Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Copahue volcano host one of the most attractive geothermal resources of Argentina. Several studies focused on both the volcanic activity and the related geothermal manifestations, including a feasibility report during the ‘90s. However, limited, unclear and usually contradictory structural interpretations are found in the literature, and the role of the main faults over the geothermal system remains thus unsolved. This paper provides the first structural characterization and role assessment of the faults over the fluid flow and the reservoir geometry. A 3D structural model has been constructed to achieve this goal, and a fault-plane striations survey has been carried out at Anfiteatro, Termas and Maquinitas hydrothermal zones. Using this dataset, a slip and dilation tendency analysis over the main structures have been performed. The 3D structural model indicates that the Copahue geothermal field is bounded by an N60°-trending fault set and constrained to the north by the Trolope fault and to the south by the Chancho-Co fault, both with WNW-ESE trend. The collected fault-plain striations data was inverted to obtain the paleostress tensor related to the formation of the Copahue village fault system (CVFS), the structure that controls the hydrothermal areas. The subvertical maximum principal stress axis obtained defines a well constrained tensional regime, with a subhorizontal NW-SE minimum principal stress, consistent in all the surveyed locations. Both the 3D model and the inverted paleostress tensor indicate that the geothermal field, and probably the entire northeastern slope of the volcano, is subjected to an extensional faulting regime. Our analysis shows that the N°60-trending fault set is critically stressed for dilation and probably behaves as an active hydrological fault system, whereas the N105° and N135° fault sets have intermediate and low dilation tendency, respectively. These tendencies might lead to a northeast-trend fluid path between the Chancho-co and the N135° faults and might define the extension of the steam cap. We propose a compartmentalized reservoir model made up by three fault segmented blocks. While a steam cap over a deeper reservoir controlled by the CVFS characterizes the central segment, a pressurized liquid-dominated reservoir could prevail to the west of Termas and the east of Maquinas hydrothermal zones. This model explains the differences between the fumaroles inside the CVFS (i.e., Termas to Maquinas fumaroles) and outside this structural system (i.e., Anfiteatro), is consistent with the steam cap identified by the exploration boreholes and is consistent with the 3D structural framework proposed. Also, the model suggests that the collapse of the eastern slope of the Chancho-co hill might constitute the initial state of the current configuration of the geothermal system. Additional studies are needed to verify the proposed reservoir model before defining deep exploration targets, including magnetotellurics, discrete fracture network analysis, and preliminary thermodynamical models. © 2019 Elsevier B.V.

Registro:

Documento: Artículo
Título:Structural model and slip-dilation tendency analysis at the Copahue geothermal system: Inferences on the reservoir geometry
Autor:Barcelona, H.; Yagupsky, D.; Vigide, N.; Senger, M.
Filiación:CONICET- IDEAN, Instituto de Estudios Andinos, Universidad de Buenos Aires, Pabellón II, Nuñez, Buenos Aires, C1428EHA, Argentina
Universidad de Buenos Aires, Departamento de Ciencias Geológicas, Pabellón II, Nuñez, Buenos Aires, C1428EHA, Argentina
Palabras clave:3D structural model; Copahue geothermal reservoir; Paleostress tensor inversion; Slip-dilation tendency analysis; Exploratory boreholes; Flow of fluids; Geothermal fields; Geothermal wells; Petroleum reservoirs; Structural analysis; Surveys; Tensors; Volcanoes; 3D structural model; Discrete fracture network; Geothermal reservoir; Maximum principal stress; Paleo-stress; Structural characterization; Structural interpretation; Tendency analysis; 3D modeling
Año:2019
Volumen:375
Página de inicio:18
Página de fin:31
DOI: http://dx.doi.org/10.1016/j.jvolgeores.2019.03.007
Título revista:Journal of Volcanology and Geothermal Research
Título revista abreviado:J. Volcanol. Geotherm. Res.
