Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are the only two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine. While human IDO is able to oxidize both l- and d-Trp, human TDO (hTDO) displays major specificity for l-Trp. In this work, we aim to interrogate the molecular basis for the substrate stereoselectivity of hTDO. Our previous molecular dynamics simulation studies of Xanthomonas campestris TDO (xcTDO) showed that a hydrogen bond between T254 (T342 in hTDO) and the ammonium group of the substrate is present in the l-Trp-bound enzyme, but not in the d-Trp-bound enzyme. The fact that this is the only notable structural alteration induced by the change in the stereo structure of the substrate prompted us to produce and characterize the T342A mutant of hTDO to evaluate the structural role of T342 in controlling the substrate stereoselectivity of the enzyme. The experimental results indicate that the mutation only slightly perturbs the global structural properties of the enzyme but totally abolishes the substrate stereoselectivity. Molecular dynamics simulations of xcTDO show that T254 controls the substrate stereoselectivity of the enzyme by (i) modulating the hydrogen bonding interaction between the NH 3 + group and epoxide oxygen of the ferryl-indole 2,3-epoxide intermediate of the enzyme and (ii) regulating the dynamics of two active site loops, loop 250-260 and loop 117-130, critical for substrate binding. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase
Autor:Capece, L.; Lewis-Ballester, A.; Marti, M.A.; Estrin, D.A.; Yeh, S.-R.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Palabras clave:Active site; Ammonium groups; Dioxygenases; Heme proteins; Hydrogen bonding interactions; Indoleamine 2 ,3-dioxygenase; Molecular basis; Molecular dynamics simulations; Oxidation reactions; Stereostructure; Structural alterations; Substrate binding; Xanthomonas campestris; Amino acids; Ammonium compounds; Dynamics; Enzymes; Hydrogen bonds; Molecular dynamics; Molecular oxygen; Porphyrins; Proteins; Reaction kinetics; Stereoselectivity; Substrates; enzyme; ferryl indole 2,3 epoxide; formylkynurenine; indoleamine 2,3 dioxygenase; tryptophan 2,3 dioxygenase; unclassified drug; article; catalysis; controlled study; enzyme binding; gene mutation; hydrogen bond; molecular dynamics; nonhuman; oxidation; priority journal; protein analysis; protein structure; stereochemistry; Xanthomonas campestris; Amino Acid Substitution; Binding Sites; Biocatalysis; Humans; Hydrogen Bonding; Kinetics; Models, Molecular; Molecular Dynamics Simulation; Mutant Proteins; Oxidation-Reduction; Protein Binding; Protein Conformation; Recombinant Proteins; Spectrophotometry; Spectrum Analysis, Raman; Stereoisomerism; Substrate Specificity; Threonine; Tryptophan; Tryptophan Oxygenase
Año:2011
Volumen:50
Número:50
Página de inicio:10910
Página de fin:10918
DOI: http://dx.doi.org/10.1021/bi201439m
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:formylkynurenine, 1022-31-7; tryptophan 2,3 dioxygenase, 9014-51-1; Mutant Proteins; Recombinant Proteins; Threonine, 72-19-5; Tryptophan, 73-22-3; Tryptophan Oxygenase, 1.13.11.11
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v50_n50_p10910_Capece

Referencias:

  • Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., Heme-Containing Oxygenases (1996) Chem. Rev., 96, pp. 2841-2888
  • Takikawa, O., Biochemical and medical aspects of the indoleamine 2,3-dioxygenase- initiated L-tryptophan metabolism (2005) Biochemical and Biophysical Research Communications, 338 (1), pp. 12-19. , DOI 10.1016/j.bbrc.2005.09.032, PII S0006291X05020449
  • Knox, W.E., Mehler, A.H., The Conversion of Tryptophan to Kynurenine in Liver: I. the Coupled Tryptophan Peroxidase-Oxidase System Forming Formylkynurenine (1950) J. Biol. Chem., 187, pp. 419-430
  • Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E., Prendergast, G.C., Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy (2005) Nature Medicine, 11 (3), pp. 312-319. , DOI 10.1038/nm1196
  • Munn, D.H., Shafizadeh, E., Attwood, J.T., Bondarev, I., Pashine, A., Mellor, A.L., Inhibition of T cell proliferation by macrophage tryptophan catabolism (1999) Journal of Experimental Medicine, 189 (9), pp. 1363-1372. , DOI 10.1084/jem.189.9.1363
  • Grohmann, U., Fallarino, F., Puccetti, P., Tolerance, DCs and tryptophan: Much ado about IDO (2003) Trends in Immunology, 24 (5), pp. 242-248. , DOI 10.1016/S1471-4906(03)00072-3
  • Friberg, M., Jennings, R., Alsarraj, M., Dessureault, S., Cantor, A., Extermann, M., Mellor, A.L., Antonia, S.J., Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection (2002) International Journal of Cancer, 101 (2), pp. 151-155. , DOI 10.1002/ijc.10645
  • Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., Van Den Eynde, B.J., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase (2003) Nature Medicine, 9 (10), pp. 1269-1274. , DOI 10.1038/nm934
  • Forouhar, F., Anderson, J.L.R., Mowat, C.G., Vorobiev, S.M., Hussain, A., Abashidze, M., Bruckmann, C., Tong, L., Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (2), pp. 473-478. , DOI 10.1073/pnas.0610007104
  • Zhang, Y., Kang, S.A., Mukherjee, T., Bale, S., Crane, B.R., Begley, T.P., Ealick, S.E., Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis (2007) Biochemistry, 46 (1), pp. 145-155. , DOI 10.1021/bi0620095
  • Sugimoto, H., Otsuki, T., Hino, T., Yoshida, T., Shiro, Y., Crystal structure of human indoleamine 2,3-dioxygenase: Catalytic mechanism of O 2 incorporation by a heme-containing dioxygenase (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 2611-2616
  • Batabyal, D., Yeh, S.R., Human Tryptophan Dioxygenase: A Comparison to Indoleamine 2,3-Dioxygenase (2007) J. Am. Chem. Soc., 129, pp. 15690-15701
  • Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.R., Estrin, D.A., Marti, M.A., The first step in the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3- dioxygenase as revealed by QM-MM studies (2010) J. Biol. Inorg. Chem., 15, pp. 811-823
  • Capece, L., Lewis-Ballester, A., Yeh, S.-R., Estrin, D.A., Marti, M.A., The Complete Reaction Mechanism of Indoleamine 2,3-Dioxygenase As Revealed by QM/MM Simulations (2011) J. Phys. Chem. B, , manuscript under revision
  • Lu, C., Lin, Y., Yeh, S.-R., Inhibitory Substrate Binding Site of Human Indoleamine 2,3-Dioxygenase (2009) J. Am. Chem. Soc., 131, pp. 12866-12867
  • Capece, L., Arrar, M., Roitberg, A.E., Yeh, S.-R., Marti, M.A., Estrin, D.A., Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase (2010) Proteins: Struct., Funct., Bioinf., 78, pp. 2961-2972
  • Batabyal, D., Yeh, S.-R., Substrate-Protein Interaction in Human Tryptophan Dioxygenase: The Critical Role of H76 (2009) J. Am. Chem. Soc., 131, pp. 3260-3270
  • Ishimura, Y., Nozaki, M., Hayaishi, O., Nakamura, T., Tamura, M., Yamazaki, I., The Oxygenated Form of l-Tryptophan 2,3-Dioxygenase as Reaction Intermediate (1970) J. Biol. Chem., 245, pp. 3593-3602
  • Egawa, T., Yeh, S.-R., Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy (2005) Journal of Inorganic Biochemistry, 99 (1), pp. 72-96. , DOI 10.1016/j.jinorgbio.2004.10.017, PII S0162013404003228, Heme-Diatomic Interactions, Part 1
  • Lewis-Ballester, A., Batabyal, D., Egawa, T., Lu, C., Lin, Y., Marti, M.A., Capece, L., Yeh, S.R., Evidence for a Ferryl Intermediate in Heme-based Dioxygenases: Mechanistic Implications (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 17371-17376
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Wang, J., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J. Comput. Chem., 21, pp. 1049-1074
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Bidon-Chanal, A., Martí, M.A., Estrin, D.A., Luque, F.J., Exploring the nitric oxide detoxification mechanism of mycobacterium tuberculosis truncated haemoglobin N (2009) NATO Science for Peace and Security Series A: Chemistry and Biology, pp. 33-47
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric oxide reactivity with globins as investigated through computer simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Chung, L.W., Li, X., Sugimoto, H., Shiro, Y., Morokuma, K., Density functional theory study on a missing piece in understanding of heme chemistry: The reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase (2008) J. Am. Chem. Soc., 130, pp. 12299-12309
  • Chung, L.W., Li, X., Sugimoto, H., Shiro, Y., Morokuma, K., ONIOM Study on a Missing Piece in Our Understanding of Heme Chemistry: Bacterial Tryptophan 2,3-Dioxygenase with Dual Oxidants (2010) J. Am. Chem. Soc., 132, pp. 11993-12005

Citas:

---------- APA ----------
Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A. & Yeh, S.-R. (2011) . Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase. Biochemistry, 50(50), 10910-10918.
http://dx.doi.org/10.1021/bi201439m
---------- CHICAGO ----------
Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.-R. "Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase" . Biochemistry 50, no. 50 (2011) : 10910-10918.
http://dx.doi.org/10.1021/bi201439m
---------- MLA ----------
Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.-R. "Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase" . Biochemistry, vol. 50, no. 50, 2011, pp. 10910-10918.
http://dx.doi.org/10.1021/bi201439m
---------- VANCOUVER ----------
Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.-R. Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase. Biochemistry. 2011;50(50):10910-10918.
http://dx.doi.org/10.1021/bi201439m