Artículo

Colás, V.; Padrón-Navarta, J.A.; González-Jiménez, J.M.; Griffin, W.L.; Fanlo, I.; O'Reilly, S.Y.; Gervilla, F.; Proenza, J.A.; Pearson, N.J.; Escayola, M.P. "Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution" (2016) American Mineralogist. 101(6):1360-1372
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chromite from Los Congos and Los Guanacos in the Eastern Pampean Ranges of Córdoba (Argentinian Central Andes) shows homogenous and exsolution textures. The composition of the exsolved phases in chromite approaches the end-members of spinel (MgAl2O4; Spl) and magnetite (Fe2+Fe23+${\\text{Fe}}-2{3 + }$O4; Mag) that define the corners of the spinel prism at relatively constant Cr3+/R3+ ratio (where R3+ is Cr+Al+Fe3+). The exsolution of these phases from the original chromite is estimated to have accounted at ≥600 °C on the basis of the major element compositions of chromite with homogenous and exsolution textures that are in equilibrium with forsterite-rich olivine (Fo95). The relatively large size of the exsolved phases in chromite (up to ca. 200 μm) provided, for the first time, the ability to conduct in situ analysis with laser ablation-inductively coupled plasma-mass spectrometry for a suite of minor and trace elements to constrain their crystal-crystal partition coefficient between the spinel-rich and magnetite-rich phases (DiSpl/Mag$D-{\\text{i}}^{{\\text{Spl/Mag}}}$). Minor and trace elements listed in increasing order of compatibility with the spinel-rich phase are Ti, Sc, Ni, V, Ge, Mn, Cu, Sn, Co, Ga, and Zn. DiSpl/Mag$D-{\\text{i}}^{{\\text{Spl/Mag}}}$ values span more than an order of magnitude, from DTiSpl/Mag$D-{{\\text{Ti}}}^{{\\text{Spl/Mag}}}$ = 0.30 ± 0.06 to DZnSpl/Mag$D-{{\\text{Zn}}}^{{\\text{Spl/Mag}}}$= 5.48 ± 0.63. Our results are in remarkable agreement with data available for exsolutions of spinel-rich and magnetite-rich phases in other chromite from nature, despite their different Cr3+/R3+ ratio. The estimated crystal-crystal partitioning coefficients reflect the effect that crystal-chemistry of the exsolved phases from chromite imposes on all investigated elements, excepting Cu and Sc (and only slightly for Mn). The observed preferential partitioning of Ti and Sc into the magnetite-rich phase is consistent with high-temperature chromite/melt experiments and suggests a significant dependence on Fe3+ substitution in the spinel structure. A compositional effect of major elements on Ga, Co, and Zn is observed in the exsolved phases from chromite but not in the experiments; this might be due to crystal-chemistry differences along the MgFe-1-Al2Fe-23+${\\text{Fe}}-{-2}^{3 + }$ exchange vector, which is poorly covered experimentally. This inference is supported by the strong covariance of Ga, Co, and Zn observed only in chromite from layered intrusions where this exchange vector is important. A systematic increase of Zn and Co coupled with a net decrease in Ga during hydrous metamorphism of chromitite bodies cannot be explained exclusively by compositional changes of major elements in the chromite (which are enriched in the magnetite component). The most likely explanation is that the contents of minor and trace elements in chromite from metamorphosed chromitites are controlled by interactions with metamorphic fluids involved in the formation of chlorite. © 2016 by Walter de Gruyter Berlin/Boston.

Registro:

Documento: Artículo
Título:Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution
Autor:Colás, V.; Padrón-Navarta, J.A.; González-Jiménez, J.M.; Griffin, W.L.; Fanlo, I.; O'Reilly, S.Y.; Gervilla, F.; Proenza, J.A.; Pearson, N.J.; Escayola, M.P.
Filiación:Instituto de Geologiá, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
Universidad de Zaragoza, Departamento de Ciencias de la Tierra, Pedro Cerbuna 12, Zaragoza, 50009, Spain
Geósciences Montpellier, CNRS, University of Montpellier, Montpellier, 34095, France
Department of Geology, Andean Geothermal Center of Excellence (CEGA), Universidad de Chile, Plaza Ercilla no. 803, Santiago, Chile
ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), GEMOC National Key Centre, Department of Earth and Planetary Sciences, Sydney, NSW 2109, Australia
Departamento de Mineralogiá y Petrologiá, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada, Avda. Fuentenueva s/n, Granada, 18002, Spain
Depar. de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, Barcelona, 08028, Spain
IDEAN-CONICET, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Intendente Guïraldes, Office 29, Buenos Aires, 1428, Argentina
Palabras clave:Chromite exsolution; hydrous metamorphism; minor and trace elements; partition coefficient; spinel-magnetite; chemical composition; chromite; crystal chemistry; exsolution; hydrous mineral; magnetite; metamorphism; partition coefficient; solubility; spinel; trace element; Andes; Argentina; Cordoba [Argentina]
Año:2016
Volumen:101
Número:6
Página de inicio:1360
Página de fin:1372
DOI: http://dx.doi.org/10.2138/am-2016-5611
Título revista:American Mineralogist
Título revista abreviado:Am. Mineral.