ISSN:03770273
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770273_v375_n_p18_Barcelona

Referencias:

  • Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., Montanari, D., Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas (2006) Geothermics, 35 (4), pp. 368-408
  • Agusto, M., Caselli, A., Tassi, F., Dos Santos Afonso, M., Vaselli, O., Seguimiento geoquímico de las aguas ácidad del sistema volcán Copahue-Río Agrio: Posible aplicación para la identificación de precursores eruptivos (2012) Rev. Asoc. Geol. Argent., 69 (4), pp. 481-495
  • Agusto, M., Tassi, F., Caselli, A.T., Vaselli, O., Rouwet, D., Capaccioni, B., Darrah, T., Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic complex (Argentina) (2013) J. Volcanol. Geotherm. Res., 257, pp. 44-56
  • Anderson, E.M., The dynamics of faulting and dyke formation with applications to Britain (1942), Oliver and Boyd; Angelier, J., Fault slip analysis and palaeostress reconstruction (1994) Continental Deformation, pp. 101-120. , P.L. Hancock Pergamon Oxford
  • Angelier, J., Mechler, P., Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: 1a méthode des diédres droits (1977) Bull. Soc. Géol. France, 7 (19), pp. 1309-1318
  • Barcelona, H., Yagupsky, D., Winocur, D., Caselli, A., Cristallini, E., (2017), 12, pp. 26-30. , Modelo geológico estructural 3D del sistema geotérmico Copahue. Proceedings XX Congreso Geológico Argentino, Tucumán; Barcelona, H., Yagupsky, D., Agusto, M., The Layered Model of the Copahue Geothermal Reservoir (2019), Argentina Geothermal Energy (In press); Barton, C.A., Zoback, M.D., Moos, D., Fluid flow along potentially active faults in crystalline rock (1995) Geology, 23 (8), pp. 683-686
  • Barton, C.A., Hickman, S., Morin, R.H., Zoback, M.D., Finkbeiner, T., Sass, J., Benoit, D., (1997), Fracture permeability and its relationship to in-situ stress in the Dixie Valley, Nevada, geothermal reservoir. Stanford Geotherm. Workshop Proc. 22, SGP-TR-155; Berkowitz, B., (2002), 25 (8), pp. 861-884. , Characterizing flow and transport in fractured geological media: A review.Advances in water resources; Bonali, F., Corazzato, C., Belloti, F., Groppelli, G., Active Tectonics and Its Interactions with Copahue Volñcano (2016) Copahue Volcano, pp. 23-45. , F. Tassi O. Vaselli A. Caselli
  • Bott, M.H.P., The mechanism of oblique slip faulting (1959) Geol. Mag., 96, pp. 109-117
  • Bravo Ojeda, F.J., Nuevas perspectivas geológicas y estructurales sobre el control de la circulación de fluidos del sistema geotermal Copahue – Caviahue y su relación con isótopos de helio (2015), Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile (89pp); Brogi, A., The structure of the Monte Amiata volcano-geothermal area (Northern Apennines, Italy): Neogene-Quaternary compression versus extension (2008) Int. J. Earth Sci., 97 (4), pp. 677-703
  • Byerlee, J.D., Friction of rocks (1978) Pure Appl. Geophys., 116, pp. 615-629
  • Caine, J., Evans, J., Forster, C., Fault zone architecture and permeability structure (1996) Geology, 24 (11), pp. 1025-1028
  • Carranza, E., Wibowo, H., Barritt, S., Sumintadireja, P., Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia (2008) Geothermics, 37 (3), pp. 267-299
  • Cembrano, J., Herve, F., Lavenu, A., The Liqui~ne Ofqui fault zone: a long-lived intra-arc fault system in southern Chile (1996) Tectonophysics, 259, p. 55e66
