 2 0 Zn�1

In particular, for cardinal 2, Unc(Flip) �= Z � Z, Unc(a-Flip) �= Z. For cardinal 3,
X = Z=3Z = f0; 1; 2g = f0; 1; �1g, some examples are:
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name formula order Unc #� \ (X � X)�

�(x; y) = of �
ip BQ3

1 (y; x) 2 Z2 � Z2 � Z2 3
a-ip [ f0g BQ3

2 (y + x2y; x + xy2) 2 Z � Z2 1
�(x) = �x BQ3

7 (�y; �x) 2 Z � Z2 1
involutive Z3 BQ3

10 (y + 1; x � 1) 2 Z2 0
�D3 BQ3

8 (y; x / y)
(y; �y � x) 3 Z � Z 3

�D3 BQ3�
8 (y /�1 x; x)

(�y � x; x) 3 1 3
�W ada BQ3

4 (�y; x � y) 3 Z 1
�W ada BQ3�

4 (y � x; �x) 3 ha : a3 = 1i 1
�Q3 BQ3

6 (y; �x � xy2) 4 Z � Z � Z 3
�Q3 BQ3�

6 (�y � x2y; x) 4 Z � Z 3

Notice that in this table, Unc distinguish � from � (as isomorphism class of solution of
the YBeq) in all cases where �(2) 6= Id.

Also we have described a procedure that can be implemented in a computer program:

1. Add to the set X �X a new element \1" and begin to de�ne an equivalence relation
(x; s(x)) � 1.

2. from the second condition, add (y; z) � (�(1)(x; y); �(1)(�(2)(x; y); z)) to the equiv-
alence relation.

More precisely, given a list of subsets of (X�X)
‘

f1g whose union is (X�X)
‘

f1g
(if this is not the case we add the sets f(x; y)g to the list) one can easily give an
algorithm producing the partition of (X �X)[f1g corresponding to the equivalence
relation generated by the list of subsets: for each pair of subsets of the list, with
non-trivial intersection, we replace these two subsets by their union, run over all
di�erent pairs, and iterate until saturate. We call classes this list of subsets.

3. From the data classes, choose representatives (if the list of subsets is ordered and
their members are ordered, just pick the �rst member for each element of the list).
Write down all cocycle equations, in terms of these representatives.

4. Eliminate the trivial equations, and

� for any cocycle equation where 1 appears, in case one found a:1, replace it by
1:a, so we do not count twice the same equation.

� For any cocycle equation of the form ac = bc or ca = cb, add a � b and
recalculate the equivalence relation that it generates.

With the new data classes go to step 3, and iterate the process until it stabilizes.
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The set of classes containing 1 is called S, this is a list of trivial elements in Unc. A

set of representatives of the other classes of elements gives a set of generators of Unc. The
remaining non-trivial 2-cocycle equations, written in terms of these representatives, give
a set of relations. This algorithm produces a relatively small set of generators, and all
the relations between them. We have implemented this algorithm in G.A.P.

Taking the list of biquandles of cardinality 3 from Bartholomew and Fenn’s list, adding
the inverse solutions (when they are not isomorphic), we obtain the table below.

We remark that the procedure gives not only the number of generators, but the full
equivalence class, we omit the full data in the table just for space considerations. We
also add to the table the order of �, and the number of �xed points on the diagonal
� := f(x; x) : x 2 Xg, for instance, �� = � if X is a quandle.

name � generators equations order #��

of Unc of �
flip BQ3

1 6 f2f1 = f1f2; f4f3 = f3f4; 2 3
f6f5 = f5f6;

a-flip [ f1g BQ3
2 3 f3f2 = f2f3; 2 1

BQ3
3 3 � 4 1

BQ3�
3 3 � 4 1

Wada(Z3) BQ3
4 2 f2f1 = 1; 3 1

inv: Wada(Z3) BQ3�
4 2 f1f1 = f2; f2f2 = f1 3 1

BQ3
5 3 f2f1 = f1f2; 2 3

Q3 BQ3
6 3 � 4 3

inverse Q3 BQ3�
6 3 � 4 3

(x; y) 7! (-y; -x) BQ3
7 3 f3f2 = f2f3; 2 1

D3 BQ3
8 6 f1f5 = f2; f2f3 = f1; f3f6 = f4; 3 3

f4f1 = f3; f5f4 = f6; f6f2 = f5; 3
inverse D3 BQ3�

8 0 � 3 3
BQ3

9 2 f2f2 = f1; f1f1 = f2; 3 0
BQ3�

9 0 � 3 0
involutive(Z3) BQ3

10 2 f1f2 = f2f1 2 0

We remark that for some cases (e.g.: BQ4;8;9) the invariant Unc distinguishes between
� and �. For BQ3

3, the generators are the same in the strong sense that the equivalent
classes of generators (as equivalent classes in X � X) are the same, the relations are also
the same (no relation at all), so they will give the same knot/link invariant, even though
� and � are non isomorphic biquandle solutions.

The computer program gives the set of generators and relations in a reasonable human
time for biquandles of cardinality 12 or less. As a matter of numerical experiment, the
groups associated to the inverse solution of bialexander solution on Zm, for s = �1, and
t = 1, are cyclic of order m (in a non trivial way) if m = 3, 5, 7, 11, 13 (and much more
complicated groups for m = 4; 6; 8; 9; 10; 12). We don’t know if this is a general fact for
all primes p.
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If (X; /) is a quandle then �(x; y) = (y; x/y) is a biquandle, and condition Unc2 is trivial.
But if we consider the inverse solution: �(x; y) = (y /�1 x; x) then condition (Unc2) is
not trivial, we have the relations

(x; y)(x; z) = (x; z /�1 y)(x; y)

(y /�1 x; z /�1 x) = (y; z)

(x; x) = 1

We see that, in presence of the second identity, the �rst one can be modi�ed into

(x; y)(x; z) = (x / y; z)(x; y) (UncQ)

or also (x / z; y / z)(x; z) = (x / y; z)(x; y). Notice that (UncQ), with x = z, says

(x; y)(x; x) = (x / y; x)(x; y) ) (x; y) = (x / y; x)(x; y) ) 1 = (x / y; x)

This equation, for x = y, gives 1 = (x / x; x) = (x; x). That is, 1 = (x / y; x) implies the
type I condition. So, we may list a set of relations for Unc(�) in the following way

8
<

:

(x; y)(x; z) = (x / y; z)(x; y) (UncQ1)
(x / y; x) = 1 (UncQ2)

(x / z; y / z) = (x; y) (UncQ3)

3.3 The reduced UNC

We begin with the trefoil example: �rst, if one wants to color the trefoil, one needs a
solution (X; �) having elements (x0; y0) such that �3(x0; y0) = (x0; y0). One may use
the solution given by D3, but if we color using this quandle the induced invariant in
Unc(D3) = (1; 2)(2; 3)(3; 1) = 1 2 Unc. If one changes the colors (always in D3) one always
get the trivial invariant in Unc and that is because � : D3 � D3 ! Unc is a coboundary.
This well-know fact can be seen as a general result that is helpful for simplifying the
computation of Unc, replacing it by another (in general much smaller) group, with a
similar universal property.