ISSN:0003004X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0003004X_v101_n6_p1360_Colas

Referencias:

  • Abzalov, M.Z., Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: Emphasis on alteration features (1998) Lithos, 43, pp. 109-134
  • Ahmed, A.H., Helmy, H.M., Arai, S., Yoshikawa, M., Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic-ultramafic intrusions, Eastern Desert, Egypt (2008) Lithos, 104, pp. 85-98
  • Akmaz, R.M., Uysal, I., Saka, S., Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis (2014) Ore Geology Reviews, 58, pp. 208-224
  • Appel, C., Appel, P., Rollinson, H., Complex chromite textures reveal the history of an early Archaean layered ultramafic body in West Greenland (2002) Mineralogical Magazine, 66, pp. 1029-1041
  • Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., Humphris, S.E., Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) (2006) Geophysical Research Letters, 33, p. L13306
  • Barnes, S.J., Chromite in komatiites, 1. Magmatic controls on crystallization and composition (1998) Journal of Petrology, 39, pp. 1689-1720
  • Barnes, S.J., Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism (2000) Journal of Petrology, 41, pp. 387-409
  • Barnes, S.J., Roeder, P.L., The range of spinel compositions in terrestrial mafic and ultramafic rocks (2001) Journal of Petrology, 42, pp. 2279-2302
  • Biagioni, C., Pasero, M., The systematics of the spinel-type minerals: An overview (2014) American Mineralogist, 99, pp. 1254-1264
  • Blundy, J., Wood, B., Prediction of crystal melt partition coefficients from elastic moduli (1994) Nature, 372, pp. 452-454
  • Bosi, F., Hålenius, U., D'Ippolito, V., Andreozzi, G.B., Blue spinel crystals in the MgAl2O4-CoAl2O4 series: Part II. Cation ordering over short-range and long-range scales (2012) American Mineralogist, 97, pp. 1834-1840
  • Burkhard, D.J.M., Accessory chromium spinels: Their coexistence and alteration in serpentinites (1993) Geochimica et Cosmochimica Acta, 57, pp. 1297-1306
  • Candia, M.A.F., Gaspar, J.C., Chromian spinels in metamorphosed ultramafic rocks from Mangabal i and II complexes, Goiás, Brazil (1997) Mineralogy and Petrology, 60, pp. 27-40
  • Canil, D., Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas (1999) Geochimica et Cosmochimica Acta, 63, pp. 557-572
  • Canil, D., Vanadium in peridotites, mantle redox and tectonic environments: Archean to present (2002) Earth and Planetary Science Letters, 195, pp. 75-90
  • Colás, V., (2015) Modelos de Alteración de Cromititas Ofiolíticas Durante El Metamorfismo, 240p. , Ph.D. thesis, Univerisidad de Zaragoza, Spain
  • Colás, V., Fingerprints of metamorphism in chromite: New insights from minor and trace elements (2014) Chemical Geology, 389, pp. 137-152
  • Connolly, Jr.H.C., Burnett, D., On type B CAI formation: Experimental constraints on fO2 variations in spinel minor element partitioning and reequilibration effects (2003) Geochimica et Cosmochimica Acta, 67, pp. 4429-4434
  • Cremer, V., Die Mischkristallbildung im System Chromit-Magnetit-Hercynit zwischen 1000 und 500°C (1969) Jahrbuch für Mineralogie Abhandlungen, 111, pp. 184-205
  • Dare, S.A.S., Pearce, J.A., McDonald, I., Styles, M.T., Tectonic discrimination of peridotites using fO2-Cr# and Ga-Ti-FeIII systematics in chrome-spinel (2009) Chemical Geology, 261, pp. 199-216
  • Droop, G., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria (1987) Mineralogical Magazine, 51, pp. 431-435
  • Dunitz, J., Orgel, L., Electronic properties of transition-metal oxides-I: Distortions from cubic symmetry (1957) Journal of Physics and Chemistry of Solids, 3, pp. 20-29
  • Eales, H., Wilson, A., Reynolds, I., Complex exsolved spinels in layered intrusions within an obducted ophiolite in the Natal-Namaqua mobile belt (1988) Mineralium Deposita, 23, pp. 150-157
  • Escayola, M., Proenza, J.A., Schalamuk, A., Cábana, C., La secuencia ofiolítica de la faja ultramáfica de Sierras Pampeanas de Córdoba Argentina (2004) Complejos Ofiolíticos en Iberoamérica: Guiás de Prospección Para Metales Preciosos, pp. 133-155. , In E. Pereira, R. Castroviejo and F. Ortiz, Eds Proyecto XIII.1-CYTED, Madrid-Espanã