  • Cembrano, J., Lavenu, A., Reynolds, P., Arancibia, G., López, G., Sanhueza, A., Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction (2002) Tectonophysics, 354, pp. 289-314
  • Chiodini, G., Cardellini, C., Lamberti, M.C., Agusto, M., Caselli, A., Liccioli, C., Caliro, S., Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue–Caviahue Volcanic complex (Argentina) (2015) J. Volcanol. Geotherm. Res., 304, pp. 294-303
  • Cristallini, E., Hernández, R., Andino 3D. Software de modelado estructural. Desarrollado por LA TE ANDES S.A (2015), con apoyo de MinCyT ARGENTINA; D'Amore, F., Truesdell, A.H., Calculation of geothermal reservoir temperatures and steam fractions from gas compositions. Transactions, Geothermal Resources Council (1985), 9, pp. 305-310; Dellapé, D., Pando, G., (1975), Relevamiento geológico de la cuenca geotérmica de Copahue. Yacimientos Petrolíferos Fiscales. Unpublished Report 524. Buenos Aires; Delvaux, D., The TENSOR program for palaeostress reconstruction: examples from the East African and the Baikal rift zones, Terra Abstract, Abstract (1993), 5, p. 216. , (Supplement No.1, to Terra Nova); Delvaux, D., Sperner, B., Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program (2003) New Insights into Structural Interpretation and Modelling: Geol. Soc. Lond. Spec. Publ, 212, pp. 75-100. , D. Nieuwland
  • Dupin, J.M., Sassi, W., Angelier, J., Homogeneous stress hypothesis and actual fault slip: a distinct element análisis (1993) J. Struct. Geol., 15, pp. 1033-1043
  • Ferrill, D., Morris, A., Dilational normal faults (2003) J. Struct. Geol., 25 (2), pp. 183-196
  • Ferrill, D.A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., Morris, A., (1999), pp. 1-8. , Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today9 (5); Folguera, A., Ramos, V., Collision of the Mocha fracture zone and a less than 4 Ma old wave of orogenic uplift in the Andes (36°–38°S) (2009) Lithosphere, 1 (6), pp. 364-369
  • Folguera, A., Ramos, V., Hermanns, R., Naranjo, J., (2004), Neotectonics in the foothills of the Southernmost Central Andes (37°–38°S). Evidence of the strike-slip displacement along the Antiñir-Copahue fault zone. Tectonics 23 TC 5008; Folguera, A., Zapata, T., Ramos, V., Late Cenozoic Extension and the evolution of the Neuquén Andes. In: Kay SM, Ramos VA (eds) late cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39°S) (2006) Geol S Am S, 407, pp. 267-285
  • Folguera, A., Rojas Vera, E., Vélez, L., Tobal, J., Orts, D., Agusto, M., Caselli, A., Ramos, V., A review of the Geology, Structural Controls, and Tectonic Setting of Copahue Volcano, Southern Volcanic Zone, Andes, Argentina (2016) Copahue Volcano, pp. 3-22. , F. Tassi O. Vaselli A. Caselli
  • Gaviria Reyes, M., Agusto, M., Trinelli, M., Caselli, A., Dos Santos Afonso, M., Calabrese, S., Estudio hidrogeoquímico de las áreas termales del complejo volcánico Copahue-Caviahue (2016) Rev. Asoc. Geol. Argent., 73 (2), pp. 256-269
  • Giambiagi, L., Álvarez, P.P., Creixell, C., Mardonez, D., Murillo, I., Velásquez, R., Barrionuevo, M., Cenozoic shift from compression to strike‐Slip stress regime in the high Andes at 30° S, during the shallowing of the slab: Implications for the El Indio/Tambo Mineral District (2017) Tectonics, 36 (11), pp. 2714-2735
  • Gilbert, D., Freundt, A., Kutterolf, S., Burkert, C., Post-glacial time series of explosive eruptions and associated changes in the magma plumbing system of Lonquimay volcano, south central Chile (2014) Int. J. Earth Sci., 103 (7), pp. 2043-2062