We recall that if f : X � X ! G is a (type I) cocycle,  : X ! G is a function
satisfying (x) = (sx) and (y) = (�1(x; y)), then f(x; y) := (x)f(x; y)(�2(x; y))�1

is also a (type I) 2-cocycle, and the knot/link invariant produce by f is the same as the one
produced by f . In particular, one can consider the universal 2-cocycle � : X � X ! Unc
and try to see if there is a cohomologous one, simpler that �. This procedure leads to a
construction that we call reduced universal group:

Theorem 111. Let  : X ! Unc be a (set theoretical) map such that (x) = (s(x)),
(y) = (�1(x; y)) and � : X � X ! Unc given by

�(x; y) = (x)�(x; y)(�(2)(x; y))�1:
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De�ne S = f(x; y) 2 X � X : �(x; y) = 1 2 Uncg � X � X and consider the group U

nc
de�ned by

U
nc := Unc= < �(x; y)=(x; y) 2 S >

Denote [x; y] 2 U
nc the class of (x; y) and p : X � X ! U

nc the map p(x; y) = [x; y]. The
map p has the following universal property:

� p is a 2-cocycle.

� for any group G and 2-cocycle f : X �X ! G, there exists a cohomologous map f�

and a group homomorphism f : U
nc ! G such that f� factorizes through p, that

is f� = f � p.

Proof. The fact that p is a 2-cocycle is immediate. By Proposition (104) we obtain the
existence of the unique group morphism f such that

X � X
�

��

f // G

Unc

9! f

;;wwwww

commutes. De�ne f� := f � �; in diagram:

X � X
� //

f �
$$II

III
III

II
Unc

f
��

G

We have

f�(x; y) = f � �(x; y) = f � (x)f � �(x; y)
�
f � (�2(x; y))

��1

so f� and f � � = f are cohomologous. Using again the universal property of Unc, f�

factorizes through Unc, hence there exists a group homomorphism f� : Unc ! G such
that f� = f� � �.

On the other hand, since �(S) = 1 we have f�(S) = f(�(S)) = f(1) = 1, but also
f�(S) = f�(�(S)), so the group homomorphism f� : Unc ! G induces a map

f : U
nc = Unc=�(S) ! G

such that, if
p0 : Unc ! Unc=�(S)

is the canonical group projection to the quotient (p = p0 � �), then f� = f � p0. In
diagram:

X � X

f �
$$HH

HHH
HHH

HH
� //

p

%%
Unc

9!f �

��

p0
// Unc=�(S)

9f 

yyt t t t t
U

nc

G
Clearly f� = f � p.
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For a given , the associated U

nc is called the reduced universal group.

Corollary 112. Given a biquandle X, if there exists  : X ! Unc such that U
nc = 1

then every 2-cocycle in X is trivial.

An example of the above situation is given by some Alexander biquandles.

3.3.1 The Alexander biquandle
Let A = Z[s; t; s�1; t�1], X an A-module and � : X � X ! X � X given by the matrix

�
0 t
s (1 � st)

�

equivalently �(x; y) = (sy; tx + (1 � st)y). The condition of being a �xed point is x = sy:

�(sy; y) = ((sy); t(sy) + (1 � st)y) = (sy; y)

Cocycle conditions are
8
<

:

(x; y)(tx + (1 � st)y; z) = (x; sz)(tx + (1 � st)sz; ty + (1 � st)z)
(sy; sz) = (y; z)
(sy; y) = 1

Following M. Gra~na, we can adapt to the biquandle situation the proof for the quandle
case (see Lemma 6.1 of [G]). Consider  : X ! Unc given by (x) = (0; cx), where
c = (1 + st)�1. Notice that c is an endomorphism commuting with s, and (sy; sz) =
(y; z) 2 Unc, so

(x) = (0; cx) = (s0; scx) = (0; csx) = (sx)

hence, we can use  in order to get another 2-cocycle, cohomologous to �.

�(x; y) := (x)(x; y)(�(2)(x; y))�1

where �(x; y) = (sy; tx + (1 � st)y), so

�(x; y) = (0; cx)(x; y)
�
0; c(tx + (1 � st)y)

��1

in particular

�(0; y) = (0; 0)(0; y)(0; c(1 � st)y)�1 = (0; y)(0; y)�1 = 1

so, the class of (0; y) = 1 in U
nc.

Lemma 113. Let X be an Alexander birack such that (1 � st) is invertible in End(X).
If we de�ne  as above, then, the following identities hold in U

nc:

1. (x; 0) = 1 for all x, and

2. (a; b) = (a; b + a) for all a; b 2 X.
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Proof. 1. From the cocycle condition,

(x; y)(tx + (1 � st)y; z) = (x; sz)(tx + (1 � st)sz; ty + (1 � st)z)

taking x = 0 = z we get

(0; y)((1 � st)y; 0) = (0; 0)(0; ty)

but we know that (0; �) = 1 in U
nc, so ((1 � st)y; 0) = 1, and because (1 � st) is a unity

we conclude (x; 0) = 1 for all x.

2. Using the cocycle condition

(x; y)(tx + (1 � st)y; z) = (x; sz)(tx + (1 � st)sz; ty + (1 � st)z)

and clear z from tx + (1 � st)sz = 0, that is, set z = �t
(1�st)sx, then

(x; y)
�

tx + (1 � st)y;
�t

(1 � st)s
x
�

=
�

x; s
�t

(1 � st)s
x
�

(0; ty + (1 � st)z)

or
(x; y)

�
tx + (1 � st)y;

�t
(1 � st)s

x
�

=
�

x;
�t

(1 � st)
x
�

(�)

clearing y = �t
1�stx, get

�
x;

�t
1 � st

x
�

(0; z) = (x; sz)
�

tx + (1 � st)sz; t
�t

1 � st
x + (1 � st)z

�

or �
x;

�t
1 � st

x
�

= (x; sz)
�

tx + (1 � st)sz;
�t2

1 � st
x + (1 � st)z

�
(y)

in particular, using RHS of (*) = LHS of (y) with y = sz we get

(x; sz)
�

tx + (1 � st)sz;
�t

(1 � st)s
x
�

= (x; sz)
�

tx + (1 � st)sz;
�t2

1 � st
x + (1 � st)z

�

so �
tx + (1 � st)sz;

�t
(1 � st)s

x
�

=
�

tx + (1 � st)sz;
�t2

1 � st
x + (1 � st)z

�

Now we simply change variables. Call a = tx + (1 � st)sz, then (1 � st)z = a � t
sx,

replacing �
a;

�t
(1 � st)s

x
�

=
�

a;
�t2

1 � st
x + a �

t
s

x
�

or �
a;

�t
(1 � st)s

x
�

=
�

a;
�t

(1 � st)s
x + a

�

Call b = �t
(1�st)sx (notice that (x; y) 7! (a; b) is bijective) and get (a; b) = (a; b + a).