  • Evans, B.W., Frost, B.R., Chrome-spinel in progressive metamorphism-a preliminary analysis (1975) Geochimica et Cosmochimica Acta, 39, pp. 959-972
  • Forster, R., Hall, E., A neutron and X-ray diffraction study of ulvöspinel, Fe2TiO4 (1965) Acta Crystallographica, 18, pp. 857-862
  • Fregola, R.A., Bosi, F., Skogby, S., Hålenius, U., Cation ordering over short-range and long-range scales in the MgAl2O4-CuAl2O4 series (2012) American Mineralogist, 97, pp. 1821-1827
  • Frost, B.R., Beard, J.S., On silica activity and serpentinization (2007) Journal of Petrology, 48, pp. 1351-1368
  • Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., Hu, S., Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry (2002) Geostandards Newsletter, 26, pp. 181-196
  • Gargiulo, M., Bjerg, E., Mogessie, A., Spinel group minerals in metamorphosed ultramafic rocks from Rió de Las Tunas belt, Central Andes, Argentina (2013) Geologica Acta, 11, pp. 133-148
  • Garuti, G., Pushkarev, E.V., Zaccarini, F., Cabella, R., Anikina, E., Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia) (2003) Mineralium Deposita, 38, pp. 312-326
  • Gervilla, F., Padrón-Navarta, J., Kerestedjian, T., Sergeeva, I., González-Jiménez, J., Fanlo, I., Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: A two-stage process (2012) Contributions to Mineralogy and Petrology, 164, pp. 643-657
  • González-Jiménez, J.M., Augé, T., Gervilla, F., Bailly, L., Proenza, J.A., Griffin, W.L., Mineralogy and geochemistry of platinum-rich chromitites from the mantle-crust transition zone at Ouen Island, New Caledonia ophiolite (2011) Canadian Mineralogist, 49, pp. 1549-1569
  • González-Jiménez, J.M., Locmelis, M., Belousova, E., Griffin, W.L., Gervilla, F., Kerestedjian, T.N., O'Reilly, S.Y., Sergeeva, I., Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria) (2015) Gondwana Research, 27, pp. 555-574
  • Griffin, W., Powell, W., Pearson, N., Oreilly, S., GLITTER: Data reduction software for laser ablation ICP-MS (2008) Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40, pp. 204-207. , In P. Sylvester, Ed
  • Hill, R.J., Craig, J.R., Gibbs, G., Systematics of the spinel structure type (1979) Physics and Chemistry of Minerals, 4, pp. 317-339
  • Horn, I., Foley, S.F., Jackson, S.E., Jenner, G.A., Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt (1994) Chemical Geology, 117, pp. 193-218
  • Irving, A.J., A review of experimental studies of crystal/liquid trace element partitioning (1978) Geochimica et Cosmochimica Acta, 42, pp. 743-770
  • Jan, M., Khan, M., Windley, B., Exsolution in Al-Cr-Fe+3-rich spinels from the Chilas mafic-ultramafic complex, Pakistan (1992) American Mineralogist, 77, p. 1074
  • Kamenetsky, V.S., Crawford, A.J., Meffre, S., Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks (2001) Journal of Petrology, 42, pp. 655-667
  • Krause, J., Brügmann, G.E., Pushkarev, E.V., Accessory and rock forming minerals monitoring the evolution of zoned mafic-ultramafic complexes in the Central Ural Mountains (2007) Lithos, 95, pp. 19-42
  • Lavina, B., Salviulo, G., Della Giusta, A., Cation distribution and structure modelling of spinel solid solutions (2002) Physics and Chemistry of Minerals, 29, pp. 10-18
  • Lee, C.A., Brandon, A.D., Norman, M., Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: Prospects, limitations, implications (2003) Geochimica et Cosmochimica Acta, 67, pp. 3045-3064
  • Lee, C.A., Leeman, W.P., Canil, D., Li, Z.A., Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions (2005) Journal of Petrology, 46, pp. 2313-2336
  • Li, C., Ripley, E.M., Tao, Y., Mathez, E.A., Cr-spinel/olivine and Cr-spinel/liquid nickel partition coefficients from natural samples (2008) Geochimica et Cosmochimica Acta, 72, pp. 1678-1684
  • Lindsley, D.H., The crystal-chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides (1976) Reviews in Mineralogy, 3, pp. L1-L60
  • Locmelis, M., Pearson, N.J., Barnes, S.J., Fiorentini, M.L., Ruthenium in komatiitic chromite (2011) Geochimica et Cosmochimica Acta, 75, pp. 3645-3661
  • Loferski, P.J., Lipin, B.R., Exsolution in metamorphosed chromite from the Red Lodge district, Montana (1983) American Mineralogist, 68, pp. 777-789