  • Gudmundsson, A., Fjeldskaar, I., Brenner, S., Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields (2002) J.Volcanol. Geotherm. Res., 116 (3), pp. 257-278
  • Healy, D., Rizzo, R., Cornwell, D., Farrell, N., Watkins, H., Timms, N., Smith, M., FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns (2017) J. Struct. Geol., 95, pp. 1-16
  • Hervé, M., Estudio geolo´gico de la falla Liquiñee-Reloncavı´ an la area de Liquiñe: Antecedentes de un movimiento transcurrente (Provincia de Vadivia), paper presented at I Congreso Geologico Chileno (1976), Santiago de Chile Chile; Hervé, F., The southern Andes between 39° and 44°S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc (1994) Tectonics of the Southern Central Andes, pp. 243-248. , K.J. Reutter E. Scheuber P.J. Wigger Springer Berlin
  • Hobbs, B., Means, W., Williams, P., (1976), p. 571. , An Outline of Structural Geology, John Wiley and Sons, Inc., New York; Homberg, C., Bergerat, F., Philippe, Y., Lacombe, O., Angelier, J., Structural inheritance and cenozoic stress fields in the Jura fold-and-thrust belt (France) (2002) Tectonophysics, 357 (1-4), pp. 137-158
  • Ito, T., Zoback, M., Fracture permeability and in situ stress to 7 km depth in the KTB Scientific Drillhole (2000) Geophys. Res. Lett., 27 (7), pp. 1045-1048
  • (1992), The feasibility study on the Northem Neuquén Geothermal Development Project. Ente Provincial de Energía de la Provincia del Neuquén, JICA-EPEN (unpublished), 89 p, Neuquén; Jolie, E., Moeck, I., Faulds, J., Quantitative structural–geological exploration of fault-controlled geothermal systems—a case study from the Basin-and-Range Province, Nevada (USA) (2015) Geothermics, 54, pp. 54-67
  • Kim, Y.S., Sanderson, D.J., Similarities between strike-slip faults at differentscales and a simple age determining method for active faults (2004) Island Arc, 13 (1), pp. 128-143
  • Lacombe, O., Comparison of paleostress magnitudes from calcite twins with contemporary stress magnitudes and frictional sliding criteria in the continental crust: Mechanical implications (2007) J. Struct. Geol., 29 (1), pp. 86-99
  • Lamarche, J., Mansy, J.L., Bergerat, F., Averbuch, O., Hakenberg, M., Lewandowski, M., Wieczorek, J., Variscan tectonics in the Holy Cross Mountains (Poland) and the role of structural inheritance during Alpine tectonics (1999) Tectonophysics, 313 (1-2), pp. 171-186
  • Lamarche, J., Bergerat, F., Lewandowski, M., Mansy, J.L., Świdrowska, J., Wieczorek, J., Variscan to Alpine heterogeneous palaeo-stress field above a major Palaeozoic suture in the Carpathian foreland (southeastern Poland) (2002) Tectonophysics, 357 (1-4), pp. 55-80
  • Lavenu, A., Cembrano, J., Compressional and transpressional stress pattern for Pliocene and Quaternary brittle deformation in fore-arc and intra-arc zones (Andes of Central and Southern Chile) (1999) J. Struct. Geol., 21, pp. 1669-1691
  • Lazo, J., Basualto, D., Bengoa, C., Cardona, C., Franco, L., Gil-Cruz, F., Morales, S., Spatial Distribution of b-Value of the Copahue Volcano during the 2012–2014 Eruptive Period: Relationship between Magmatic and Hydrothermal System (2015), (EGU General Assembly Conference Abstracts); Linares, E., Ostera, H.A., Mas, L.C., Cronología potasio-argon del complejo efusivo Copahue-Caviahue, Provincia del Neuquén (1999) Rev. Asoc. Geol. Argent., 54 (3), pp. 240-247