Inductively (a; b) = (a; b + na) 8n 2 N; if a generates X additively then

(a; b) = (a; 0) = 1 8b 2 X:
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Corollary 114. If p is an odd prime, X = Fp, and s�1 6= t 2 Fp nf0g, then every cocycle
in the Alexander’s birack in X is cohomologous to the trivial one. In other words, the
reduced Universal group U

nc is trivial. In particular every 2-cocycle in D3 is trivial.

Remark 115. This generalizes the result of Gra~na in [G] where he proves the quandle
case, that is, the case s = 1.

A biquandle example that is not a quandle is the following:

Corollary 116. Let X = Z3, then Wada’s biquandle agree with bialexander biquandle
(s = �1, t = 1, 1 � st = �1 2 Z3), so U

nc = 1 and every noncommutative 2-cocycle is
trivial. In particular, for any coloring with this biquandle, the corresponding element in
Unc is trivial.

Remark 117. For the inverse solution � of of Wada’s biquandle (with G = Z3), the group
Unc(�) = ha : a3 = 1i is not trivial.

Remark 118. In the previous corollary, the hypothesis jXj being prime was essential, the
smallest case where it fails is X = Z4, as an example of computation we calculate the
reduced universal group for X = Z4, s = �1 and t = 1.

3.3.2 Reduced Unc in computer

It is clear that the procedure that computes Unc in the computer can be trivially adapted
for the reduced version, just adding as input a given set S0 � X � X, and begin with
S = S0 [ f(x; sx) : x 2 Sg, instead of simply S = f(x; sx) : x 2 Xg. The procedure will
actually compute a list of generators and relations of the quotient group Unc=(S0), so it
could be also used to produce other quotients, not only U

nc. The advantage of U
nc is that

it gives the same knot/link invariant as Unc, so in order to �nd suitable S0’s one can do
the following:

� In order to produce functions  : X ! Unc with (x) = (sx), consider the equiv-
alence relation on X induced by s, that is the equivalence relation generated by
x � s(x). Denote x the class of x modulo s.

� for all pairs (x; y) 2 X � X, consider the coboundary relation

f(x; y) = (x)f(x; y)(�(2)(x; y))�1

if x = �(2)(x; y) then f(x; y) is conjugated to f(x; y), so

f(x; y) = 1 () f(x; y) = 1;

so it is clear that (x; y) can not be included in S because of .

� if x 6= �(2)(x; y) then we can choose  : X ! Unc such that (z) = (sz) for all z
and (x)f(x; y) = (�(2)(x; y)).
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By the above considerations, it is useful to list all tuples

(x; (x; y); �(2)(x; y))

with x 6= �(2)(x; y). For any of these elements, add the pair (x; �(2)(x; y)) to a set f \used"
elements, so we continue with the others with (x; (x; y); �(2)(x; y)) with x 6= �(2)(x; y) but
(x; �(2)(x; y)) not \used". This procedure is easily implemented in G.A.P. For example,
for the Dihedral quandle gives

[0; [0; 1]; 2]; [0; [0; 2]; 1]; [1; [1; 0]; 2]]

so we can choose (0) = 1, (2) = [0; 1], (1) = [0; 2] and hence de�ne S0 := f[0; 1]; [0; 2]g.
With this entry, the procedure computing U

nc gives S = X �X, that is U
nc(D3) is trivial.

We give the list of generators and relations of U
nc for biquandles of cardinality 3, with

the corresponding S0.

name � generators equations
of U

nc S0

flip BQ3
1 6 f2f1 = f1f2; f4f3 = f3f4; �

f6f5 = f5f6;
a-flipf2; 3g [ f1g BQ3

2 3 f3f2 = f2f3; �
BQ3

3 3 � �
BQ3�

3 3 � �
Wada(Z3) BQ3

4 0 � f[1; 2]g
inv: Wada(Z3) BQ3�

4 1 f 3
1 = 1 �

BQ3
5 2 � f[1; 3]g

Q3 BQ3
6 2 � f[2; 1]g

inverse Q3 BQ3�
6 3 � �

(x; y) 7! (-y; -x) BQ3
7 3 f3f2 = f2f3; �

D3 BQ3
8 0 � f[1; 2]; [1; 3]g

inverse D3 BQ3�
8 0 � �

BQ3
9 1 f 3

1 = 1; �
BQ3�

9 0 � �
involutive(Z3) BQ3

10 2 f1f2 = f2f1 �

3.3.3 Reduced group for Alexander biquandle in Z4

Take s = �1 and t = 1. We will compute the reduce universal group for X = (Z4; �)
where �(x; y) = (�y; x + 2y). Cocycle conditions are

8
<

:

(x; y)(x + 2y; z) = (x; �z)(x � 2z; y + 2z)
(�y; �z) = (y; z)

(�x; x) = 1

The �xed points are f(0; 0); (3; 1); (2; 2); (1; 3)g. Considering

�(x; y) = (x)(x; y)(x + 2y)�1
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we have, in particular

�(0; y) = (0)(0; y)(2y)�1

De�ne
(0) := 1; (2) := (0; 1)

and (1) = (3) (so that (x) = (sx)). We get �(0; 1) = 1, hence (0; 1) = 1 in U
nc,

and consequently (s0; s1) = (0; 3) = 1. The values of (x; y) in U
nc, considering also the

equality (x; y) = (sx; sy) are of the form

(x; y) 0 1 2 3
0 1 1 f 1
1 c b d 1
2 e a 1 a
3 c 1 d b

The cocycle condition for x = z = 0 gives (0; y)(2y; 0) = (0; y), so (2; 0) = 1.
The cocycle condition for x = 2 gives

(2; y)(2 + 2y; z) = (2; �z)(2 � 2z; y + 2z):

If also y = 0 y z = 1
(2; 0)(2; 1) = (2; �1)(0; 2)

hence (2; 1) = (2; �1)(0; 2). But (u; v) = (�u; �v), then (2; 1) = (2; �1) and so (0; 2) = 1.
The cocycle condition is trivial for y = �x and for z = �y. If we omit this cases,

considering the equalities (0; 1) = (0; 3) = (2; 0) = (0; 2) = 1 and replacing (0; 3) by
(0; 1), (2; 3) by (2; 1) and (3; 3) by (1; 1), the complete list of equations is

(1; 0) = (1; 1)(1; 2);

(1; 0)(1; 1) = (1; 2);

(1; 2) = (1; 1)(1; 0);

(1; 2)(1; 0) = (1; 0)(1; 2);

(1; 2)(1; 1) = (1; 0);

(1; 1)(1; 0) = (1; 0)(1; 1);

(1; 1)(1; 2) = (1; 2)(1; 1):

Calling a := (2; 1), b := (1; 1) and d := (1; 2) we get

(1; 0) = bd;

(1; 0)b = d;

d = b(1; 0);

d(1; 0) = (1; 0)d;

db = (1; 0);

b(1; 0) = (1; 0)b;
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bd = db:

Clearly the equations (1; 0) = bd and bd = db, but also, plugging (1; 0) = bd
into the second (or third) equation, we get b2d = d, so b2 = 1. We conclude U

nc =
free(a; b; d)=(bd = db; b2), and the table with the values of the cocycle is