  • Mallmann, G., O'Neill, H.S.C., The crystal/melt partitioning of v during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb) (2009) Journal of Petrology, 50, pp. 1765-1794
  • Martino, R.D., Guereschi, A.B., Anzil, P.A., Metamorphic and tectonic evolution at 31° 36 S across a deep crustal zone from the Sierra Chica of Córdoba, Sierras Pampeanas, Argentina (2010) Journal of South American Earth Sciences, 30, pp. 12-28
  • McClure, D.S., The distribution of transition metal cations in spinels (1957) Journal of Physics and Chemistry of Solids, 3, pp. 311-317
  • Mondal, S.K., Ripley, E.M., Li, C., Frei, R., The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India (2006) Precambrian Research, 148, pp. 45-66
  • Muan, A., Phase relations in chromium oxide-containing systems at elevated temperatures (1975) Geochimica et Cosmochimica Acta, 39, pp. 781-802
  • Muller, O., Roy, R., (1974) The Major Ternary Structural Families, , Springer, Berlin
  • Muir, J., Naldrett, A., A natural occurrence of two-phase chromium-bearing spinels (1973) Canadian Mineralogist, 11, pp. 930-939
  • Mukherjee, R., Mondal, S.K., Rosing, M.T., Frei, R., Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): Potential parental melts and implications for tectonic setting (2010) Contributions to Mineralogy and Petrology, 160, pp. 865-885
  • Mukherjee, R., Mondal, S.K., González-Jiménez, J.M., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India) (2015) Contributions to Mineralogy and Petrology, 169, pp. 1-23
  • Nielsen, R.L., Beard, J.S., Magnetite-melt HFSE partitioning (2000) Chemical Geology, 164, pp. 21-34
  • Nielsen, R.L., Forsythe, L.M., Gallahan, W.E., Fisk, M.R., Major-and trace-element magnetite-melt equilibria (1994) Chemical Geology, 117, pp. 167-191
  • Norman, M., Pearson, N., Sharma, A., Griffin, W., Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses (1996) Geostandards Newsletter, 20, pp. 247-261
  • Norman, M., Griffin, W., Pearson, N., Garcia, M., O'Reilly, S., Quantitative analysis of trace element abundances in glasses and minerals: A comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data (1998) Journal of Analytical Atomic Spectrometry, 13, pp. 477-482
  • O'Neill, H.S.C., Navrotsky, A., Simple spinels; Crystallographic parameters, cation radii, lattice energies, cation distribution (1983) American Mineralogist, 68, pp. 181-194
  • Pagé, P., Barnes, S.J., Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada (2009) Economic Geology, 104, pp. 997-1018
  • Paktunc, A., Cabri, L., A proton-and electron-microprobe study of gallium, nickel and zinc distribution in chromian spinel (1995) Lithos, 35, pp. 261-282
  • Perinelli, C., Bosi, F., Reozzi, G.B., Conte, A.M., Armienti, P., Geothermometric study of Cr-rich spinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica) (2014) American Mineralogist, 99, pp. 839-846
  • Prabhakar, N., Bhattacharya, A., Origin of zoned spinel by coupled dissolution-precipitation and inter-crystalline diffusion: Evidence from serpentinized wehrlite, Bangriposi, Eastern India (2013) Contributions to Mineralogy and Petrology, 166, pp. 1047-1066
  • Price, G.D., Price, S.L., Burdett, J.K., The factors influencing cation site-preferences in spinels a new mendelyevian approach (1982) Physics and Chemistry of Minerals, 8, pp. 69-76
  • Proenza, J., Zaccarini, F., Escayola, M., Cábana, C., Schalamuk, A., Garuti, G., Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina (2008) Ore Geology Reviews, 33, pp. 32-48
  • Purvis, A., Nesbitt, R., Hallberg, J., The geology of part of the Carr Boyd Rocks Complex and its associated nickel mineralization, Western Australia (1972) Economic Geology, 67, pp. 1093-1113
  • Rapela, C., Pankhurst, R., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Fanning, C., (1998) The Pampean Orogeny of the Southern Proto-Andes: Cambrian Continental Collision in the Sierras de Córdoba, 142, pp. 181-217. , Geological Society, London, Special Publications
  • Rasband, W., (2007) WS 1997-2007 ImageJ, , U.S. National Institutes of Health, Bethesda, Maryland