  • Lisle, R., Srivastava, D., Test of the frictional reactivation theory for faults and validity of fault-slip analysis (2004) Geology, 32 (7), pp. 569-572
  • Lundgren, P., Nikkhoo, M., Samsonov, S.V., Milillo, P., Gil-Cruz, F., Lazo, J., Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations (2017) J. Geophys. Res. Solid Earth, 122 (7), pp. 5729-5747
  • Mas, L.C., History and Present Situation of the Neuquén Geothermal Project. Proceedings World Geothermal Congress (2010), p. 2010. , Bali Indonesia; Mas, G.R., Mas, L.C., Bengochea, L., Zeolite zoning in drill holes of the Copahue geothermal field, Neuquén, Argentina In Proceedings of the World Geothermal Congress (1995), pp. 1077-1081; Mas, G., Mas, L., Bengochea, L., (1996), pp. 22-24. , Hydrothermal, surface alteration in the Copahue geothermal field (Argentina).In Proceedings twenty-fifth workshop on geothermal reservoir engineering, Stanford University. Stanford, California; McFarland, J., Morris, A., Ferrill, D., Stress inversion using slip tendency (2012) Comput. Geosci., 41, pp. 40-46
  • Meixner, J., Schill, E., Grimmer, J.C., Gaucher, E., Kohl, T., Klingler, P., Structural control of geothermal reservoirs in extensional tectonic settings: an example from the Upper Rhine Graben (2016) J. Struct. Geol., 82, pp. 1-15
  • Melnick, D., Folguera, A., Ramos, V., Structural control on arc volcanism: the Caviahue-Copahue complex, Central to Patagonian Andes transition (38°S) (2006) J. S. Am. Earth Sci., 22, pp. 66-88
  • Melosh, G., Cumming, W., Benoit, D., Wilmarth, M., Colvin, A., Winick, J., Peretz, A., Exploration Results and Resource Conceptual Model of the Tolhuaca Geothermal Field, Chile (2010), In Proceedings World Geothermal Congress; Moeck, I., Catalog of geothermal play types based on geologic controls (2014) Renew. Sust. Energ. Rev., 37, pp. 867-882
  • Mon, R., Structural geology of two geothermal areas in the Andes: Copahue and Tuzgle (Argentina) (1987) Bull. Eng. Geol. Environ., 35 (1), pp. 79-85
  • Moreno, H., Lahsen, A., El volcán Callaqui: ejemplo de volcanismo fisural en los Andes del Sur (1986) Rev Asoc Geol Arg, 42, pp. 1-8
  • Morris, A., Ferrill, D., Henderson, D., Slip-tendency analysis and fault reactivation (1996) Geology, 24, pp. 275-278
  • Nakanishi, S., Abe, M., Todaka, N., Yamada, M., Sierra, J., Gingins, M., Pedro, G., (1995), pp. 18-31. , Copahue geothermal system, Argentina—study of a vapor-dominated reservoir. In Proceedings World Geothermal Congress ‘95, Florence; Nelson, R., Geologic analysis of naturally fractured reservoirs (2001), Elsevier; Nemčok, M., Moore, J.N., Allis, R., McCulloch, J., Fracture development within a stratovolcano: the Karaha-Telaga Bodas geothermal field, Java volcanic arc (2004) Geol. Soc. Lond., Spec. Publ., 231 (1), pp. 223-242
  • Niemeyer, H., Muñoz, J., (1982), Hoja Laguna de La Laja, Región del Bío-Bío, scale 1:250.000. Servicio Nacional de Geología y Minería; Odling, N., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J., Christensen, N., Trice, R., Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs (1999) Pet. Geosci., 5 (4), pp. 373-384
  • Panarello, H., Características isotópicas y termodinámicas de reservorio del campo geotérmico Copahue-Caviahue, provincia del Neuquén (2002) Rev. Asoc. Geol. Argent., 57 (3), pp. 328-340