(x; y) 0 1 2 3
0 1 1 1 1
1 bd b d 1
2 1 a 1 a
3 bd 1 d b

3.3.4 Reduced Universal group of 4-cycles in S4

Another example of application of U
nc is the following: consider the quandle

Q = f(1; 2; 3; 4); (1; 2; 4; 3); (1; 3; 4; 2); (1; 3; 2; 4); (1; 4; 3; 2); (1; 4; 2; 3)g

that is, 4-cycles in S4, with quandle operation x / y = y�1xy. Recall that f : Q � Q !
Unc(Q) is cohomologous to f if there exists a function  : Q ! Unc such that

f(x; y) = (x)f(x; y)(x / y)�1

If we list (x; (x; y); �2(x; y)) without repeating \used" pairs (x; x / y), we get

[1; [1; 2]; 4]; [1; [1; 3]; 6]; [1; [1; 4]; 3]; [1; [1; 6]; 2]; [2; [2; 1]; 6]; [2; [2; 5]; 4];

[2; [2; 6]; 5]; [3; [3; 1]; 4]; [3; [3; 4]; 5]; [3; [3; 5]; 6]; [4; [4; 2]; 5]; [5; [5; 2]; 6]

If we de�ne (1) = 1, (4) = [1; 2], (6) = [1; 3], (3) = [1; 4], (2) = [1; 6], (5) =
(2)[2; 6] then S0 = f[1; 2]; [1; 3]; [1; 4]; [1; 6]; [2; 6]g. If we compute Unc using our algo-
rithm, it gives 30 generators with with 108 equations, while U

nc has only 5 generators
with 20 equations

1 = f1f3; f2f4 = 1; f3f1 = 1; f5f1 = 1; f1f5 = 1;

f1f1 = f2; f1f1 = f4; f1f1 = f3f5; f5 = f1f4; f1 = f2f5;

f1 = f3f4; f2f1 = f3; f4f3 = f1; f4f1 = f5; f5f2 = f1;

f1f2 = f3; f1f2 = f2f1; f1f3 = f3f1; f1f4 = f4f1; f1f5 = f5f1;

Call a := f1, then f3 = f5 = a�1, f2 = f4 = a2, and replacing these values into the 20
equations, the only remaining condition is a4 = 1, we conclude U

nc = ha : a4 = 1i
This quandle is interesting because it distinguish (using U

nc and its canonical cocycle)
the trefoil from its mirror image: there are 30 colorings, 6 of them give trivial invariant
both for the trefoil and its mirror (these are the 6 constant colorings), but the other 24
colorings gives a�1 for the trefoil and a for its mirror, and clearly a 6= a�1 in ha : a4 = 1i.
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3.4 Some knots/links and their n.c. invariants
There are 3 quandles of size 3, none of them give nontrivial invariant for knots up to 11
crossings. On the other hand, using the biquandle BQ3

2=aip
‘

f1g, from the list of 84
knots with less or equal to 10 crossings, all of them have exactly 3 di�erent colorings, but
there are 44 with nontrivial invariant. For instance, �gure eight has nontrivial invariant
for tree biquandles of size 3: BQ3

2=aip
‘

f1g, BQ3
7: �(x; y)=(�y; �x), and BQ3

9.

3.4.1 Alexander biquandle on Z4; Z8

The Borromean link has trivial linking number, but has only 3 colorings using D3, so we
distinguish from three separated unknots. The Unc invariant are trivial for all biquandles
of size 3.

On the other hand, for the biAlexander biquandle on Z4 with s = �1 and t = 1, even
though there are 64 colorings, they give non trivial invariants:

Recall Unc=Free(a; b; f4)=(b2 = 1; ab = ba), the invariant for the Borromean link is
trivial in 40 colorings, but gives twice (�; �; 1), (�; 1; �), (1; �; �), (1; �; ��1), (�; 1; ��1),
(�; ��1; 1) on the others, with � = a and � = a�1.,

In a similar way, Whitehead’s link has trivial linking number, give trivial invariant for
all biquandles of size 3 (even though non-trivial number of colorings), with bialexander on
Z4 also give trivial invariant, but with with biAlexander on Z8 one has non trivial invari-
ants. First we compute U

nc for Z8, t = 1, s = �1, with subset S0 = f[1; 2]; [1; 3]; [2; 2]g
(it may be seen that this is a subset corresponding to a convenient ). The algorithm
gives as answer that U

nc has 4 generators:

f1 = (2; 1) = (2; 7) = (4; 1) = (4; 7) = (6; 1) = (6; 3) = (8; 1) = (8; 3);

f2 = (2; 3) = (2; 5) = (4; 3) = (4; 5) = (6; 5) = (6; 7) = (8; 5) = (8; 7);

f3 = (2; 4) = (2; 6) = (4; 2) = (4; 4) = (6; 6) = (6; 8) = (8; 4) = (8; 6);

f4 = (3; 2) = (3; 4) = (3; 6) = (3; 8) = (7; 2) = (7; 4) = (7; 6) = (7; 8);

Trivial elements are

1 = [1; 1] = [1; 2] = [1; 3] = [1; 4] = [1; 5] = [1; 6] = [1; 7] = [1; 8] = [2; 2] = [2; 8] = [3; 1]

= [3; 3] = [3; 5] = [3; 7] = [4; 6] = [4; 8] = [5; 1] = [5; 2] = [5; 3] = [5; 4] = [5; 5] = [5; 6]

= [5; 7] = [5; 8] = [6; 2] = [6; 4] = [7; 1] = [7; 3] = [7; 5] = [7; 7] = [8; 2] = [8; 8]
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with relations

f1f3 = f2; f3f1 = f2; f3f2 = f1; f3f3 = 1;

f2f1 = f1f2; f2f2 = f1f1; f2f3 = f1; f3f1 = f1f3; f3f2 = f2f3

Calling a := f1, b := f3, we get

ab = f2; f2a = af2; f2f2 = aa; f2b = a; ba = f2; ba = ab; bf2 = a; bf2 = f2b; bb = 1

so b2 = 1, and f2 = ab = ba. we conclude U
nc = Free(a; b; f4)=(b2 = 1; ab = ba).

If we use this biquandle with Whitehead’s link we get 64 colorings, 32 of them give
trivial invariant, 16 colorings give (b; 1) and 16 colorings give as invariant (1; b).

3.5 Final comments
In the examples we saw, very often the group U

nc is non commutative, but we haven’t
found a knot/link with genuine non commutative invariant, that is, for example a com-
mutator of two non commuting elements of U

nc. Also, sometimes U
nc have pairs of

commuting elements and other non commuting, for instance,

U
nc(biAlex(Z8)) = Free(a; b; f4)=(b2 = 1; ab = ba);

but using this biquandle, computing the invariants for knots and links with less than 11
crossings, the elements a and b do not \mix" with f4. We don’t know if this is a general
fact or not, that is, if the invariant obtained is the same if we use the abelianization of
U

nc.
If U

nc happens to be abelian, then the information we get with the non commutative
invariant is essentially the state-sum invariant for the canonical cocycle � : X�X ! U

nc.
If this is the case (or if one considers the abelianization of U

nc), then our construction can
be seen as a natural and nontrivial way to produce interesting 2-cocycles, so that sate-
sum invariant becomes a procedure with input only a biquandle, and not a biquandle plus
a 2-cocycle, because a natural 2-cocycle is always present when one gives a biquandle.

