Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations. © 2017 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg

Registro:

Documento: Artículo
Título:Higher order selfdual toric varieties
Autor:Dickenstein, A.; Piene, R.
Filiación:Department of Mathematics, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
IMAS (UBA-CONICET), Ciudad Universitaria - Pab. I, Buenos Aires, Argentina
Department of Mathematics, University of Oslo, Blindern, P.O. Box 1053, Oslo, Norway
Año:2017
Página de inicio:1
Página de fin:19
DOI: http://dx.doi.org/10.1007/s10231-017-0637-4
ISSN:03733114
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_03733114_v_n_p1_Dickenstein

Citas:

---------- APA ----------
Dickenstein, A. & Piene, R. (2017) . Higher order selfdual toric varieties, 1-19.
http://dx.doi.org/10.1007/s10231-017-0637-4
---------- CHICAGO ----------
Dickenstein, A., Piene, R. "Higher order selfdual toric varieties" (2017) : 1-19.
http://dx.doi.org/10.1007/s10231-017-0637-4
---------- MLA ----------
Dickenstein, A., Piene, R. "Higher order selfdual toric varieties" , 2017, pp. 1-19.
http://dx.doi.org/10.1007/s10231-017-0637-4
---------- VANCOUVER ----------
Dickenstein, A., Piene, R. Higher order selfdual toric varieties. 2017:1-19.
http://dx.doi.org/10.1007/s10231-017-0637-4