  • Perez-Flores, P., Cembrano, J., Sanchez, P., Veloso, E., Arancibia, G., Roquer, T., Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: insights from the northern termination of the Liqui~ne-Ofqui fault System, Chile (2016) Tectonophysics, 680, p. 192e210
  • Pesce, A., Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar (1989) Rev Asoc Geol Arg, 44, pp. 307-327
  • Pollard, D.D., Saltzer, S.D., Rubin, A.M., Stress inversion methods: are they based on faulty assumptions? (1993) J. Struct. Geol., 15, pp. 1045-1054
  • Rao, Y.S., Reddy, T., Nayudu, P., Groundwater targeting in a hard-rock terrain using fracture-pattern modeling, Niva River basin, Andhra Pradesh (2000) India. Hydrogeol. J., 8 (5)
  • Rojas Vera, E., Folguera, A., Spagnuolo, M., Gímenez, M., Ruiz, F., Martínez, P., Ramos, V., La neotectónica del arco volcánico a la latitud delvolcán Copahue (38°S), Andes de Neuquén (2009) Rev. Asoc. Geol. Argent., 65 (1), pp. 204-214
  • Roulleau, E., Tardani, D., Sano, Y., Takahata, N., Vinet, N., Bravo, F., Sanchez, J., New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: boiling steam separation and water-rock interaction at shallow depth (2016) J. Volcanol. Geotherm. Res., 328, pp. 70-83
  • Roulleau, E., Bravo, F., Pinti, D.L., Barde-Cabusson, S., Pizarro, M., Tardani, D., de la Cal, F., Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes (2017) J. Volcanol. Geotherm. Res., 341, pp. 104-118
  • Roulleau, E., Tardani, D., Vlastelic, I., Vinet, N., Sanchez, J., Sano, Y., Takahata, N., Multi-element isotopic evolution of magmatic rocks from Caviahue-Copahue Volcanic Complex (Chile-Argentina): Involvement of mature slab recycled materials (2018) Chem. Geol., 476, pp. 370-388
  • Rowland, J., Sibson, R.H., Structural controls on hydrothermal flow in asegmented rift system, Taupo Volcanic Zone, New Zealand (2004) Geofluids, 4 (4), pp. 259-283
  • Rowland, J., Simmons, S.F., Hydrologic, magmatic, and tectonic controls onhydrothermal flow, Taupo Volcanic Zone, New Zealand: implications for theformation of epithermal vein deposits (2012) Econ. Geol., 107 (3), pp. 427-457
  • Sibson, R.H., Crustal stress, faulting and fluid flow (1994) Geol. Soc. Spec. Publ., 78, pp. 69-84
  • Sibson, H., Structural permeability of fluid-driven fault-fracture (1996) J. Struct.Geol., 18, pp. 1031-1042
  • Sielfeld, G., Cembrano, J., Lara, L., Transtension driving volcano-edifice anatomy: Insights from Andean transverse-to-the-orogen tectonic domains (2016) Quat. Int.
  • Sierra, J., D'Amore, F., Panarello, H., Pedro, G., Reservoir characteristics of the vapour dominated geothermal field of Copahue, Neuquén, Argentina, as established by isotopic and geochemical techniques Geothermal Investigations with Isotope and Geochemical Techniques in Latin America (1992), pp. 13-30. , Proceedings of Nuclear Techniques in Geothermal Resources Investigation San José Costa Rica; Siler, D., Faulds, J., Mayhew, B., McNamara, D., Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA (2016) Geothermics, 60, pp. 1-12
  • Sruoga, P., Consoli, V., El Volcán Copahue (2011), pp. 613-620. , Relatorio del XVIII Congreso Geológico Argentino Neuquén; Stanton-Yonge, A., Griffith, W.A., Cembrano, J., St Julien, R., Iturrieta, P., Tectonic role of margin-parallel and margin-transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling (2016) Tectonics, 35 (9), pp. 1990-2013
  • Stelling, P., Shevenell, L., Hinz, N., Coolbaugh, M., Melosh, G., Cumming, W., Geothermal systems in volcanic arcs: volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide (2016) J. Volcanol. Geotherm. Res., 324, pp. 57-72
