Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several goethites were obtained through the hydrolysis at 60 °C of Fe(III) solutions containing variable amounts of Mn(II) ions. The obtained samples were thermally treated at temperatures ranging from 180 to 310 °C until the complete phase transformation to hematite was achieved. The effect of Mn in the dehydroxylation process was investigated using X-ray diffraction (XRD) and the Rietveld refinement of XRD data together with scanning electron microscopy (SEM), differential thermogravimetric analysis (DTA) and Fourier transform infrared spectroscopy (FTIR). In all cases, the formed hematites retained the acicular shape of the precursor goethite. The dehydroxylation temperature increased with the increase of the Mn content in the parent goethite. The cell parameters of both phases decreased with the thermal treatment, however the decrease in the goethite b-parameter was more pronounced. This fact could be attributed to the distortion in the goethite structure by the presence of manganese. The band shifts in the FT-IR spectra of the goethites with different Mn substitution were analysed. The intensities of the hydroxyl vibrations were indicative of the degree of dehydroxylation. The chemical reactivity of all the samples, before and after the thermal treatment, was also studied. The kinetic experiments were carried out at 40 °C in 4 mol dm- 3 HCl. The acid dissolution of all Mn-goethites showed a congruent behavior indicative of a homogeneous distribution of Mn in the goethite crystals, this trend was not observed in the formed hematites presenting a high Mn content. The dissolution rate in goethites increased with the increase of Mn content, the opposite effect was observed in the corresponding hematites. The activation energy in both phases was also obtained and indicated that the Mn substitution produces an opposite effect on goethite- and hematite-phases. Different kinetic laws were applied in order to explain the dissolution behavior, but the modified first-order Kabai equation described the dissolution data best. © 2006 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites
Autor:Alvarez, M.; Rueda, E.H.; Sileo, E.E.
Filiación:Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
INQUIMAE, Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Univ., C1428EHA, Buenos Aires, Argentina
Palabras clave:Acid dissolution; Mn-goethite; Mn-hematite; Rietveld refinement; Thermal transformation; dehydroxylation; geochemistry; goethite; hematite; hydrolysis; phase transition
Año:2006
Volumen:231
Número:4
Página de inicio:288
Página de fin:299
DOI: http://dx.doi.org/10.1016/j.chemgeo.2006.02.003
Título revista:Chemical Geology
Título revista abreviado:Chem. Geol.
ISSN:00092541
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v231_n4_p288_Alvarez

Referencias:

  • Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) on the transformation of ferrihydrite to goethite (2005) Chem. Geol., 216, pp. 89-97
  • Ball, M.C., Taylor, H.F.W., The dehydration of brucite (1961) Mineral. Mag., 32, pp. 754-766
  • Bernstein, L.R., Waychunas, G.A., Germanium crystal chemistry in hematite and goethite from Apex Mine, Utah, and some data on germanium in aqueous solution and in stollite (1987) Geochim. Cosmochim. Acta, 51, pp. 623-630
  • Blesa, M.A., Morando, P., Regazzoni, A.E., (1994) Chemical Dissolution of Metal Oxides, , CRC Press, Boca Raton, USA
  • Cambier, P., Infrared study of goethite of varying crystallinity and particle size: I. Interpretation of OH and lattice vibration frequencies (1986) Clay Miner., 21, pp. 191-200
  • Cornell, R.M., Giovanoli, R., Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media (1987) Clays Clay Miner., 35, pp. 11-20
  • Cornell, R.M., Giovanoli, R., Acid dissolution of hematites of different morphologies (1993) Clay Miner., 28, pp. 223-232
  • Cornell, R.M., Schindler, P.W., Photochemical dissolution of goethite in acid/oxalate dissolution (1987) Clays Clay Miner., 35, pp. 347-352
  • Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides. Structure, Properties, Reaction, Occurrence and Uses, , VCH, Weinheim (Germany) 573 pp
  • Cornell, R.M., Posner, A.M., Quirk, J.P., Crystal morphology and the dissolution of goethite (α-FeOOH) (1974) J. Inorg. Nucl. Chem., 36, pp. 1937-1946
  • Cornell, R.M., Posner, A.M., Quirk, J.P., The complete dissolution of goethite (1975) J. Appl. Chem. Biotechnol., 25, pp. 701-706
  • Cornell, R.M., Posner, A.M., Quirk, J.P., Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH) (1976) J. Inorg. Nucl. Chem., 38, pp. 563-567
  • Derie, R., Ghodsi, M., Calvo-Roche, C., DTA study of the dehydration of synthetic goethite α-FeOOH (1976) J. Therm. Anal., 9, pp. 435-440
  • Fey, M.B., Dixon, J.B., Synthesis and properties of poorly crystalline hydrated aluminous goethites (1981) Clays Clay Miner., 29, pp. 91-100
  • Gasser, U.G., Nüesch, R., Singer, M.J., Jeanroy, E., Distribution of manganese in synthetic goethite (1999) Clay Miner., 34, pp. 291-299
  • González, G., Sagarzazu, A., Villalba, R., Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD (2000) Mater. Res. Bull., 35, pp. 2295-2308
  • Goñi-Elizalde, S., García-Clavel, M.E., Thermal behavior in air of iron oxyhydroxides obtained from the method of homogeneous precipitation: Part I. Goethite samples of varying crystallinity (1988) Thermochim. Acta, 124, pp. 359-369
  • Goss, C.J., The kinetics and reaction mechanism of the goethite to hematite transformation (1987) Miner. Mag., 51, pp. 437-451
  • Jonas, K., Solymar, K., Preparation, X-ray derivatographic and infrared study of aluminium-substituted goethites (1970) Acta Chim. Acad. Sci. Hung., 66, pp. 383-394
  • Kabai, J., Determination of specific activation energies of metal oxides and metal oxide hidrates by measurement of the rate of dissolution (1973) Acta Chim. Acad. Sci. Hung., 78, pp. 57-73
  • Klissurski, D.G., Bluskov, V.N., A Mössbauer study of the thermal decomposition of highly disperse α-FeOOH (1980) Mater. Chem., 5, pp. 67-71
  • Larson, A.C., Von Dreele, R.B., GSAS. General Structural Analysis System (1994) Los Alamos Natl. Lab. Rep. LAUR, 86, p. 748
  • Lim-Nuñez, R.S.L., Gilkes, R.J., Acid dissolution of synthetic metal-containing goethites and hematite (1987) Proceedings of the International Clay Conference, Denver, pp. 197-204
  • Lima-de-Faria, J., Dehydration of goethite and diaspore (1963) Z. Kristallogr., 119, pp. 176-203
  • Maslen, E.N., Streltsov, V.A., Streltsova, N.R., Ishizawa, N., Synchrotron X-ray study of the electron density in α-Fe2O3 (1994) Acta Crystallogr., B, 50, pp. 435-441
  • Mendelovici, E., Villalba, R., Sagarzazu, A., Processings of iron oxides at room temperature: I. Solid state conversion of pure α-FeOOH into distinctive α-Fe2O3 (1982) Mater. Res. Bull., 17, pp. 241-249
  • Naono, H., Fujiwara, R., Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH (1980) J. Colloid Interface Sci., 73 (2), pp. 406-415
  • Pomiès, M.P., Menu, M., Vignaud, C., TEM observations of goethite dehydration: application to archaeological samples (1999) J. Eur. Ceram. Soc., 19, pp. 1605-1641
  • Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) J. Appl. Crystallogr., B, 25, pp. 925-946
  • Ruan, H.D., Gilkes, R.J., Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area (1995) Clays Clay Miner., 43 (2), pp. 196-211
  • Ruan, H.D., Gilkes, R.J., Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating (1995) Clay Miner., 30, pp. 55-65
  • Ruan, H.D., Frost, R.L., Kloprogge, J.T., The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite (2001) Spectrochim. Acta Part A, 57, pp. 2575-2586
  • Schwertmann, U., The influence of aluminium on iron oxides: IX. Dissolution of Al-goethite in 6 M HCl (1984) Clay Miner., 19, pp. 9-19
  • Schwertmann, U., The double dehydroxylation peak of goethite (1984) Thermochim. Acta, 78, pp. 39-46
  • Schwertmann, U., Solubility and dissolution of iron oxides (1991) Plant Soil, 130, pp. 1-25
  • Schwertmann, U., Cornell, R.M., Iron oxides in the laboratory (1991) Preparation and Characterization, , VCH, Weinheim 137 pp
  • Schwertmann, U., Lathman, M., Properties of iron oxides in some new Caledonian oxisols (1986) Geoderma, 39, pp. 105-123
  • Sidhu, P.S., Gilkes, R.J., Cornell, R.M., Posner, A.M., Quirk, J.P., Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids (1981) Clays Clay Miner., 29, pp. 269-276
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279
  • Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochim. Cosmochim. Acta, 68 (14), pp. 3053-3063
  • Singh, B., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1992) J. Soil Sci., 43, pp. 77-98
  • Singh, B., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Structural chemistry of Fe, Mn and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy (2000) Clays Clay Miner., 48, pp. 521-527
  • Stephens, P.W., Phenomenological model of anisotropic peak broadening in powder diffraction (1999) J. Appl. Crystallogr., 32, pp. 281-289
  • Surana, V.S., Warren, I.H., The leaching of goethite (1969) Trans. Inst. Min. Metall., 80, pp. C152-C155
  • Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Phys. Stat. Solidi, 26, pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83
  • Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A.J., Martin, H., Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction (1995) Geochim. Cosmochim. Acta, 59, pp. 1285-1297
  • Watari, F., van Landuyt, J., Delavignette, P., Amelinckx, S., Electron microscopic study of dehydration transformations: I. Twin formation and mosaic structure in hematite derived from goethite (1979) J. Solid State Chem., 29, pp. 137-150
  • Watari, F., Delavignette, P., van Landuyt, J., Amelinckx, S., Electron microscopic study of dehydration transformations: III. High resolution observation of the reaction process FeOOH → Fe2O3 (1983) J. Solid State Chem., 48, pp. 49-64
  • Wells, M.A., Gilkes, R.J., Fitzpatrick, R.W., Properties and acid dissolution of metal-substituted hematites (2001) Clays Clay Miner., 49 (1), pp. 60-72
  • Wolska, E., Szajda, W., Structural and spectroscopic characteristics of synthetic hydrohaematite (1985) J. Mater. Sci., 20, pp. 4407-4412

Citas:

---------- APA ----------
Alvarez, M., Rueda, E.H. & Sileo, E.E. (2006) . Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites. Chemical Geology, 231(4), 288-299.
http://dx.doi.org/10.1016/j.chemgeo.2006.02.003
---------- CHICAGO ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. "Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites" . Chemical Geology 231, no. 4 (2006) : 288-299.
http://dx.doi.org/10.1016/j.chemgeo.2006.02.003
---------- MLA ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. "Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites" . Chemical Geology, vol. 231, no. 4, 2006, pp. 288-299.
http://dx.doi.org/10.1016/j.chemgeo.2006.02.003
---------- VANCOUVER ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites. Chem. Geol. 2006;231(4):288-299.
http://dx.doi.org/10.1016/j.chemgeo.2006.02.003