Another natural question about state-sum invariant for biquandles is how to generalize
it for 2-cocycles with values in nontrivial coe�cients, which is known for quandles, but
unknown for biquandles. In order to answer this question, it should be convenient to
have an action of some group (to be de�ned) into the abelian group of coe�cients where
the 2-cocycle takes values, and if one imitates the quandle case, one should de�ne, for
each crossing, an exponent (in this group) that twist the value of the cocycle at that
crossing. If the exponent is well-de�ned, that is, for instance it remains unchanged under
Reidemeister moves of other crossings, then essentially it must be a non commutative
2-cocycle. The group Unc was the candidate, and in fact this was origin of the present
work. In the quandle case there is a natural map Unc(X) ! GX , where GX is the group
generated by X with relations xy = zt if �(x; y) = (z; t); the map Unc(X) ! GX is simply
determined by (x1; x2) 7! x2. So, for quandles, GX-modules are natural candidates for
coe�cients (see [CEGS]), or also Unc(X)-modules, or quandle-modules as considered in
[AG]. We hope 2-cocycles with values in Unc-modules will allow to de�ne more general
state-sum invariants, but at the moment we don’t know how, we end remarking that for
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biquandles, there is no general well-de�ned map Unc(X) ! GX , and Unc(X) sometimes
is the trivial group.



Chapter 4

Gap

En este cap��tulo mostramos algunos programas/funciones escritos el lenguaje GAP que
utilizamos a la hora de buscar ejemplos.

In this chapter we show some of the programs we wrote in Gap.

In [FG] one can found the GAP programs computing colorings, U
nc, and invariants

for knots and links given as planar diagrams.
In Gap, comments are preceded by # .
Given an oriented projection of a knot, a planar diagram (pd) can be constructed as

follows: start labeling a (any) semiarc with number one and continue labeling (2,3, and
so on til return to 1) in the orientation of the knot. For every crossing c (start looking al
the incoming underarc and continue reading the crossing counterclockwise)

x
>>

>

��>
>>

y

���
���

��

z t

write [x; z; t; y] to get a not signed pd, or [sign(c); [x; z; t; y]]. To get a pd, make a list
with all the crossings.

Note that the orientation of the over arc does not change the (not signed) planar
notation of the crossing.

Some examples of knot pd’s:
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89
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N41 := [[1; [1; 7; 2; 6]]; [1; [5; 3; 6; 2]]; [�1; [3; 8; 4; 1]]; [�1; [7; 4; 8; 5]]];

Another example:

N51 := [[�1; [1; 6; 2; 7]]; [�1; [7; 2; 8; 3]]; [�1; [3; 8; 4; 9]]; [�1; [5; 10; 6; 1]];

[�1; [9; 4; 10; 5]]];

A biquandle is a function r : X�X ! X�X that in particular (due to non degeneracy
condition) can be given as a list of permutations. If

r(x; y) = (�x(y); �y(x))

then f�xgx2X is a list of permutations, called lperms, and similarly rperms for �y. For
example, if r(x; y) = (y; x) (the ip) then rpermx = lpermx = id for all x. Then the data
of this solution, for X = f1; 2; 3g is encoded by

flip:=rec(lperms=[[1,2,3],[1,2,3],[1,2,3]],rperms=[ [1,2,3],[1,2,3],
[1,2,3]])

Given a group G, then r(x; y) = (xy�1x�1; xy2) is a biquandle solution, due to Wada.
The function \wada" computes this biquandle. For example

gap> wada(CyclicGroup(3));
rec(lperms:=[[1,3,2],[1,3,2],[1,3,2]],
rperms:=[[1,2,3],[3,1,2],[2,3,1]],size:=3,
labels:=[<identity>of...,f1,f1^2],s:=[1,3,2])

The Wada function is given by:

#Wadda's solution
wada := function(group)

local x, y, e, s, lperms, rperms;
e := Elements(group);
s := [];
lperms := NullMat(Size(group), Size(group));
rperms := NullMat(Size(group), Size(group));
for x in group do

for y in group do
lperms[Position(e,x)][Position(e,y)] :=Position(e,x*I nverse(y)*
Inverse(x));
rperms[Position(e,y)][Position(e,x)] :=Position(e,x*y ^2);

od;
od;
for x in e do

Add(s, Position(e, Inverse(x)));
od;

return rec(lperms:=lperms,rperms:=rperms,size:=Order (group),labels:=e,
s:=s);

end;
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If R is a ring, s; t two commuting units, and M is an R-module then M is a biquan-

dle via r(x; y) = (sy; tx + (1 � st)y), it is called the Alexander biquandle. Function
\bialexander" computes this biquandle for M = R = Z=mZ. The command is

bialexander(m,s,t)

For example:

gap>bialexander(4,-1,1);
rec(lperms:=[[1,4,3,2],[1,4,3,2],[1,4,3,2],[1,4,3,2 ]],
rperms:=[[1,2,3,4],[3,4,1,2],[1,2,3,4],[3,4,1,2]],
size:=4,labels:=<enumeratorof(Integersmod4)>,
s:=[1,4,3,2])

This function is given by

#Bialexander biquandle
bialexander := function(n, s, t)

local e, lperms, rperms, x, y, ss;
s := s*One(ZmodnZ(n));
t := t*One(ZmodnZ(n));
e := Enumerator(ZmodnZ(n));
lperms := NullMat(Size(e), Size(e));
rperms := NullMat(Size(e), Size(e));
for x in e do

for y in e do
lperms[Position(e,x)][Position(e,y)]:=Position(e,s* y);
rperms[Position(e,y)][Position(e,x)]:=Position(e,t* x+(1-s*t)*y);

od;
od;
ss := [ ];
for x in e do

Add(ss, Position(e, Inverse(s)*x));
od;

return rec(lperms:=lperms,rperms:=rperms,size:=n,labe ls:=e,s:=ss);
end;

If C is a subset of a group G, stable under conjugation, then r(x; y) = (y; y�1xy) is
a (quandle) solution, we call it \conj".