  • Suárez, M., Emparán, G., Hoja Curacautín, Regiones de la Araucanía y del Bío-Bío, scale 1:250,000 (1997), (Servicio Nacional de Geología y Minería); Tardani, D., Reich, M., Roulleau, E., Takahata, N., Sánchez-Alfaro, P., Sano, Y., Pérez-Flores, P., Arancibia, G., Exploringthe structural controls on helium, nitrogen and carbon isotope signatures inhydrothermal fluids along an intra-arc fault system (2016) Geochim. Cosmochim. Acta., 184, pp. 193-211
  • Tassi, F., Agusto, M., Lamberti, C., Caselli, A.T., Pecoraino, G., Caponi, C., Vaselli, O., The 2012–2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids (2017) Bull. Volcanol., 79 (10), p. 69
  • Thomson, S., Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42S and 46S: An appraisal based on fission-track results from the transpressional intraarc Liquiñe-Ofqui fault zone (2002) Geol. Soc. Am. Bull., 114 (9), pp. 1159-1173
  • Twiss, R.J., Unruh, J.R., Analysis of fault slip inversions: Do they constrain stress or strain rate? (1998) J. Geophys. Res., 103, pp. 12.205-12.222
  • Varekamp, J.C., Ouimette, A.P., Herman, S.W., Flynn, K.S., Bermudez, A., Delpino, D., Naturally acid waters from Copahue volcano, Argentina (2009) Appl. Geochem., 24 (2), pp. 208-220
  • Vargas, G., Rebolledo, S., Sepúlveda, S.A., Lahsen, A., Thiele, R., Townley, B., Lara, M., Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes (2013) Andean Geol., 40 (1), pp. 141-171
  • Velez, M.L., Euillades, P., Caselli, A., Blanco, M., Díaz, J.M., (2011), pp. 117-126. , Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm Journal of Volcanology and Geothermal Research, 202(1–2); Vergara, M., Muñoz, J., La Formación Cola de Zorro en la alta cordillera Andina Chilena (36°–39° Lat. S), sus características petrográficas y petrológicas: una revisión (1982) Rev. Geol. Chile, 17, pp. 31-46
  • Zoback, M., Reservoir Geomechanics (2007), Cambridge University Press; (2017), p. 74. , Zurakoski Luparelli, R. Modelado estructural del sector aledaño a la Villa Termas de Copahue. Facultad de Ingeniería, Universidad de Comahue

Citas:

---------- APA ----------
Barcelona, H., Yagupsky, D., Vigide, N. & Senger, M. (2019) . Structural model and slip-dilation tendency analysis at the Copahue geothermal system: Inferences on the reservoir geometry. Journal of Volcanology and Geothermal Research, 375, 18-31.
http://dx.doi.org/10.1016/j.jvolgeores.2019.03.007
---------- CHICAGO ----------
Barcelona, H., Yagupsky, D., Vigide, N., Senger, M. "Structural model and slip-dilation tendency analysis at the Copahue geothermal system: Inferences on the reservoir geometry" . Journal of Volcanology and Geothermal Research 375 (2019) : 18-31.
http://dx.doi.org/10.1016/j.jvolgeores.2019.03.007
---------- MLA ----------
Barcelona, H., Yagupsky, D., Vigide, N., Senger, M. "Structural model and slip-dilation tendency analysis at the Copahue geothermal system: Inferences on the reservoir geometry" . Journal of Volcanology and Geothermal Research, vol. 375, 2019, pp. 18-31.
http://dx.doi.org/10.1016/j.jvolgeores.2019.03.007
---------- VANCOUVER ----------
Barcelona, H., Yagupsky, D., Vigide, N., Senger, M. Structural model and slip-dilation tendency analysis at the Copahue geothermal system: Inferences on the reservoir geometry. J. Volcanol. Geotherm. Res. 2019;375:18-31.
http://dx.doi.org/10.1016/j.jvolgeores.2019.03.007