  • Righter, K., Campbell, A., Humayun, M., Hervig, R., Partitioning of Ru, Rh, Pd, Re, Ir, Au between Cr-bearing spinel, olivine, pyroxene and silicate melts (2004) Geochimica et Cosmochimica Acta, 68, pp. 867-880
  • Righter, K., Leeman, W., Hervig, R., Partitioning of Ni, Co and v between spinel-structured oxides and silicate melts: Importance of spinel composition (2006) Chemical Geology, 227, pp. 1-25
  • Sack, R.O., Ghiorso, M.S., Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications (1991) American Mineralogist, 76, pp. 827-847
  • Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (1976) Acta Crystallographica, 32, pp. 751-767
  • Singh, A.K., Singh, R.B., Genetic implications of Zn-and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India (2013) Geological Journal, 48, pp. 22-38
  • Stevanovi, V., D'Avezac, M., Zunger, A., Simple point-ion electrostatic model explains the cation distribution in spinel oxides (2010) Physical Review Letters, 105, p. 075501
  • Tamura, A.N., Arai, S., Inhomogeneous spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: Variations of spinel unmixing texture and chemical composition (2004) Science Reports of Kanazawa University, 48, pp. 9-29
  • Tamura, A.N., Arai, S., Exsolved spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: A reaction between peridotite and highly oxidized magma in the mantle wedge (2005) American Mineralogist, 90, pp. 473-480
  • Toplis, M.J., Corgne, A., An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium (2002) Contributions to Mineralogy and Petrology, 144, pp. 22-37
  • Turnock, A., Eugster, H., Fe-Al oxides: Phase relationships below 1000°C (1962) Journal of Petrology, 3, pp. 533-565
  • Vander Veen, A., Maaskant, P., Chromian spinel mineralogy of the Staré Ransko gabbro-peridotite, Czech Republic, its implications for sulfide mineralization (1995) Mineralium Deposita, 30, pp. 397-407
  • Wechsler, B.A., Von Dreele, R., Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction (1989) Acta Crys Tallographica B, 45, pp. 542-549
  • Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals (2010) American Mineralogist, 95, pp. 185-187
  • Wijbrans, C., Klemme, S., Berndt, J., Vollmer, C., Experimental determination of trace element partition coefficients between spinel and silicate melt: The influence of chemical composition and oxygen fugacity (2015) Contributions to Mineralogy and Petrology, 169, pp. 1-33
  • Yao, S., (1999) Chemical Composition of Chromites from Ultramafic Rocks: Application to Mineral Exploration and Petrogenesis, 174p. , Ph.D. thesis, Macquarie University, Sydney, Australia
  • Zakrzewski, M.A., Chromian spinels from Kusa, Bergslagen, Sweden (1989) American Mineralogist, 74, pp. 448-455
  • Zhou, M., Robinson, P.T., Su, B., Gao, J., Li, J., Yang, J., Malpas, J., Compositions of chromite, associated minerals, parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone envrionments (2014) Gondwana Research, 26, pp. 262-283

Citas:

---------- APA ----------
Colás, V., Padrón-Navarta, J.A., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., O'Reilly, S.Y., Gervilla, F.,..., Escayola, M.P. (2016) . Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution. American Mineralogist, 101(6), 1360-1372.
http://dx.doi.org/10.2138/am-2016-5611
---------- CHICAGO ----------
Colás, V., Padrón-Navarta, J.A., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., O'Reilly, S.Y., et al. "Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution" . American Mineralogist 101, no. 6 (2016) : 1360-1372.
http://dx.doi.org/10.2138/am-2016-5611
---------- MLA ----------
Colás, V., Padrón-Navarta, J.A., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., O'Reilly, S.Y., et al. "Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution" . American Mineralogist, vol. 101, no. 6, 2016, pp. 1360-1372.
http://dx.doi.org/10.2138/am-2016-5611
---------- VANCOUVER ----------
Colás, V., Padrón-Navarta, J.A., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., O'Reilly, S.Y., et al. Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution. Am. Mineral. 2016;101(6):1360-1372.
http://dx.doi.org/10.2138/am-2016-5611