As an example:

gap> conj(ConjugacyClass(AlternatingGroup(4),(1,2,3)) );
rec(lperms:=[[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4 ]],
rperms:=[[1,4,2,3],[3,2,4,1],[4,1,3,2],[2,3,1,4]],
size:=4,labels:=[(2,4,3),(1,2,3),(1,3,4),(1,4,2)],
s:=[1,2,3,4])

Function \conj" is given by:
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conj := function(conjclass)
local x, y, e, s, lperms, rperms;
e := Elements(conjclass);
s := [];
lperms := NullMat(Size(conjclass), Size(conjclass));
rperms := NullMat(Size(conjclass), Size(conjclass));
for x in conjclass do

for y in conjclass do
lperms[Position(e, x)][Position(e, y)] := Position(e, y) ;
rperms[Position(e, y)][Position(e, x)] := Position(e,

Inverse(y)*x*y);
od;

od;
for x in e do

Add(s, Position(e, x));
od;

return rec(lperms:=lperms, rperms:=rperms, size := Size( conjclass),
labels := e, s := s);

end;

If (X; r) is a biquandle, then the inverse function r�1 is also a biquandle. The function
\inversebiquandle" computes r�1 as biquandle: An example:

gap> inversebiquandle(oficialbiquandle(listbiquandles 5[47]));
rec(lperms:=[[1,2,4,3,5],[1,2,4,3,5],[1,5,3,4,2],[1 ,5,3,4,2],
[1,2,4,3,5]],
rperms:=[[1,5,3,4,2],[5,2,3,4,1],[1,5,3,4,2],[1,5,3 ,4,2],
[2,1,3,4,5]],
size:=5,labels:=[1,2,3,4,5],s:=[1,2,3,4,5])

First de�ne a function that will be used for \inversebiquandle":

r:=function (biq,x,y)
return [biq.lperms [x][y], biq.rperms [y][x]];
end;

Function \inversebiquandle" is de�ned as:

inversebiquandle:=function(biquandle)
local x,y,u,v,n,L,R;
n:=biquandle.size;
L := NullMat(n,n);
R := NullMat(n,n);
for x in [1..n] do

for y in [1..n] do
for u in [1..n] do

for v in [1..n] do
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if r(biquandle, x,y)=[u,v] then
L[u][v] := x;
R[v][u] := y;

fi;
od;

od;
od;

od;
return rec(lperms:=L, rperms := R, size := n, labels := biquan dle.labels,
s := biquandle.s);
end;

Function \colorings" considers all possible colorings of the semiarcs for a link/knot
over a given biquandle and eliminates the non compatible ones.

colorings := function(pd, biquandle)
local e, i, crossing, p, candidato, max, coloreos;
e := [1..biquandle.size];
i := 0;
max := Maximum(Flat(pd));
coloreos := [];
crossing := true;

for candidato in Iterator(Tuples(e, max)) do
if ForAny(pd, x->check_equation(x, candidato, biquandle) =false) then

continue;
else

Add(coloreos, candidato);
fi;

od;
return coloreos;

end;

Function \colormejor" does the same thing but coloring one crossing at a time and
adding one by one the rest of crossings, eliminating non compatible ones on the way.
Gives the same answer but is (a lot) faster. In both cases, the knot/link must be given
by a signed planar diagram.

Example:

gap>trefoil:=[[-1,[1,4,2,5]],[-1,[3,6,4,1]],[-1,[5, 2,6,3]]];
[[-1,[1,4,2,5]],[-1,[3,6,4,1]],[-1,[5,2,6,3]]]
gap>colormejor(trefoil,bialexander(3,1,-1));
[[1,1,1,1,1,1],[3,1,1,2,2,3],[2,1,1,3,3,2],
[3,2,2,1,1,3],[2,2,2,2,2,2],[1,2,2,3,3,1],
[2,3,3,1,1,2],[1,3,3,2,2,1],[3,3,3,3,3,3]]

Function \colormejor" is given by:
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colormejor := function(pd, biquandle)

local lista, n, c, colorprevio, colorviejo, candidatos, pr ecandidatos,
candidatoacumulado2,e, colnuevo, solocolor, ppd, colore os,
semiarcospasados, x, y, i, j, cn, candi_acum;
semiarcospasados:=[];
colorprevio:=[];
colnuevo:=[];
colorviejo:=[];
candi_acum:=[];
candidatoacumulado2:=[];
e := [1..biquandle.size];
#pait first crossing
candidatos:=[];
precandidatos:= [];
i:=0;
for x in e do

for y in e do
if pd[1][1]=1 then

precandidatos:=[
[pd[1][2][1],x],
[pd[1][2][2],r(biquandle, x,y)[1] ],
[pd[1][2][3],r(biquandle, x,y)[2] ],
[pd[1][2][4],y]
];

else
precandidatos:=[

[pd[1][2][1],r(biquandle, x,y)[2] ],
[pd[1][2][2],r(biquandle, x,y)[1] ],
[pd[1][2][3],x],
[pd[1][2][4],y]
];

fi;
i:=i+1;
candidatos[i]:=precandidatos;
precandidatos:=[];

od;
od;
semiarcospasados:=pd[1][2];
lista:=candidatos;
ppd:=Difference(pd,[pd[1]]);
for c in ppd do;
#esto pinta localmente cada cruce
j:=0;
candidatos:=[];
precandidatos:= [];

for x in e do



95
for y in e do

#this colors every crossing satisfying r
#without taking care if the semiarc appears in more than one cr ossing

if c[1]=1 then
precandidatos:=[

[c[2][1],x],
[c[2][2],r(biquandle, x,y)[1] ],
[c[2][3],r(biquandle, x,y)[2] ],
[c[2][4],y]
];

else
precandidatos:=[

[c[2][1],r(biquandle, x,y)[2] ],
[c[2][2],r(biquandle, x,y)[1] ],
[c[2][3],x],
[c[2][4],y]
];

fi;
j:=j+1;
colnuevo[j]:=precandidatos;
precandidatos:=[];
od;

od;
#finished painting with "colnuevo"

n:=Size(IntersectionSet(semiarcospasados,c[2]));
i:=0;
candidatoacumulado2:=[];
for colorviejo in lista do

for cn in colnuevo do
if Size(IntersectionSet(cn,colorviejo))=n then

i:=i+1;
candidatoacumulado2[i]:=UnionSet(cn,colorviejo);

fi;
od;

od;
lista:=candidatoacumulado2;
candidatoacumulado2:=[];
semiarcospasados:=UnionSet(semiarcospasados,c[2]);

od;
#transforms [[semicarco,color]..] in [[color],..]

solocolor:=[];
coloreos:=[];

for x in lista do
solocolor:=[];
for j in [1..Size(semiarcospasados)] do

for i in [1..Size(semiarcospasados)] do
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if x[i][1]=j then

solocolor[j]:=x[i][2];
fi;

od;
od;
Add(coloreos,solocolor);

od;
return(coloreos);
end;

The function \componentesconexas" gives the number of connected component of a
link up to four connected components.

Function n1 gives the �rst semiarc of the 2nd connected component, and function
\ns" gives the pair [�rst semiarc of the second component, �rst semiarc of the third
component]. The entry is always a planar diagram with sign.

Given a list of sets, \relationgenerated", returns the relation generated (as a partition)
on the union of these sets. As example:

gap>relationgenerated([[1],[2],[3,4],[5,6],[6,2],[7 ,1,4]]);

[[1,3,4,7],[2,5,6]]

Where the function is the following:

paste:=function(clases)
local i,j,c,cl,n;
cl:=clases;
for i in [1..Size(cl)] do

cl[i]:=UnionSet(cl[i],[]);
od;

cl:=UnionSet(cl,[]);
n:=Size(cl);
for i in [1..n] do

for j in [i+1..n] do
if j>Size(cl) then continue;
else
c:=IntersectionSet(cl[i],cl[j]);
if Size(c)>0 then
cl[i]:=UnionSet(cl[i],cl[j]);
if cl[i]=cl[j] then continue;
else cl:=Difference(cl, [cl[j]] );
fi;

fi;
fi;

od;
od;
return cl;
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end;

relationgenerated:=function(clase)
local i, cl;
cl:=clase;
for i in [1..Size(clase)] do
cl:=paste(cl);

od;
return cl;
end;

Function \unc" computes generators and relations of a given biquandle, together with
a prescribed set of trivial elements in X � X. Gives as answer the set of trivial elements
S, the equivalence classes (where any cocycle takes the same value) and the equations (in
terms of representatives of the classes) from the 2-cocycle condition.

