Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We propose a mechanism for unipolar resistance switching in metal-insulator-metal sandwich structures. The commutation from the high to low resistance state and back can be achieved with successive voltage sweeps of the same polarity. Electronic correlation effects at the metal-insulator interface are found to play a key role to produce a resistive commutation effect in qualitative agreement with recent experimental reports on binary transition metal oxide based sandwich structures. © 2007 American Institute of Physics.

Registro:

Documento: Artículo
Título:A mechanism for unipolar resistance switching in oxide nonvolatile memory devices
Autor:Sánchez, M.J.; Rozenberg, M.J.; Inoue, I.H.
Filiación:Centro Atómico Bariloche, Instituto Balseiro, (8400) San Carlos de Bariloche, Argentina
Laboratoire de Physique des Solides, CNRS-UMR8502, Université Paris-Sud, Orsay 91405, France
Departamento de Física, FCEN, Ciudad Universitaria Pab.I, (1428) Buenos Aires, Argentina
Correlated Electron Research Center (CERC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan
Palabras clave:Correlation methods; MIM devices; Nonvolatile storage; Sandwich structures; Transition metals; Electronic correlation effects; Nonvolatile memory devices; Polarity; Unipolar resistance switching; Switching
Año:2007
Volumen:91
Número:25
DOI: http://dx.doi.org/10.1063/1.2824382
Título revista:Applied Physics Letters
Título revista abreviado:Appl Phys Lett
ISSN:00036951
CODEN:APPLA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00036951_v91_n25_p_Sanchez

Referencias:

  • Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C., Widmer, D., (2000) Appl. Phys. Lett., 77, p. 139
  • Liu, S.Q., Wu, N.J., Ignatiev, A., (2000) Appl. Phys. Lett., 76, p. 2749
  • Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.-S., Joung, Y.S., Yoo, I.K., Park, B.H., (2004) Appl. Phys. Lett., 85, p. 5655
  • Jung, R., Lee, M.-J., Seo, S., Kim, D., Park, G.-S., Kim, K., Ahn, S., Park, B.H., (2007) Appl. Phys. Lett., 91, p. 022112
  • Jeong, D.S., Schroeder, H., Waser, R., (2006) Appl. Phys. Lett., 89, p. 082909
  • Jeong, D.S., Schroeder, H., Waser, R., (2007) Electrochem. Solid-State Lett., 10, p. 51
  • Shima, H., Takano, F., Akinaga, H., Tamai, Y., Inoue, I.H., Takagi, H., (2007) Appl. Phys. Lett., 91, p. 012901
  • Inoue, I.H., Yasuda, S., Akinaga, H., Takagi, H., arXiv: cond-mat/0702564; Baek, I.G., Kim, D.C., Lee, M.J., Kim, H.-J., Yim, E.K., Lee, M.S., Lee, J.E., Ryu, B.I., Tech. Dig. - Int. Electron Devices Meet., 2005, p. 769
  • Rozenberg, M.J., Inoue, I.H., Sánchez, M.J., (2004) Phys. Rev. Lett., 92, p. 178302
  • Rozenberg, M.J., Inoue, I.H., Sánchez, M.J., (2006) Appl. Phys. Lett., 88, p. 033510
  • Deac, A., Redon, O., Sousa, R.C., Dieny, B., Nozires, J.P., Zhang, Z., Liu, Y., Freitas, P.P., (2004) J. Appl. Phys., 95, p. 6792
  • Ventura, J., Pereira, A.M., Teixeira, J.M., Carpinteiro, F., Araujo, J.P., Sousa, J.B., Liu, Y., Freitas, P.P., (2006) J. Alloys Compd., 423, p. 181
  • Ventura, J., Zhang, Z., Liu, Y., Sousa, J.B., Freitas, P.P., (2007) J. Phys.: Condens. Matter, 19, p. 176207
  • Szot, K., Speier, W., Bihlmayer, G., Waser, R., (2006) Nat. Mater., 5, p. 312
  • Szot, K., Dittmann, R., Speier, W., Waser, R., (2007) Phys. Status Solidi (RRL), 1, p. 86
  • Cuong, D.D., Lee, B., Choi, K., Ahn, H.-S., Han, S., Lee, J., (2007) Phys. Rev. Lett., 98, p. 115503
  • Ye, F., Mori, T., Ou, D., Zou, J., Auchterlonie, G., Drennan, J., (2007) J. Appl. Phys., 101, p. 113528
  • Imada, M., Fujimori, A., Tokura, Y., (1998) Rev. Mod. Phys., 70, p. 1039
  • Simmons, J.G., Verderber, R.R., (1967) Proc. R. Soc. London, Ser. A, 301, p. 77
  • Ogimoto, Y., Tamai, Y., Kawasaki, M., Tokura, Y., (2007) Appl. Phys. Lett., 90, p. 143515
  • Stefanovich, G.B., Cho, C.-R., Lee, E.-H., Yoo, I.K., (2007) J. Non-Cryst. Solids, 353, p. 956
  • Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., (2007) Phys. Rev. Lett., 98, p. 146403
  • Schmidt, T., Martel, R., Sandstrom, R.L., Avouris, Ph., (1998) Appl. Phys. Lett., 73, p. 2173
  • Kim, K.M., Choi, B.J., Shin, Y.C., Choi, S., Hwang, C.S., (2007) Appl. Phys. Lett., 91, p. 012907
  • Hosoi, Y., Tamai, Y., Ohnishi, T., Ishihara, K., Shibuya, T., Inoue, Y., Yamazaki, S., Tokura, Y., Tech. Dig. - Int. Electron Devices Meet., 2006, p. 793

Citas:

---------- APA ----------
Sánchez, M.J., Rozenberg, M.J. & Inoue, I.H. (2007) . A mechanism for unipolar resistance switching in oxide nonvolatile memory devices. Applied Physics Letters, 91(25).
http://dx.doi.org/10.1063/1.2824382
---------- CHICAGO ----------
Sánchez, M.J., Rozenberg, M.J., Inoue, I.H. "A mechanism for unipolar resistance switching in oxide nonvolatile memory devices" . Applied Physics Letters 91, no. 25 (2007).
http://dx.doi.org/10.1063/1.2824382
---------- MLA ----------
Sánchez, M.J., Rozenberg, M.J., Inoue, I.H. "A mechanism for unipolar resistance switching in oxide nonvolatile memory devices" . Applied Physics Letters, vol. 91, no. 25, 2007.
http://dx.doi.org/10.1063/1.2824382
---------- VANCOUVER ----------
Sánchez, M.J., Rozenberg, M.J., Inoue, I.H. A mechanism for unipolar resistance switching in oxide nonvolatile memory devices. Appl Phys Lett. 2007;91(25).
http://dx.doi.org/10.1063/1.2824382