First some auxiliary functions:

#sistem of representatives in a biquandle module
repclase:=function(biquandle)
local x, reps, igualdades;
igualdades:=[];

for x in [1..biquandle.size] do
Add( igualdades,[x,biquandle.s[x]] );

od;
reps:=relationgenerated(igualdades);
return reps;
end;

# this function has as input some equalites, some set of trivi al
# elements S, and a set of cocycle equations. The function
# evaluates the elements of S in the cocycle equaion, identif y elements
# that are equal, and get -if possible- new trivial elements
# (comming from equalities or from cocycle condition), and g et
# new equalities (from cocycle condition of type ab=ac, ba=c a, or sa=bs
# with s in S, etc) returns an enlarged set S, a new set of equali ties,
# and shorter list of cocycle conditions
New:=function(lista,clases)
local i, l, c, cl, lista2,lista3;
cl:=clases;
#find equalities cocycle eq.
lista2:=[];
for l in lista do #try to deduce new equalities

if l[1]=l[3] then
if l[2]=l[4] then continue;
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else
cl:=relationgenerated( UnionSet(cl,[[l[2],l[4]]]) );
#use the new equalitye to generate the new classes

fi;
elif l[2]=l[4] then

cl:=relationgenerated(UnionSet(cl,[[l[1],l[3]]]) );
else

lista2:=UnionSet(lista2,[l]);
fi;

od;

Returning to Unc, as input has a biquandle and a set S (so it can compute the reduced
Unc) the procedure is to iterate the function above.

unc:=function(biquandle,S)
local c, clases, i, j, x, y, z, A, d1 , d2, lista, n, lis, cob, cl, S2,
gam1,gam2,usados, News;

lista:=[];
A:=[];
#generate clases using condition 2
clases:=[];
n:=biquandle.size;
for x in [1..n] do

for y in [1..n] do
for z in [1..n] do

clases:=
UnionSet(
clases,
[[
[y,z],[r(biquandle,x,y)[1],r(biquandle,r(biquandle, x,y)[2],z)[1] ]

]]);
od;

od;
od;
#Print(clases);
clases:=relationgenerated(clases);

# Add [] and S = { (x,s(x))} to the set of classes
S2:=UnionSet(S,[[]]);
n:=biquandle.size;
for x in [1..n] do
S2:=
UnionSet(S2, [[x,biquandle.s[x] ]]);
od;
clases:=UnionSet(clases,[S2]);
clases:=relationgenerated(clases);
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#generates the list of equations of condition 1 (cocycle con dition)
n:=biquandle.size;
for x in [1..n] do
for y in [1..n] do
for z in [1..n] do
A[1]:=[x,y];
A[2]:=[r(biquandle,x,y)[2],z];
A[3]:=[x,r(biquandle,y,z)[1]];
d1:=r(biquandle,x,r(biquandle,y,z)[1])[2];
d2:=r(biquandle,y,z)[2];
A[4]:=[d1,d2];
for i in [1..4] do
for c in clases do
if A[i] in c then A[i]:=c[1]; fi; #choose representatives

od;
od;
lista:=UnionSet(lista,[A]);
A:=[];

od;
od;

od;

c:=Size(clases)+1;
lis:=Size(lista)-1;
for i in [1..60] do #repeat the procedure many times
if c=Size(clases) and lis=Size(lista) then continue;
else
c:=Size(clases);
lis:=Size(lista);

News:=New(lista,clases);
lista:=News.list;
clases:=News.clases;

fi;
od;

#just in case...
News:=New(lista,clases);
lista:=News.list;
clases:=News.clases;

cob:=[];
usados:=[];
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for c in clases do
if [] in c then S2:=c; fi;
od;
cl:=Difference(clases,[S2]);
n:=Size(repclase(biquandle));
for i in [1..Size(cl)] do
x:=cl[i][1][1];
y:=cl[i][1][2];
z:=r(biquandle,x,y)[2]; #sigma2(x,y)
for j in [1..n] do
if x in repclase(biquandle)[j] then
gam1:= repclase(biquandle)[j][1];

fi;
if z in repclase(biquandle)[j] then
gam2:= repclase(biquandle)[j][1];

fi;
od;
if gam1=gam2 then

continue;
elif [gam1,gam2] in usados then continue;
else
usados:=UnionSet(usados,[[gam1,gam2]]);
Add(cob,
[
#clases[i][1],
#=
gam1,cl[i][1],gam2#^-1"
]);

fi;
od;
return rec( S:=S2, clases := cl, equations := lista, cocycle := cob);
end;

Example:

gap>unc(bialexander(3,1,-1),[]);
rec(S:=[[],[1,1],[2,2],[3,3]],
clases:=[[[1,2]],[[1,3]],[[2,1]],[[2,3]],
[[3,1]],[[3,2]]],
equations:=[[[],[1,3],[1,2],[3,1]],
[[],[2,3],[2,1],[3,2]],[[],[3,2],[3,1],[2,3]]
,[[1,3],[2,1],[],[1,2]],[[2,3],
[1,2],[],[2,1]],[[3,2],[1,3],[],[3,1]]],
cocycle:=[[1,[1,2],3],[1,[1,3],2],[2,[2,1],3],
[2,[2,3],1],[3,[3,1],2],[3,[3,2],1]])

The equations should be read in the following way: every element [a; b; c; d] means
ab = cd, and [ ] = 1, so for example [[ ]; [1; 3]; [1; 2]; [3; 1]] means [1; 3] = [1; 2][3; 1].
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The cocycle part give a list of possible elements to consider cohomologically trivial.

The notation is, given  : X ! G, the values of a given 2-cocycle changes under gamma
via f = (1)f(1; 2)(3)�1, etc. So in the example above (Dihedral quandle) one can see
that it is possible to trivialize [ 1, 2 ] and [ 1, 3 ] simultaneously. If we do so, we get

gap>unc(bialexander(3,1,-1),[[1,2],[1,3]]);
rec(S:=[[],[1,1],[1,2],[1,3],[2,1],[2,2],
[2,3],[3,1],[3,2],[3,3]],
clases:=[],equations:=[],cocycle:=[])

That is, no generators at all, the group is trivial, so every 2-cocycle is a coboundary.
The function print equations is similar to unc but human friendly:

print_equations:=function(biquandle,S)
local i, j, clases, Unc, n, co,lista,l, trivial;

Unc:=unc(biquandle,S);

trivial:=Unc.S;
clases:=Unc.clases;
lista:=Unc.equations;

n:=Size(clases);
if n=1 then
Print("Unc has ");Print(n);Print(" generator:");

elif n=0 then
Print("Unc ={1}");

else
Print("Unc have ");Print(n);Print(" generators:");

fi;
Print("\n");
for i in [1..Size(clases)] do
Print("f_{"); Print(i);Print("}");
for j in clases[i] do
Print("=");

Print(j);
od;
Print(", ");

od;
Print("\n");
Print("trivial elements:");
Print("\n");
#Print("1");
for i in trivial do

Print("=");
#Print("(");Print(i[1]);Print(",");Print(i[2]);Prin t(")");
Print(i);
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od;
Print("\n");
Print("equations: ");
Print("\n");
n:=Size(clases);
for l in lista do

for i in [1..4] do;
if i=3 then Print("="); fi;
if l[i] in trivial then continue;

else
for j in [1..n] do

if l[i] in clases[j] then
Print("f_{"); Print(j);Print("}");

fi;
od;

fi;
od;

Print(", ");
od;
Print("\n");
Print("\n");
Print("coboundary conditions to be consider to eventually add
elements to S: ");
Print("\n");
for co in Unc.cocycle do
Print("\\gamma_");
Print(co[1]);
Print(co[2]);
Print("\\gamma_");
Print(co[3]);
Print("^{-1}, ");
od;
Print("\n");
end;

In the above examples:

gap>print_equations(bialexander(3,1,-1),[]);
Unc have 6 generators:
f_{1}=(1,2),f_{2}=(1,3),f_{3}=(2,1),f_{4}=(2,3),f_{ 5}=(3,1),
f_{6}=(3,2),
trivial elements:
=[]=[1,1]=[2,2]=[3,3]
equations:
f_{2}=f_{1}f_{5},f_{4}=f_{3}f_{6},f_{6}=f_{5}f_{4}, f_{2}f_{3}=f_{1},
f_{4}f_{1}=f_{3},f_{6}f_{2}=f_{5},
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Coboundary conditions to be considered to eventually add elements to S:
1[1; 2]�1

3 ; 1[1; 3]�1
2 ; 2[2; 1]�1

3 ; 2[2; 3]�1
1 ; 3[3; 1]�1

2 ; 3[3; 2]�1
1 ;

gap> print_equations(bialexander(3,1,-1),[[1,2],[1,3] ]);
Unc ={1}
trivial elements:
=[]=[1,1]=[1,2]=[1,3]=[2,1]=[2,2]=[2,3]=[3,1]
=[3,2]=[3,3]

The following function computes the Boltzmann weight of a crossing, for a given
coloring, a set of equivalent classes of pairs (where the cocycle takes the same values) and
a group (Fnc) is given by generators.

BWgen := function(cruce, coloreo, clases,Fnc)
local bwg,i;
bwg:=One(Fnc);

if cruce[1]=1 then
for i in [1..Size(clases)] do

if [coloreo[cruce[2][1]],coloreo[cruce[2][4]]] in clas es[i] then
bwg := GeneratorsOfGroup(Fnc)[i];

fi;
od;

else
for i in [1..Size(clases)] do

if [coloreo[cruce[2][3]],coloreo[cruce[2][4]]] in clase s[i] then
bwg := Inverse(GeneratorsOfGroup(Fnc)[i]);

fi;
od;

fi;
return bwg;
end;

\invariant.g" computes the universal nc-invariant for each coloring of a given biquan-
dle, together with a subset S � X� that we declare that our cocycle is trivial. The
sintaxis is

gap> invariantgen(trefoil,bialexander(3,1,-1),[]);
[[[1,1,1,1,1,1],],[[3,1,1,2,2,3],f1^-1*f4^-1*f5^-1],
[[2,1,1,3,3,2],f2^-1*f6^-1*f3^-1],[[3,2,2,1,1,3],
f3^-1*f2^-1*f6^-1],[[2,2,2,2,2,2],],
[[1,2,2,3,3,1],f4^-1*f5^-1*f1^-1],[[2,3,3,1,1,2],
f5^-1*f1^-1*f4^-1],
[[1,3,3,2,2,1],f6^-1*f3^-1*f2^-1],[[3,3,3,3,3,3],]]

Over all colorings, the following function computes the invariant (of each connected
component) up to 3 connected components. The group is the one computed by \unc",
that have an S as input, so it can (nearly) compute the reduced Unc, or also a quotient
of Unc.
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invariantgen:=function(pd,biquandle,S)

local generators,
inv,max, W, W1,W2, W3, BWg, coloreo, cruce, Fnc,
n, rk, N1, N2,i, j,k,l;
max := Maximum(Flat(pd));
inv:=[];
#first calculates equations of Unc and it's generators
unc(biquandle,S);
generators:=unc(biquandle,S).clases;
rk:=Size(generators);
Fnc := FreeGroup(rk);
# and calculate invariant for every coloring
n:=componentesconexas(pd);
if n=1 then

for coloreo in colormejor(pd, biquandle) do
W := One(Fnc);
for i in [1..max] do

for cruce in pd do
if cruce[2][1]=i then

W:=W*BWgen(cruce, coloreo, generators,Fnc);
fi;

od;
od;
Add(inv,[coloreo,W]);

od;
return(inv);

elif n=2 then
N1:=n1(pd);
for coloreo in colormejor(pd, biquandle) do

W1 := One(Fnc);
W2 := One(Fnc);
for i in [1..N1-1] do

for cruce in pd do
if cruce[2][1]=i then

W1:=W1*BWgen(cruce, coloreo, generators, Fnc);
fi;

od;
od;
for j in [N1..max] do

for cruce in pd do
if cruce[2][1]=j then

W2:=W2*BWgen(cruce, coloreo, generators, Fnc);
fi;

od;
od;
Add(inv,[coloreo,[W1,W2]]);
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od;

return(inv);
elif n=3 then

N1:=ns(pd)[1];
N2:=ns(pd)[2];
for coloreo in colormejor(pd, biquandle) do

W1 := One(Fnc);
W2 := One(Fnc);
W3 := One(Fnc);
for i in [1..N1-1] do

for cruce in pd do
if cruce[2][1]=i then

W1:=W1*BWgen(cruce, coloreo, generators, Fnc);
fi;

od;
od;
for j in [N1..N2-1] do

for cruce in pd do
if cruce[2][1]=j then

W2:=W2*BWgen(cruce, coloreo, generators, Fnc);
fi;

od;
od;
for k in [N2..max] do

for cruce in pd do
if cruce[2][1]=k then

W3:=W3*BWgen(cruce, coloreo, generators, Fnc);
fi;

od;
od;
Add(inv,[coloreo,[W1,W2,W3]]);

od;
return inv;
fi;
end;

Notice that the answer is given in the FREE group on same number of generators
as unc, but no relations are included. So one has to look at "unc(biquandle,[S])" in
order to see if these invariants are trivial or not. For instance, they are all trivial in
this case. But with the biquandle conj(ConjugacyClass(SymmetricGroup(4),(1,2,3,4)))
we get nontrivial invariant.
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